ENUBET (Enhanced NeUtrino BEams from kaon Tagging)
- A new source based on tagging of large angle e^+ from $K^+ \rightarrow e^+ \pi^- \nu_e$ decays in an instrumented decay tunnel.
- Reduce systematic uncertainties in the knowledge of the neutrino flux to $\lesssim 0.1\%$ level. [1]
- ERC funded project (n. 681647, P.I. A. Longhin), Expression of Interest to CERN-SPSC. [2]

Physics case and applications
- A new generation of neutrino cross section experiments with unprecedented control on the flux.
- The first step toward a time-tagged ν-beam, where the ν at the detector is correlated with the lepton in the tunnel.
- A phase-II sterile neutrino search, especially in case of a positive signal from the FermiLab SBL program.

Deliverables of ENUBET:
1) conceptual design of the beamline 2) Construction of a 3 m x π section of the instrumented tunnel as a principle demonstrator.

Tagged neutrino beam concept
- Hadron beam-line: collects, focuses, transports K^+ to the 50 m long e^+ tagger
- e^+ tagger: real-time, "inclusive" monitoring of produced e^+

The positron tagger
Challenges
The decay tunnel: a harsh environment
- particle rates: $> 200 \text{ kHz/cm}^2$
- backgrounds: pions from K^+ decays
- extended source of ~ 50 m
- grazing incidence
- spread in the initial direction

Adopted solution
Conventional beam-pipe replaced by alternative instrumentation
Key points:
- longitudinal sampling
- perfect homogeneity
- radiation hardness
- cost effectiveness

ENUBET impact on ν_e cross section meas.

The hadron beamline
- At the tunnel entrance particles must be collimated (< 3 mrad) and energy selected (8.5 GeV $\pm 20\%$)

Focusing system Proton extraction from accelerator
A: pulsed device (magnetic horn) Unconventional: many (109), short (2-10 ms) pulses with few protons (< 3 x 1011)
B: static devices (DC magnets) O(1s) long slow extractions

Scenario B is the way to a "time-tagged" ν beam: proton "time-dilution" \rightarrow t-coincidences between e^+ and ν_e at the detector

Reconstruction: full tagger GEANT4 simulation
- Event building and clustering of neighboring UCM to avoid pile-up effects
- Artificial NN with 5 variables
- Sequential cuts exploiting info from γ-veto
- π^0 rejection: ~ 97%
- ν_e rejection: ~ 99%

References, additional info
http://enubet.pd.infn.it

[2] CERN-SPSC-2016-036; SPSC-EOI-014

Prepared by F. Pupilli (INFN-Padova) for the XVII International Workshop on Neutrino Telescopes – Venice, 13th-17th March 2017