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1.  (un)naturalness

7
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Fine-tuning	versus	anthropic	selection



Agrawal, Barr, Donoghue and Seckel, Phys. Rev. D 57, 5480 (1998) 
[hep-ph/9707380] 

Does	the	Higgs	mass	require	SUSY	protection?	Even	in	that	case,	
why	is	it	small	prior	to	quantum	corrections?

Does	the	cosmological	constant	require	SUSY	protection?	At	which	
scale	of	SUSY	breaking?		Even	in	that	case,	why	is	the	cosmological	
constant	small	prior	to	quantum	corrections?

Landscape	and	anthropic	considerations:	Lots	of	vacua,	quantum	
corrections	modify	their	properties,	but	even	after	these	corrections,	
there	are	always	many	vacua that	are	suitable	for	life	(with	a	small	
cosmological	constant	and	small	Higgs	mass).	Thus,	smallness	of	the	
quantum	corrections	is	NOT	required.

AL 1984, Sakharov 1984, Weinberg 1987, Bousso, Polchinski 2000, 
KKLT 2003, Douglas 2003, Susskind 2003



Before quantum corrections After quantum corrections

Anthropic bound: |L| < 10-120  

Example: Vacuum energy in string theory:



What	can	we	learn	about	SUSY,	SUGRA,	string	theory	
from	cosmology?

Lots	of	cosmological	problems	with	models	with	small	SUSY	
breaking:	gravitino	problem,	Polonyi	problem,	KKLT	destabilization,	
fine	tuning	of	the	same	order	as	tuning	the	Higgs	mass,	unitarity	
violation	problem,	no-go	theorem for	small	SUSY	breaking.

More	on	related	issues	– in	talks	by	Karlsson,	Scalisi,	Wrase	and	
Vercnocke	at	this	conference	

It	is	possible	to	solve	each	of	these	problems,	and	to	construct	
SUGRA	models	explaining	current	data,	though	it	is	easier	if	SUSY	
breaking	is	large.	Models	with	nonlinearly	realized	supersymmetry	
(nilpotent	fields)	are	helpful	for	dark	energy,	for	SUSY	breaking	and	
for	inflation.	Future	observational	data	might	shed	light	on	the	
origin	of	supersymmetric	models	describing	the	universe.

Kallosh,	AL,	Vercnocke,	Wrase			1406.4866
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Studying Dark Energy may bring the greatest prize  in  
Physics within reach: reconciliation of the two great edificies 

General Relativity Quantum Mechanics 8 

Our	work	has	the	potential	to	lead	to	a	reconciliation	of	the	
two	great	edifices	of	physics			

Gravitational waves detected!

ICHEP	2016	-- I.	Shipsey

Mystery:	What	powered	cosmic	inflation?

Classical	general	relativity	predicted	gravity	
waves	from	black	hole	merger	which	took	
place	about	1	billion	years	ago,	predicted	
about	100	years	ago

Primordial	 	gravity	waves	from	 inflation,	
from	13.8	billion	 years	ago,	they	are	called	
B-modes,	not	detected	so	far.	Tests	Quantum
Gravity. Holy	Grail	of	observational	 cosmology.
Predicted	37	years	ago.



BUILDING	AN	UNDERSTANDING	OF	THE	UNIVERSE:
A	WORK	A	CENTURY	IN	THE	MAKING

Through careful measurement, 
observation and deduction 
we have developed remarkably 
successful prevailing theories the 
Standard Models of particle physics 
and cosmology that are highly predictive 
and have been rigorously tested in some 
cases to 1 part in 10 billion

ICHEP	2016	-- I.	Shipsey
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From	IHCEP	vision/outlook



COBE ➞ WMAP ➞ Planck

COBE ➞ WMAP ➞ PlanckCOBE ➞ WMAP ➞ Planck

COBE ➞ WMAP ➞ Planck

Cosmological	Concordance	model

at decoupling

photons

CDM, baryons

Λ (dark energy)
neutrinos
 0.5 eV
 0.05 eV
 0 eV

Matter/Radiation  
Equality

Decoupling

Neutrinos 
   - relativistic at decouplingCMB

Today







Fit by vanilla 6-parameter ΛCDM model

Inflation?

Inflation checklist: 
✓ Flat geometry (Ωk < 0.005)  
✓ Harmonic peaks (9+) 
✓ Gaussian random fields 
    (fNLlocal = 0.8 ± 5.0, fNLequil = −4 ± 43, and fNortho = −26 ± 21)*  
✓ Departure from scale invariance! (ns = 0.968 ± 0.006) 
    Inflationary gravitational waves (tensors) (r < 0.07)*

*constraints include CMB polarization data

ICHEP,	talk	by	J.	Carlstrom



Early	Universe	Inflation:	first	10-35	sec

Model	building	to	explain	data	using	supergravity	motivated	by	string	theory
(can’t	use	global	SUSY,	has	to	solve	Einstein	equations)

Absence	of	non-Gaussianity:	preference	to	a	single	light	scalar,	inflaton,	all	
other	moduli	should	play	only	secondary	roles

Tilt	of	the	power	spectrum		

Primordial	gravity	waves r < 0.07

Current	Universe	acceleration:	during	the	last	few	billion	years

Cosmological	constant,	de	Sitter	space,	provides	a	good	fit	to	data

⇤ ⇡ 10�120M4
Pl

Slow	roll	inflation,	near	de	Sitter	space

ns ⇡ 0.96

Dark	Matter	???



To	have	inflation	starting	at	the	Planck	density,	it	is	
sufficient	to	have	a	single	Planck	size	domain	with	a	
potential	energy	V	of	the	same	order	as	kinetic	and	
gradient	density.

V =
m2�2

2
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To make it easier to compare inflationary predictions with the observational results obtained
by Planck, we will list here the definitions and relations used in the Planck data release of 2013
[1]. The square of the amplitude of scalar perturbations �H produced at the time when the
inflaton field was equal to some value � is given by

As =
V 3(�)

12⇡2V 2

� (�)
. (7.3)

For tensors, one has

At =
2V (�)

3⇡2

. (7.4)

By relating � and k, one can write, approximately,

As(k) = As(k⇤)

✓
k

k⇤

◆ns�1

, (7.5)

At(k) = At(k⇤)

✓
k

k⇤

◆nt

, (7.6)

where As(k⇤) is a normalization constant, and k⇤ is a normalization point, which is often taken
to be k⇤ ⇠ 0.05/Mpc. Here we ignored running of the indexes ns and nt since there is no
observational evidence that it is significant.

One can also introduce the tensor/scalar ratio r, the relative amplitude of the tensor to
scalar modes,

r ⌘ At(k⇤)

As(k⇤)
. (7.7)

There are two most important slow-roll parameters [41]

✏ =
1

2

✓
V�

V

◆
2

, ⌘ =
V��

V
, (7.8)

where prime denotes derivatives with respect to the field �. All parameters must be smaller
than one for the slow-roll approximation to be valid.

A standard slow roll analysis gives observable quantities in terms of the slow roll parameters
to first order as

As =
V

24⇡2✏
, (7.9)

ns = 1 � 6✏ + 2⌘ = 1 � 3

✓
V 0

V

◆
2

+ 2
V 00

V
, (7.10)

r = 16✏, (7.11)

nt = �2✏ = �r

8
. (7.12)

The equation nt = �r/8 is known as the consistency relation for single-field inflation models;
it becomes an inequality for multi-field inflation models. If V during inflation is su�ciently
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Scalar	and	tensor	perturbations

Observations	tell	us	about	perturbations	produced	during	
the	last	50	– 60	e-foldings	of	inflation,	which	are	described	
by	the	number	N.



To make it easier to compare inflationary predictions with the observational results obtained
by Planck, we will list here the definitions and relations used in the Planck data release of 2013
[1]. The square of the amplitude of scalar perturbations �H produced at the time when the
inflaton field was equal to some value � is given by

As =
V 3(�)

12⇡2V 2

� (�)
. (7.3)

For tensors, one has

At =
2V (�)

3⇡2

. (7.4)

By relating � and k, one can write, approximately,

As(k) = As(k⇤)

✓
k

k⇤

◆ns�1

, (7.5)

At(k) = At(k⇤)

✓
k

k⇤

◆nt

, (7.6)

where As(k⇤) is a normalization constant, and k⇤ is a normalization point, which is often taken
to be k⇤ ⇠ 0.05/Mpc. Here we ignored running of the indexes ns and nt since there is no
observational evidence that it is significant.

One can also introduce the tensor/scalar ratio r, the relative amplitude of the tensor to
scalar modes,

r ⌘ At(k⇤)

As(k⇤)
. (7.7)

There are two most important slow-roll parameters [41]

✏ =
1

2

✓
V�

V

◆
2

, ⌘ =
V��

V
, (7.8)

where prime denotes derivatives with respect to the field �. All parameters must be smaller
than one for the slow-roll approximation to be valid.

A standard slow roll analysis gives observable quantities in terms of the slow roll parameters
to first order as

As =
V

24⇡2✏
, (7.9)

ns = 1 � 6✏ + 2⌘ = 1 � 3

✓
V 0

V

◆
2

+ 2
V 00

V
, (7.10)

r = 16✏, (7.11)

nt = �2✏ = �r

8
. (7.12)

The equation nt = �r/8 is known as the consistency relation for single-field inflation models;
it becomes an inequality for multi-field inflation models. If V during inflation is su�ciently

14

To make it easier to compare inflationary predictions with the observational results obtained
by Planck, we will list here the definitions and relations used in the Planck data release of 2013
[1]. The square of the amplitude of scalar perturbations �H produced at the time when the
inflaton field was equal to some value � is given by

As =
V 3(�)

12⇡2V 2

� (�)
. (7.3)

For tensors, one has

At =
2V (�)

3⇡2

. (7.4)

By relating � and k, one can write, approximately,

As(k) = As(k⇤)

✓
k

k⇤

◆ns�1

, (7.5)

At(k) = At(k⇤)

✓
k

k⇤

◆nt

, (7.6)

where As(k⇤) is a normalization constant, and k⇤ is a normalization point, which is often taken
to be k⇤ ⇠ 0.05/Mpc. Here we ignored running of the indexes ns and nt since there is no
observational evidence that it is significant.

One can also introduce the tensor/scalar ratio r, the relative amplitude of the tensor to
scalar modes,

r ⌘ At(k⇤)

As(k⇤)
. (7.7)

There are two most important slow-roll parameters [41]

✏ =
1

2

✓
V�

V

◆
2

, ⌘ =
V��

V
, (7.8)

where prime denotes derivatives with respect to the field �. All parameters must be smaller
than one for the slow-roll approximation to be valid.

A standard slow roll analysis gives observable quantities in terms of the slow roll parameters
to first order as

As =
V

24⇡2✏
, (7.9)

ns = 1 � 6✏ + 2⌘ = 1 � 3

✓
V 0

V

◆
2

+ 2
V 00

V
, (7.10)

r = 16✏, (7.11)

nt = �2✏ = �r

8
. (7.12)

The equation nt = �r/8 is known as the consistency relation for single-field inflation models;
it becomes an inequality for multi-field inflation models. If V during inflation is su�ciently

14

Slow	roll	parameters	and	observables



WMAP 2012:   9 years summary
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the QUIET Collaboration (2012) reports r < 2.8 (95% CL). A host of forthcoming experiments are targeting B-mode
measurements that have the potential to detect or limit tensor modes at significantly lower levels than can be achieved
with temperature data alone.
In Table 5, we report limits on r from the nine-year WMAP data, analyzed alone and jointly with external data;

the tightest constraint is
r < 0.13 (95% CL) WMAP+eCMB+BAO+H0.

This is e↵ectively at the limit one can reach without B-mode polarization measurements. The joint constraints on ns

and r are shown in Figure 7, along with selected model predictions derived from single-field inflation models. Taken
together, the current data strongly disfavor a pure Harrison-Zel’dovich (HZ) spectrum, even if tensor modes are allowed
in the model fits.

Fig. 7.— Two-dimensional marginalized constraints (68% and 95% CL) on the primordial tilt, ns, and the tensor-to-scalar ratio, r, derived
with the nine-year WMAP in conjunction with: eCMB (green) and eCMB+BAO+H0 (red). The symbols and lines show predictions from
single-field inflation models whose potential is given by V (�) / �↵ (Linde 1983), with ↵ = 4 (solid), ↵ = 2 (long-dashed), and ↵ = 1
(short-dashed; McAllister et al. 2010). Also shown are those from the first inflation model, which is based on an R2 term in the gravitational
Lagrangian (dotted; Starobinsky 1980). Starobinsky’s model gives ns = 1� 2/N and r = 12/N2 where N is the number of e-folds between
the end of inflation and the epoch at which the scale k = 0.002 Mpc�1 left the horizon during inflation. These predictions are the same
as those of inflation models with a ⇠�2R term in the gravitational Lagrangian with a ��4 potential (Komatsu & Futamase 1999). See
Appendix A for details.

4.1.1. Running Spectral Index

Some inflation models predict a scale dependence or “running” in the (nearly) power-law spectrum of scalar pertur-
bations. This is conveniently parameterized by the logarithmic derivative of the spectral index, dns/d ln k, which gives
rise to a spectrum of the form (Kosowsky & Turner 1995)

�2
R(k) = �2

R(k0)

✓
k

k0

◆ns(k0)�1+ 1
2 ln(k/k0)dns/d ln k

. (9)

We do not detect a statistically significant deviation from a pure power-law spectrum with the nine-year WMAP data.
The allowed range of dns/d ln k is both closer to zero and has a smaller confidence range with the nine-year data,
dns/d ln k = �0.019± 0.025. However, with the inclusion of the high-l CMB data, the full CMB data prefer a slightly
more negative value, with a smaller uncertainty, dns/d ln k = �0.022+0.012

�0.011. While not significant, this result might
indicate a trend as the l-range of the data expand. The inclusion of BAO and H0 data does not a↵ect these results.
If we allow both tensors and running as additional primordial degrees of freedom, the data prefer a slight negative

running, but still at less than 3� significance, and only with the inclusion of the high-l CMB data. Complete results
are given in Table 5.

4.2. Isocurvature Modes

In addition to adiabatic fluctuations, where all species fluctuate in phase and therefore produce curvature fluctuations,
it is possible to have isocurvature perturbations: an over-density in one species compensates for an under-density in
another, producing no net curvature. These entropy, or isocurvature perturbations have a measurable e↵ect on the
CMB by shifting the acoustic peaks in the power spectrum. For cold dark matter and photons, we define the entropy
perturbation field

Sc,� ⌘ �⇢c
⇢c

� 3�⇢�
4⇢�

(10)
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mask, and marginalize three foreground templates corresponding to synchrotron, free-free,

and dust emission. With foreground marginalization enabled, the same fNL estimates are
obtained on raw and template-cleaned maps.

Our “bottom line” constraints on non-Gaussianity are as follows:

f loc
NL = 37.2± 19.9 (−3 < f loc

NL < 77 at 95% CL)

f eq
NL = 51± 136 (−221 < f eq

NL < 323 at 95% CL)

f orth
NL = −245± 100 (−445 < f orth

NL < −45 at 95% CL) (54)

The f loc
NL constraint includes a correction for the ISW-lensing contribution to the bispectrum,

which arises from the large-scale correlation between the CMB temperature and the CMB
lensing potential. We find that the ISW-lensing bispectrum biases the f loc

NL estimator by

∆f loc
NL = 2.6; this bias has been subtracted from the estimate in Equation (54). The ISW-

lensing bias was computed using the Fisher matrix approximation, but this has been shown

to be an excellent approximation to the exact result (Hanson et al. 2009; Lewis et al. 2011).

The constraint on each fNL parameter in Equation (54) assumes that the other two fNL

parameters are zero. For a joint analysis of all three parameters, we need the bispectrum
Fisher matrix:

F =

⎛

⎝
25.25 1.06 −2.39

1.06 0.54 0.20
−2.39 0.20 1.00

⎞

⎠× 10−4 (55)

where the ordering of the rows and columns is f loc
NL, f

eq
NL, f

orth
NL . The statistical error on

each fNL parameter in Equation (54), with the other two fNL parameters fixed to zero, is
(Fii)−1/2, and the correlation between two estimators in Equation (54) is equal to the rescaled

off-diagonal matrix element Fij/(FiiFjj)1/2.8 An example of a two-parameter joint analysis
is shown in Figure 42 below.

8This estimator covariance is appropriate for our convention that each fNL estimator is defined to be the
optimal estimator assuming that the other two fNL parameters are zero. There is an alternate definition
in which each fNL estimator is defined with the other two fNL parameters marginalized; in this case the
estimator covariance matrix would be the inverse Fisher matrix (F−1)ij . The two definitions are linear
combinations of each other, and therefore give identical results in a joint analysis, provided that the off-
diagonal correlations are properly incorporated.

This	level	of	non-Gaussianity	would	kill	99%	of	all	inflationary	models,	predicting	
fNL <	1.	Everyone	tried	to	construct	ugly	models	belonging	to	the	remaining	1%...	

“Happy families are all alike; every unhappy family is unhappy 
in its own way.” 

Anna Karenina by L. Tolstoy
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ABSTRACT

The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG).
Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent values for the primordial
local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result f local

NL = 2.7 ± 5.8, f equil
NL = �42 ± 75, and f ortho

NL = �25 ± 39
(68% CL statistical); and we find the Integrated-Sachs-Wolfe-lensing bispectrum expected in the ⇤CDM scenario. The results are based on
comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques,
pass an extensive suite of tests, and are confirmed by skew-C`, wavelet bispectrum and Minkowski functional estimators. Beyond estimates of
individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and thus derive
constraints on early-Universe scenarios that generate primordial NG, including general single-field models of inflation, excited initial states (non-
Bunch-Davies vacua), and directionally-dependent vector models. We provide an initial survey of scale-dependent feature and resonance models.
These results bound both general single-field and multi-field model parameter ranges, such as the speed of sound, cs � 0.02 (95% CL), in an
e↵ective field theory parametrization, and the curvaton decay fraction rD � 0.15 (95% CL). The Planck data put severe pressure on ekpyrotic/cyclic
scenarios. The amplitude of the four-point function in the local model ⌧NL < 2800 (95% CL). Taken together, these constraints represent the highest
precision tests to date of physical mechanisms for the origin of cosmic structure.

Key words. cosmology: cosmic background radiation – cosmology: observations – cosmology: theory – cosmology: early Universe – cosmology:
inflation
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Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied

�ns ⇠ �0.0026

Planck	2016	results	1605.02985 suggest	that	the	dark	blue	area	may shift	
to	the	left	by	½ of	the	error	bar:

This	may	further	improve	the	status	of	a attractors,	as	indicated	by	the	
(Planck	non-authorized) red	arc	in	the	figure	above.	
For	the	real	answer	we	should	wait	until	the	next	Planck	data	release.

Planck	2015	and	2016
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The	simplest	conformally	invariant	two-field		model	of	dS	or	AdS	space	and	the	
SO(1,1)	invariant	conformal	gauge

Local	conformal	symmetry

The	global	SO(1,1)	transformation	is	a	boost	between	these	two	fields.

SO(1,1)	invariant	conformal	gauge

This	gauge	condition	represents	a	hyperbola	which	can	be	parameterized	by	a	
canonically	normalized	field

The	action	in	this	gauge,
dS/AdS

'
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Here	F	is	an	arbitrary	function	of	the	ratio	phi/chi.	When	this	function	is	present,	it	
breaks	the	SO(1,1)	symmetry	of	the	de	Sitter	model.	Note	that	this	is	the	only	
possibility	to	keep	local	conformal	symmetry	and	to	deform	the	SO(1,1)	symmetry!

In	the	gauge																																					it	becomes

The	attractor	behavior	near	a	critical	point	where	SO(1,1)	symmetry	is	restored	is	
the	following:	start	with	generic	F(tanh),		always	get

ns ⇡ 0.967 r ⇡ 0.0032
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Kallosh,	AL			1311.3326

In	the	superconformal	formulation	of	supergravity,	the	standard	
supergravity	action	appears	as	a	result	of	spontaneous	symmetry	
breaking	when	the	conformal	compensator	scalar	field,	the	
conformon,	acquires	a	nonzero	value,	giving	rise	to	the	Planck	
mass.	After	that,	some	symmetries	of	the	original	theory	become	
well	hidden,	and	therefore	they	are	often	ignored.	

However,	superconformal	invariance	is	more	than	just	a	tool.	In	
particular, inflation	can	be	equivalently	described	as	the	
conformon	instability, and	creation	of	the	universe	̀ from	
nothing'	can	be	interpreted	as	spontaneous	symmetry	breaking	
due	to	emergence	of	a	classical	conformon	field.
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General chaotic inflation model

Modify its kinetic term

Switch to canonical variables � =
p
6↵ tanh

'p
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The potential becomes
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This is a plateau potential for any nonsingular V (�)
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Similar model has been proposed 32 years ago by Goncharov and AL 
in JETP 59, 930 (1984). It was the first paper on chaotic inflation in 
supergravity, but it was nearly forgotten. It corresponds to 

↵ = 1/9

Single-field ↵-attractors

Andrei Linde
Department of Physics and SITP, Stanford University,

Stanford, California 94305 USA, alinde@stanford.edu

I describe a simple class of ↵-attractors, generalizing the single-field GL model of inflation in
supergravity. The new class of models is defined for 0 < ↵ <⇠ 1, providing a good match to the
present cosmological data. I also present a generalized version of these models which can describe
not only inflation but also dark energy and supersymmetry breaking.

1. INTRODUCTION

First models of inflation in supergravity were based on the
new inflationary scenario, assuming high temperature phase
transitions with symmetry restoration. But these models did
not quite work, and in 1983 the new inflation scenario was
dethroned by chaotic inflation [1].

The main idea of chaotic inflation was to consider vari-
ous su�ciently flat potentials, either large-field or small-field,
and check whether inflation may occur in some parts of the
universe without assuming that it was in a state of thermal
equilibrium and that initial state of the inflaton field should
correspond to an extremum of the potential. For several
years, this simple idea was rejected by many as a drastic de-
viation from the main principles of inflation, but gradually it
became broadly accepted, and now practically all inflation-
ary models are based on it.

The first model of chaotic inflation in supergravity was
proposed in 1983-1984 [2]; I will call it GL model hereafter.
It was also the first model with the inflaton potential asymp-
totically approaching a plateau, V ⇠ a � be�c�. Later on,
it was realized that the Starobinsky model [3], after certain
modifications, can be cast in a form with a similar plateau
potential [4].

Inflationary potentials in these models never reach Planck-
ian values. It took many years to solve the problem of initial
conditions there, see a discussion in [5]. These models at-
tracted general attention only recently, because they were
strongly favored by the WMAP and Planck data [6, 7]. Pre-
dictions of some of these models are stable with respect to
even large changes of their potentials; such models are called
cosmological attractors [8–14]. In particular, GL model be-
longs to the class of ↵-attractors [9–11] with ↵ = 1/9 [15, 16].
These models have a unique set of predictions providing an
excellent fit to the recent observational data for ↵ <⇠ O(30):

1� ns ⇡
2

N
, r ⇡ 12↵

N2
. (1.1)

GL model [2] has several di↵erent realizations. It can be
represented as a theory with a canonical Kähler potential

K = �1

2
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and a superpotential [15]
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p
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From the point of view of the theory of ↵-attractors, it is
more appropriate to use logarithmic Kähler potentials, such
as [11],

K = �3 log
⇣
1� ZZ̄ +

↵� 1

2
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1� ZZ̄
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(1.4)

with ↵ = 1/9. In this framework, the GL model has a very
simple superpotential [16]

W =
µ

9
Z2 (1� Z2) . (1.5)

The inflationary potential of this model, upon transforma-
tion to the canonically normalized inflaton field ' such that
ReZ = tanh 'p

6↵
, becomes
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It has a minimum at ' = 0, where it vanishes. At ' >⇠ 1,
the potential coincides with the plateau potential

V (') =
µ2
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up to exponentially small higher order corrections [2].

This model is quite economical: It involves just a single
chiral superfield. It is very di�cult to construct such models,
so most of the subsequently developed inflationary models in
supergravity involved at least two di↵erent supermultiplets.

This situation changed only very recently, with inven-
tion of some interesting single superfield inflation models
[9, 17, 18], and especially with the development of models
with nilpotent chiral superfields, which allow to have two su-
perfields but only one complex scalar field [16, 19–24]. There
are several di↵erent ways to incorporate inflationary models
with any value of ↵ in the context of such theories, and si-
multaneously describe a non-zero cosmological constant and
SUSY breaking [16, 22].

In fact, even the original GL model, as well as the models
of Ref. [17, 18], require additional fields to describe SUSY
breaking and the cosmological constant, but one can easily
achieve it by adding a tiny superpotential M(S + 1/b) of a
nilpotent field S to the original single-filed GL superpoten-
tial [15, 16]. Therefore it would be interesting to find other
examples of single-field models of this type which could in-
corporate various values of ↵, not just ↵ = 1/9, and to check
whether one could generalize them in a similar way.

for
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present cosmological data. I also present a generalized version of these models which can describe
not only inflation but also dark energy and supersymmetry breaking.

1. INTRODUCTION

First models of inflation in supergravity were based on the
new inflationary scenario, assuming high temperature phase
transitions with symmetry restoration. But these models did
not quite work, and in 1983 the new inflation scenario was
dethroned by chaotic inflation [1].

The main idea of chaotic inflation was to consider vari-
ous su�ciently flat potentials, either large-field or small-field,
and check whether inflation may occur in some parts of the
universe without assuming that it was in a state of thermal
equilibrium and that initial state of the inflaton field should
correspond to an extremum of the potential. For several
years, this simple idea was rejected by many as a drastic de-
viation from the main principles of inflation, but gradually it
became broadly accepted, and now practically all inflation-
ary models are based on it.

The first model of chaotic inflation in supergravity was
proposed in 1983-1984 [2]; I will call it GL model hereafter.
It was also the first model with the inflaton potential asymp-
totically approaching a plateau, V ⇠ a � be�c�. Later on,
it was realized that the Starobinsky model [3], after certain
modifications, can be cast in a form with a similar plateau
potential [4].

Inflationary potentials in these models never reach Planck-
ian values. It took many years to solve the problem of initial
conditions there, see a discussion in [5]. These models at-
tracted general attention only recently, because they were
strongly favored by the WMAP and Planck data [6, 7]. Pre-
dictions of some of these models are stable with respect to
even large changes of their potentials; such models are called
cosmological attractors [8–14]. In particular, GL model be-
longs to the class of ↵-attractors [9–11] with ↵ = 1/9 [15, 16].
These models have a unique set of predictions providing an
excellent fit to the recent observational data for ↵ <⇠ O(30):

1� ns ⇡
2

N
, r ⇡ 12↵

N2
. (1.1)

GL model [2] has several di↵erent realizations. It can be
represented as a theory with a canonical Kähler potential

K = �1

2
(�� �̄)2 (1.2)

and a superpotential [15]

W =
m

6

�
cosh

p
3�� cosh�1

p
3�

�
. (1.3)

From the point of view of the theory of ↵-attractors, it is
more appropriate to use logarithmic Kähler potentials, such
as [11],

K = �3 log
⇣
1� ZZ̄ +

↵� 1

2

(Z � Z̄)2

1� ZZ̄

⌘
(1.4)

with ↵ = 1/9. In this framework, the GL model has a very
simple superpotential [16]

W =
µ

9
Z2 (1� Z2) . (1.5)

The inflationary potential of this model, upon transforma-
tion to the canonically normalized inflaton field ' such that
ReZ = tanh 'p

6↵
, becomes

V (�) =
µ2

27

⇣
4� tanh2

r
3

2
'
⌘
tanh2

r
3

2
' . (1.6)

It has a minimum at ' = 0, where it vanishes. At ' >⇠ 1,
the potential coincides with the plateau potential

V (') =
µ2

9

✓
1� 8

3
e�

p
6|'|

◆
, (1.7)

up to exponentially small higher order corrections [2].

This model is quite economical: It involves just a single
chiral superfield. It is very di�cult to construct such models,
so most of the subsequently developed inflationary models in
supergravity involved at least two di↵erent supermultiplets.

This situation changed only very recently, with inven-
tion of some interesting single superfield inflation models
[9, 17, 18], and especially with the development of models
with nilpotent chiral superfields, which allow to have two su-
perfields but only one complex scalar field [16, 19–24]. There
are several di↵erent ways to incorporate inflationary models
with any value of ↵ in the context of such theories, and si-
multaneously describe a non-zero cosmological constant and
SUSY breaking [16, 22].

In fact, even the original GL model, as well as the models
of Ref. [17, 18], require additional fields to describe SUSY
breaking and the cosmological constant, but one can easily
achieve it by adding a tiny superpotential M(S + 1/b) of a
nilpotent field S to the original single-filed GL superpoten-
tial [15, 16]. Therefore it would be interesting to find other
examples of single-field models of this type which could in-
corporate various values of ↵, not just ↵ = 1/9, and to check
whether one could generalize them in a similar way.
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2. TOY MODELS OF ↵-ATTRACTORS

The bosonic T-model corresponding to Fig. 1 in a form
familiar to cosmologists is

1p
�g

L
T

=
1

2
R � 1

2

@�

2

(1 � �

2

6↵

)2
� 1

2
m

2

�

2

, (2.1)

see for example [9], eq. (1.1). Here �(x) is the scalar field, the
inflaton, ↵ can take any positive value, and �

2

< 6↵, so that
the sign of the inflaton kinetic term is positive. The kinetic
term of the inflaton is not canonical and has a geometric
origin associated with a moduli space geometry. At ↵ ! 1
this is the simple chaotic inflation model with a quadratic
potential for a canonical field. At present the �

2 model of
inflation is disfavored by the data, which implies that the
moduli space is not flat.

For any finite ↵ one can solve equation @�

1��2

6↵

= @', which

yields � =
p

6↵ tanh 'p
6↵

. The boundary of the moduli

space � = ±
p

6↵ becomes ±1 in terms of the canoni-
cally normalized field ', and the quadratic potential be-
comes V = 3↵m

2 tanh2 'p
6↵

. We called such ↵-attractors

T-models: their potentials depend on tanh2 'p
6↵

, they are

symmetric with respect to the change ' ! �' and look like
letter T [3]. All potentials V (�2) belong to the general class
of T-models, which includes the GL model [7], which was
the first implementation of chaotic inflation in supergravity,
with ↵ = 1/9 and V (�) ⇠ �

2(1 � 3

8

�

2).

FIG. 4. Blue, brown and green lines show the potentials of the T-
models with V ⇠ tanh2 'p

6↵
for ↵ = 1, 2, 3 correspondingly. The red

line in the center shows the potential of the GL model [7].

The bosonic E-model corresponding to Fig. 2 is

1p
�g

L
E

=
1

2
R � 1

2

@�

2

(1 � �

2

6↵

)2
� 1

2
m

2

�

2

(1 + �p
6↵

)2
. (2.2)

The potential of E-models has an explicit exponential de-
pendence on the canonically normalized field ', asymmetric

with respect to the change ' ! �': V ⇠ (1� e

�
p

2
3↵')2.

In the special case ↵ = 1 this potential coincides with the po-
tential in the Starobinsky model [11], which represents this
model as a member of the general class of ↵-attractors.

All of these models have the same kinetic term but dif-
ferent potentials. They have two common features. First of
all, they have two attractor points, shown by the red and
blue stars in Figs. 2 and 3, describing the limiting behavior
for ↵ ! 1 and ↵ ! 0. More importantly, for su�ciently
small ↵ (i.e. in the limit when the size of the moduli space
becomes small) their cosmological predictions are very sta-
ble with respect to even very significant modifications of the
potentials.

This property was explained in [3–5], and it was formu-
lated in a particularly general way in [8]: The kinetic term
in this class of models, as well as in many other models of
cosmological attractors, has a pole near the boundary of the
moduli space. If inflation occurs in a vicinity of such a pole
(which happens for su�ciently small ↵), and the potential
near the pole can be well represented by its value and its
first derivative near the pole, all other details of the poten-
tial far away from the pole (from the boundary of the moduli
space) become unimportant for making cosmological predic-
tions. In particular, the spectral index depends solely on
the order of the pole, while the tensor-to-scalar ratio also
involves the residue [8]. All the rest is practically irrelevant,
as long as the field after inflation falls into a stable minimum
of the potential with a tiny value of the vacuum energy and
stays there.

From the point of view of a phenomenology of inflation,
everything becomes nearly trivial: Take a simple model with
a pole in the kinetic term and a potential which has a mini-
mum, and we are done, independently of many other details
of the theory, in perfect agreement with observations. But
can we do it in some models which are believed to be related
to fundamental interactions? And if the properties of the
kinetic term are so important, is it possible that this class of
models may have some interesting interpretation in terms of
geometry of the moduli space? The rest of the paper will be
dedicated to the discussion of these issues, under the guid-
ance of Poincaré and Escher, as well as of many our friends
in the supergravity/string theory community.

3. THE HYPERBOLIC PLANE H2

The hyperbolic plane H2 has a long history in mathemat-
ics and physics, see for example [13]. A set of user-friendly
references with pictures and applications in physics include
http://mathworld.wolfram.com/PoincareHyperbolicDisk.html
https://www.youtube.com/watch?v=JkhuMvFQWz4

The Poincaré disk model of a hyperbolic geometry is pre-
sented by the Escher’s picture Circle Limit IV, see Fig. 3.
The boundary circle (which is not part of the hyperbolic
plane) is called the absolute. One can place an infinite
amount of angels and devils, of the size which looks decreas-
ing, towards the boundary in this circle, as Escher did. How-
ever, in fact, the correct understanding of hyperbolic geom-
etry means that the angels and devils close to the boundary
are of the same ‘physical’ size as the ones near the centrum
of the circle. How do we explain this? As always in a curved

ns = 1� 2

N
, r = ↵

12

N2

Kallosh, AL 2013



Suppose	inflation	takes	place	near	the	pole	at	t	=	0,	and	
V(0)	>	0,		V’(0)	>0,	and		V has	a	minimum	nearby.	Then	
in	canonical	variables			
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THE BASIC RULE:

For	a	broad	class	of	cosmological	attractors,	the	spectral	index	ns
depends	mostly	on	the	order	of	the	pole in	the	kinetic	term,	while	
the	tensor-to-scalar	ratio	r depends	on	the	residue.	Choice	of	the	
potential	almost	does	not	matter,	as	long	as	it	is	non-singular	at	the	
pole	of	the	kinetic	term.	Geometry	of	the	moduli	space,	not	the	
potential,	determines	much	of	the	answer.

Galante,	Kallosh,	AL,	Roest		2014

An	often	discussed	concern	about	higher	order	corrections	for	
large	field	inflation	does	not	apply	to	these	models.



Potential	in	canonical	variables	has	a	plateau	at	large	values	of	the	inflaton	field,	
and	it	is	quadratic	with	respect	to	s. 
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Couplings	of	the	canonically	normalized	fields	are	determined	by	
derivatives	such	as	

4

As long as V (�,�) and its derivatives are non-singular at
the boundary � =

p
6↵, one finds that @

'

V (�,�) is ex-

ponentially suppressed by the factor e�
p

2
3↵'. All higher

derivatives with respect to ' and �, describing strength of
interactions of these fields with each other, are suppressed
by the same exponentially small factor, for example

�
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V (�,�)|
�!

p
6↵
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(3.12)

4. HYPERBOLIC GEOMETRY AND PLATEAU
POTENTIALS OF THE INFLATON FIELD

We are turning now to supergravity versions of ↵-
attractors. There were many attempts to build successful
inflationary models in supergravity. It was a rather di�cult
task mostly because of the presence of the term eK in the ex-
pression for the F-term potential. For the simplest choice of
the Kähler potential K = ��, the inflaton potential at large
� was too steep, growing as e��. One could compensate for
this growth by a smart choice of a superpotential. This is
what was achieved in the first model of chaotic inflation in
supergravity, which has a plateau potential (1.1) [2]. How-
ever, the real breakthrough happened almost two decades
later, with the systematic use of the Kähler potentials with
a flat direction corresponding to the inflaton field [15, 16].
Even the unexpected early success in building an inflation-
ary model with a plateau potential [2] was fully understood
only much later, when it was realized that this model can
be formulated as a model with a Kähler potential with a flat
direction [14, 33].

The simplest example of such Kähler potentials is given
by K = (� � �)2/2 + SS, where � = (' + i#)/

p
2. Here '

is a canonical inflaton field. By taking a superpotential

W = Sf(�) (4.1)

one finds a general family of the inflaton potentials [16]

V = |f2('/
p
2)| . (4.2)

Dangerous terms like e�� do not appear in the inflaton di-
rection because K = 0 for � = �.

This class of theories is very general; it can easily in-
corporate the models with the potential exactly coinciding
with the Starobinsky-Whitt potential (1.2), as well as the T-
models with the potential (2.2). However, in this approach
the kinetic term of the inflaton field is canonical from the
very beginning, and potentials V with an infinite plateau
require extreme fine-tuning of the function f(�).

The Kähler potentials which are motivated by string the-
ory and extended supergravity with N � 2 supersymme-
try have a logarithmic dependence on moduli and an associ-
ated SL(2,R) symmetry, Poincaré disk geometry. Quantum

corrections might break this symmetry to a discreet one,
SL(2,Z). However, the Kähler potential still requires a log-
arithmic dependence on moduli which is protected by this
modular invariance. Such a logarithmic dependence always
leads to poles in the kinetic terms for scalars. For example
with log(T + T ) we find the kinetic term @T@T̄

(T+T̄ )2
, and for

log(1� ZZ̄) we find @Z@Z̄

(1�ZZ̄)2
.

Therefore to recover the advantages of the theories with
the pole in the kinetic term, one may start with the theories
with logarithmic Kähler potentials, such as �3 log(T +T ) in
half-plane variables T [18, 19, 26, 28] or �3 log(1 � ZZ) in
disk variables [25]. For example, the theory with the super-
potential W = Sf(T ) (4.1) with f(T ) = 3M(T � 1) and the
Kähler potential

K = �3 log
⇥
T + T � SS + c(SS)2

⇤
(4.3)

exactly reproduces the Starobinsky-Whitt plateau potential
with V0 = 3M2/4 [18, 19], for T = (' + i#)/

p
2. (The

term c(SS)2 was required for stabilization of the field S near
S = 0.)

A further progress in constructing ↵-attractors in super-
gravity was achieved very recently when the transition was
made from the Kähler potentials such as (4.3), to their equiv-
alent shift-symmetric counterparts, such as [29–31, 34, 35],

K = �3↵

2
log


(T + T )2

4TT

�
+ SS . (4.4)

The new Kähler potentials are related by a Kähler trans-
formation to the original ones. However, the new Kähler
potentials have a symmetry under the shift of the inflaton,
which corresponds to the real direction T + T , accompanied
by the rescaling of the inflaton partner T � T . During in-
flation, T = T and therefore K = 0, which is obviously
invariant under the inflaton shift [29, 30, 34]. One can also
formulate the required property of the Kähler potential as
[31]

@
T

K|
T=T

= 0 . (4.5)

The shift symmetry of the inflaton potential is only slightly
broken by the superpotential.

In this class of models, the pole of the kinetic term oc-
curs at T = 0. Any superpotential W = Sf(T ) with f(T )
non-singular at T = 0 leads to a non-singular potential
V (T ) = |f2(T )|. Just like in our single-field models con-
sidered in sections 2, 3, any real holomorphic function f(T )
with an absolute value growing towards T = 0 leads to a
plateau potential with respect to the canonically normalized

inflaton field ' such that T = e�
p

2/3'. It reproduces the
Starobinsky potential for f(T ) ⇠ 1�T . In this approach, the
flatness of the potential is not a↵ected by any non-singular
corrections �f(T ).

Similarly, instead of the Kähler potential �3↵ log(1 �
ZZ) + SS in disk variables [25] it is convenient to use an

As	a	result,	couplings	of	the	inflaton	field	to	all	other	fields	are	
exponentially	suppressed	during	inflation.	The	asymptotic	shape	
of	the	plateau	potential	of	the	inflaton	is	not affected	by	quantum	
corrections.



1 Introduction

During the next few years we might expect some dramatic new information from B-mode experiments

either detecting primordial gravity waves or establishing a new upper bound on r, and from LHC

discovery/non-discovery of low scale supersymmetry. A theoretical framework to discuss both of

these important factors in cosmology and particle physics has been proposed recently. It is based on

the construction of new models of chaotic inflation [1] in supergravity compatible with the current

cosmological data [2] as well as involving a controllable supersymmetry breaking at the minimum

of the potential [3–7]. In this paper we will develop supergravity models of inflation motivated by

either string theory or extended supergravity consderations, known as cosmological ↵-attractors [8–16].

Here we will enhance them with a controllable supersymmetry breaking and cosmological constant at

the minimum. We find this to be a compelling framework for the discussion of the crucial new data

on cosmology and particle physics expected during the next few years. Some models of this type were

already discussed in [14].

The paper is organized as follows. We begin in Section 2 with a brief review of key vocabulary and

features of these and related models with references to more in-depth treatments. In Section 3 we

present the ↵-attractor supergravity models that make manifest an inflaton shift-symmetry by virtue

of having the Kähler potential inflaton independent – which we will refer to as Killing-adapted form.

Section 4 presents a universal rule: given a bosonic inflationary potential of the form F2(') one can

reconstruct the superpotential W =
⇣
S+ 1

b

⌘
f(�) for the Kähler potentials described in Section 3. The

resulting models with f 0(') = F(') have a cosmological constant ⇤ and an arbitrary SUSY breaking

M at the minimum. In Section 5 we study more general class of models with W = g(') + Sf((')

and the same Kähler potential. For these models it is also possible to get agreement with the Planck

data as well as dark energy and SUSY breaking. Moreover, these models have nice properties with

regard to initial conditions for inflation, analogous to the ones studied in [28] for models without SUSY

breaking and dark energy. We close in Section 6 with a summary of what we have accomplished.

2 Review

2.1 ↵, and attraction

There is a key parameter ↵ in these models, for which the Kähler potential K = �3↵ ln(T + T̄ ). It

describes the moduli space curvature [9] given by RK = � 2

3↵ . Another, also geometric, interpretation

of this parameter is in terms of the Poincaré disk model of a hyperbolic geometry with the radiusp
3↵, illustrated by the Escher’s picture Circle Limit IV [15, 16]. As clarified in these references,

from the fundamental point of view, there are particularly interesting values of ↵ depending on the

original theory. From the maximal N = 4 superconformal theory, [17], one would expect ↵ = 1/3

with r ⇡ 10�3. This corresponds to the unit radius Escher disk [15], as well as a target of the

future space mission for B-mode detection, as specified in CORE (Cosmic ORigins Explorer). Some

interesting simplifications occur for ↵ = 1/9, which corresponds to the GL model [18,19]. From N = 1

1

ds2 =
3↵

(1� ZZ̄)2
dZdZ̄ ds2 =

3↵

(T + T̄ )2
dTdT̄

Escher	in	the	Sky,	Kallosh,	AL	2015

Disk or	half-plane



Special choices of a and future data

a = 1

a = 1/3 r ⇡ 10�3

Critical point of superconformal 
a=1 attractors, Higgs inflation, 
Starobinsky model
Maximal superconformal  N=4
model, maximal supergravity 
N=8 

a = 1/9 1984 Goncharov-Linde 
supergravity model

Any a < 20 Generic   N=1 supergravity

All of these models fit the current data
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The potential V (�,�) of the fields � and � in this model has a minimum at � = � = 0, where it

vanishes, V (0) = 0. Because of the shift symmetry of the Kähler potential in the �, direction, the

potential does not grow as e�
2/2 in the � direction, but blows up as e�

2
in the � direction. As a result,

it has a deep flat valley in the � direction, with a minimum at � = 0. The mass squared of the field

� during inflation is very large, m2
� � H2. Therefore the field � vanishes and plays no role during

inflation. Meanwhile the potential of the field �, which plays the role of a canonically normalized

inflaton field, is given by

V (�) =
m2

12

⇣
4� tanh2

r
3

2
�
⌘
tanh2

r
3

2
� . (2.4)

This potential has a minimum at � = 0, where it vanishes, see Fig. 1. At � & 1, the potential coincides

with

V (�) =
m2
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, (2.5)

up to exponentially small higher order corrections O(e�3
p
6|�|) [2]. These corrections can only lead to

higher order corrections in 1/N to ns and r, where N ⇠ 60 is the number of e-foldings.

A proper interpretation of this model can be given in the context of the recently discovered theory

of superconformal ↵-attractors [13, 14]. It will be shown in [15] that the GL superpotential (2.2)

is the simplest superpotential in the family of superconformal attractors with a single chiral super-

field. For the theory of two fields with the superpotential Sf(�), the general form of the ↵-attractor

superpotential is Sf(tanh �p
3↵
) [14], whereas for the single-field superpotential, the general form is

sinh
p
3� f(tanh

p
3�) [15]. The potential (2.4), (2.5) is of the same type as the potentials in the

↵-attractor models [14] for ↵ = 1/9; in this respect see also [16].

Figure 1: The thick blue line shows the inflaton potential (2.4) in the theory (2.1), (2.2) in units m = 1. The red

dashed line shows its asymptotic representation (2.5), which exponentially rapidly converges to in the inflationary regime

with � & 1. The last 60 e-foldings of the evolution of the universe correspond to � . 2.8.

Investigation of the slow-roll regime in this model is quite simple: One can use the well known
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I describe a simple class of ↵-attractors, generalizing the single-field GL model of inflation in
supergravity. The new class of models is defined for 0 < ↵ <⇠ 1, providing a good match to the
present cosmological data. I also present a generalized version of these models which can describe
not only inflation but also dark energy and supersymmetry breaking.

1. INTRODUCTION

First models of inflation in supergravity were based on the
new inflationary scenario, assuming high temperature phase
transitions with symmetry restoration. But these models did
not quite work, and in 1983 the new inflation scenario was
dethroned by chaotic inflation [1].

The main idea of chaotic inflation was to consider vari-
ous su�ciently flat potentials, either large-field or small-field,
and check whether inflation may occur in some parts of the
universe without assuming that it was in a state of thermal
equilibrium and that initial state of the inflaton field should
correspond to an extremum of the potential. For several
years, this simple idea was rejected by many as a drastic de-
viation from the main principles of inflation, but gradually it
became broadly accepted, and now practically all inflation-
ary models are based on it.

The first model of chaotic inflation in supergravity was
proposed in 1983-1984 [2]; I will call it GL model hereafter.
It was also the first model with the inflaton potential asymp-
totically approaching a plateau, V ⇠ a � be�c�. Later on,
it was realized that the Starobinsky model [3], after certain
modifications, can be cast in a form with a similar plateau
potential [4].

Inflationary potentials in these models never reach Planck-
ian values. It took many years to solve the problem of initial
conditions there, see a discussion in [5]. These models at-
tracted general attention only recently, because they were
strongly favored by the WMAP and Planck data [6, 7]. Pre-
dictions of some of these models are stable with respect to
even large changes of their potentials; such models are called
cosmological attractors [8–14]. In particular, GL model be-
longs to the class of ↵-attractors [9–11] with ↵ = 1/9 [15, 16].
These models have a unique set of predictions providing an
excellent fit to the recent observational data for ↵ <⇠ O(30):
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N
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N2
. (1.1)

GL model [2] has several di↵erent realizations. It can be
represented as a theory with a canonical Kähler potential
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and a superpotential [15]
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From the point of view of the theory of ↵-attractors, it is
more appropriate to use logarithmic Kähler potentials, such
as [11],

K = �3 log
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with ↵ = 1/9. In this framework, the GL model has a very
simple superpotential [16]

W =
µ

9
Z2 (1� Z2) . (1.5)

The inflationary potential of this model, upon transforma-
tion to the canonically normalized inflaton field ' such that
ReZ = tanh 'p
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, becomes
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It has a minimum at ' = 0, where it vanishes. At ' >⇠ 1,
the potential coincides with the plateau potential

V (') =
µ2
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up to exponentially small higher order corrections [2].

This model is quite economical: It involves just a single
chiral superfield. It is very di�cult to construct such models,
so most of the subsequently developed inflationary models in
supergravity involved at least two di↵erent supermultiplets.

This situation changed only very recently, with inven-
tion of some interesting single superfield inflation models
[9, 17, 18], and especially with the development of models
with nilpotent chiral superfields, which allow to have two su-
perfields but only one complex scalar field [16, 19–24]. There
are several di↵erent ways to incorporate inflationary models
with any value of ↵ in the context of such theories, and si-
multaneously describe a non-zero cosmological constant and
SUSY breaking [16, 22].

In fact, even the original GL model, as well as the models
of Ref. [17, 18], require additional fields to describe SUSY
breaking and the cosmological constant, but one can easily
achieve it by adding a tiny superpotential M(S + 1/b) of a
nilpotent field S to the original single-filed GL superpoten-
tial [15, 16]. Therefore it would be interesting to find other
examples of single-field models of this type which could in-
corporate various values of ↵, not just ↵ = 1/9, and to check
whether one could generalize them in a similar way.
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K = �3 log(1� Z ¯Z) + S ¯S, W = mSZ

There	is	a	boundary	of	the	moduli	space	at		|Z|2=1
The	minimum	of	the	potential	is	at		Im	Z	=	S	=	0.

Z = Z̄ = tanh
'p
6
, S = 0

V = m2 tanh2
'p
6



A projection	of	the	Escher	disk	of	the	radius													on	the	
quadratic	inflationary	potential

p
3↵



If	we	want	to	make	sure	that	S	=	0	(and	Im	Z	=0)	generically,	
and	describe	potentials	with	a	minimum	with	SUSY	breaking	
and	non-vanishing	V	(cosmological	constant),	a	novel	
ingredient	helps	a	lot:

Nilpotent	(orthogonal)	chiral	superfields	

Supersymmetry	is	there,	but	fermions	may	not	have	scalar	
partners.	More	generally,	superpartners	may	not	be	there.



The	nilpotent	chiral	superfield			

• SUSY	101: supersymmetry	relates	bosons	and	fermions

Not	necessarily!

• If	we	break	supersymmetry	we	expect	a	massless	
goldstone	fermion,	the	goldstino

• Volkov,	Akulov		1972,	1973

• Non-perturbative	string	theory:	on	D-branes	there	are		
nilpotent	and	orthogonal	multiplets,	2014-2016



Calculate	potentials	as	functions	of	all	superfields	as	
usual,	and	then	DECLARE	that	S	=0	for	the	scalar	part	of	
the	nilpotent	superfield.	No	need	to	stabilize	and	study	
evolution	of	the	S	field.	

Volkov, Akulov,	1972				Non-linearly	realized	supersymmetry:	only	fermions	 are	
present

Rocek, Lindstrom,	1978-1979,	Komargodski, Seiberg	2009:	nilpotent superfields
Antoniadis,	Dudas,	Ferrara	and	Sagnotti,	2014

Ferrara,	Kallosh,	AL,	2014 application	to	cosmology,	generic	superconformal	case

Dall’Agata,	Zwirner	2014,	elegant	construction	of	realistic	models
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Kähler potentials in models with S2 = SB = 0.
Many successful inflationary models in supergravity are
based on theories where the Kähler potential either van-
ishes along the inflaton direction, or can be represented
in such form after some Kähler transformations, see for
example [6–12, 14]. In models with S2 = SB = 0, where
B = (�� �̄)/(2i), this requirement is naturally satisfied
(3), (4).

Here we study the cosmological models with orthogo-
nal nilpotent superfields (2) over several di↵erent Kähler
potentials. The simplest Kähler potential with a flat di-
rection describing a canonically normalized inflaton field
� = Re� is given by [7, 8]

K =
1

4
(�� �̄)2 + SS̄ . (6)

Here the geometry of the moduli space is flat.

We will be especially interested in the Kähler poten-
tials for a broad class of cosmological attractors describ-
ing Escher-type hyperbolic geometry [9, 10] of the in-
flaton moduli space. Compatibility of the constraints
S2 = SB = 0 with the hyperbolic geometry is demon-
strated in the Appendix. Examples of such Kähler po-
tentials include

K = �3

2
↵ log

"
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(1� �2)(1� �
2
)

#
+ SS̄ . (7)

It describes hyperbolic geometry in disk variables. The
same geometry can be described in half-plane variables
by the Kähler potential

K = �3

2
↵ log


(�+ �̄)2

4��̄

�
+ SS̄ . (8)

These two versions correspond to equivalent ways of
describing the Kähler geometry of ↵-attractors. See
refs. [10–12] for a detailed discussion of this issue.2

One may also consider these Kähler potentials with the
term SS̄ under the logarithm. In all of these cases, the
Kähler potential vanishes for � = �̄, andKS,S̄ = 1 or can
be brought to KS,S̄ = 1 by a holomorphic transformation
defined in [1]. The inflaton action is given by (5), and
the inflaton potential is given by a simple expression

V = f2(�)� 3g2(�) . (9)

This result is similar to the expression V = f2(�) for
the family of models with W = Sf(�) developed in [8].

2
The third equivalent choice corresponds to the choice of Kähler

potential made in (6) when the nilpotency constraint B3
= 0 is

taken into account. It is related to (7) and (8) by a change of

variables [10–12], see also Appendix.

The new generation of models is di↵erent in two respects.
First of all, it describes a non-vanishing gravitino mass

m3/2(�) = g(�) . (10)

Additionally, it may also describe non-vanishing vacuum
energy (cosmological constant) at the minimum of the
potential. Without any loss of generality one may assume
that the minimum of the potential corresponding to our
vacuum state is at � = 0. The cosmological constant is
equal to

⇤ = f2(0)� 3g2(0) . (11)

The condition that � = 0 is a minimum implies that
f 0(0) =

p
3g0(0), up to small corrections vanishing in the

limit ⇤ ! 0.

These conditions, plus the requirement that the func-
tions f(�) and g(�) are holomorphic, leave lots of freedom
to describe observational data. Indeed there are many
ways to do so, depending on the choice of the Kähler
potential.

Even though the expression of the potential V =
f2(�) � 3g2(�) is valid for all choices of the Kähler po-
tentials described above, the field � in the theories with
the Kähler potentials (7) and (8) is not canonically nor-
malized. In the theory (7) the field � is related to the
canonically normalized inflaton field ' as follows:

� = tanh
'p
6↵

. (12)

Meanwhile for the theory (8) one has

� = e�
p

2
3↵' . (13)

Thus, the potential V = f2(�) � 3g2(�), expressed in
terms of a canonically normalized field ', depends on
the choice of the Kähler potential. In the next section
we will describe several realistic inflationary models in
this context.

Inflationary models.

Model 1: f(�) = M�2 + a, g(�) = b.

The potential in this model is

V = M2�4 + 2aM�2 + a2 � 3b2 . (14)

The cosmological constant in this model, and all other
models we present here, is equal to

⇤ = a2 � 3b2. (15)

In realistic models we should have ⇤ ⇠ 10�120 due to an
almost precise cancellation between a2 and 3b2 in accor-
dance with a string landscape scenario. The gravitino
mass is m3/2 = b, which nearly coincides with a/

p
3. For

The	cosmological	constant	and	the	gravitino	mass	in	the	minimum	are
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2
↵ log

"
(1� ��̄)2

(1� �2)(1� �
2
)

#
+ SS̄ . (7)

It describes hyperbolic geometry in disk variables. The
same geometry can be described in half-plane variables
by the Kähler potential

K = �3

2
↵ log


(�+ �̄)2

4��̄

�
+ SS̄ . (8)

These two versions correspond to equivalent ways of
describing the Kähler geometry of ↵-attractors. See
refs. [10–12] for a detailed discussion of this issue.2

One may also consider these Kähler potentials with the
term SS̄ under the logarithm. In all of these cases, the
Kähler potential vanishes for � = �̄, andKS,S̄ = 1 or can
be brought to KS,S̄ = 1 by a holomorphic transformation
defined in [1]. The inflaton action is given by (5), and
the inflaton potential is given by a simple expression

V = f2(�)� 3g2(�) . (9)

This result is similar to the expression V = f2(�) for
the family of models with W = Sf(�) developed in [8].

2
The third equivalent choice corresponds to the choice of Kähler

potential made in (6) when the nilpotency constraint B3
= 0 is

taken into account. It is related to (7) and (8) by a change of

variables [10–12], see also Appendix.

The new generation of models is di↵erent in two respects.
First of all, it describes a non-vanishing gravitino mass

m3/2(�) = g(�) . (10)

Additionally, it may also describe non-vanishing vacuum
energy (cosmological constant) at the minimum of the
potential. Without any loss of generality one may assume
that the minimum of the potential corresponding to our
vacuum state is at � = 0. The cosmological constant is
equal to

⇤ = f2(0)� 3g2(0) . (11)

The condition that � = 0 is a minimum implies that
f 0(0) =

p
3g0(0), up to small corrections vanishing in the

limit ⇤ ! 0.

These conditions, plus the requirement that the func-
tions f(�) and g(�) are holomorphic, leave lots of freedom
to describe observational data. Indeed there are many
ways to do so, depending on the choice of the Kähler
potential.

Even though the expression of the potential V =
f2(�) � 3g2(�) is valid for all choices of the Kähler po-
tentials described above, the field � in the theories with
the Kähler potentials (7) and (8) is not canonically nor-
malized. In the theory (7) the field � is related to the
canonically normalized inflaton field ' as follows:

� = tanh
'p
6↵

. (12)

Meanwhile for the theory (8) one has

� = e�
p

2
3↵' . (13)

Thus, the potential V = f2(�) � 3g2(�), expressed in
terms of a canonically normalized field ', depends on
the choice of the Kähler potential. In the next section
we will describe several realistic inflationary models in
this context.

Inflationary models.

Model 1: f(�) = M�2 + a, g(�) = b.

The potential in this model is

V = M2�4 + 2aM�2 + a2 � 3b2 . (14)

The cosmological constant in this model, and all other
models we present here, is equal to

⇤ = a2 � 3b2. (15)

In realistic models we should have ⇤ ⇠ 10�120 due to an
almost precise cancellation between a2 and 3b2 in accor-
dance with a string landscape scenario. The gravitino
mass is m3/2 = b, which nearly coincides with a/

p
3. For

Consider	a	theory

W = Sf(�) + g(�)

m3/2 = g(0)

The	canonical	inflaton	field										is	related	to	the	original	field									in	the	
usual	way:	

' �
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Full	functional	freedom	to	chose	any	a-attractor	potential,	with	any	
cosmological	constant	and	gravitino	mass.

3

b ⇠ 10�15 one can have the gravitino mass in the of-
ten discussed TeV range. To have a proper amplitude of
scalar perturbations one should have M ⇠ 10�5 � a, b.

If we consider a model with the simplest canonical
Kähler potential (6), the potential (14) is quartic with re-
spect to the canonically normalized inflaton field, which
rules out this simple model.

The situation instantly improves in the theory with
the logarithmic Kähler potential (7), which yields the
following potential in terms of the canonically normalized
field ':

V = M2 tanh4
'p
6↵

+2aM tanh2
'p
6↵

+a2�3b2 . (16)

This is the typical T-model ↵ attractor potential [2]. In-
flation occurs at the plateau where tanh 'p

6↵
⇡ 1. In this

regime the second term in (16) is much smaller than the
first term, and both terms are much greater than ⇤, so
inflation is described by the quartic T-model potential

V = M2 tanh4
'p
6↵

. (17)

The observational predictions of this model for ↵ . 10
practically coincide with the predictions of the simpler
model V = M2 tanh2 'p

6↵
, for the same number of e-

foldings N [2]. However, at the end of inflation in the
model (17) the inflaton field begins to oscillate in the ap-
proximately quartic potential ⇠ '4. The average equa-
tion of state during this stage is the same as of the hot
plasma, p = ⇢/3, as if reheating finishes immediately
after inflation. This increases the required number of e-
foldings by �N ⇠ 3 [13]. In its turn, this leads to a slight
increase of the spectral index ns, which may provide even
better fit to the recent Planck data.

Model 2: f(�) = M�2 + a, g(�) = m�2 + b

The potential is

V = (M2 � 3m2)�4 +2(Ma� 3mb)�2 + a2 � 3b2 . (18)

This model is very similar to the previous one, but
there is one potentially interesting di↵erence: The grav-
itino mass depends on the inflaton, m3/2 = m�2 + b.

Model 3: f(�) =
q

M2

2 �2 + a2, g(�) = b

The potential is

V =
M2

2
�2 + a2 � 3b2 . (19)

The potential for � is exactly quadratic, plus a cosmo-
logical constant.

In the theory with the logarithmic Kähler potential
(7) this potential becomes a potential for the simplest

↵-attractor model of the canonically normalized field ':

V =
M2

2
tanh2

'p
6↵

+ a2 � 3b2 . (20)

The gravitino mass is m3/2 = b.

Model 4: f(�) =
q

M2

2 �2 + a2, g(�) =
q

m2

2 �2 + b2

In this model one has

V =
M2 � 3m2

2
�2 + a2 � 3b2 . (21)

In the theory with the logarithmic Kähler potential (7)
the potential of a canonically normalized inflaton field
becomes

V =
M2 � 3m2

2
tanh2

'p
6↵

+ a2 � 3b2 . (22)

This model is very similar to Model 3, but the gravitino

mass is �-dependent, m3/2 =
q

m2

2 �2 + b2.

Model 5: f(�) =
p

F 2(�) + a2, g(�) =
p
G2(�) + b2

In this model

V = F 2(�)� 3G2(�) + a2 � 3b2, m3/2 =
p
G2(�) + b2.

(23)
Because of the freedom of choice of the holomorphic func-
tions F and G, one can have a wide variety of potentials
fitting all observational data even if the fields � is canon-
ically normalized, with the Kähler potential (6), see e.g.
[14]. Meanwhile in the theories with the Kähler potential
(7) one finds a family of T-model ↵-attractors with

V = F 2(tanh
'p
6↵

)� 3G2(tanh
'p
6↵

) + a2 � 3b2 . (24)

For a wide range of functions F and G, these theo-
ries have universal cosmological predictions for ↵ . 10
and any given number of e-foldings: ns = 1 � 2/N ,
r = 12↵/N2 [2]. However, by a proper choice of the func-
tion F one can modify the required number of e-foldings
N , which can be useful for tuning the predictions for ns.

Model 6: f(�) =
p

(1� �)2 + a2, g(�) = b

It is a particular version of Model 5 for F (�) = M(1��)
and G(�) = 0. This yields

V = M2(1� �)2 + ⇤, ⇤ = a2 � 3b2, m3/2 = b. (25)

Using the half-plane Kähler potential (8) and the relation

� = e�
p

2
3↵' (13) one finds

V = M2
⇣
1� e�

p
2
3↵'

⌘2
+ ⇤ . (26)

This represents the family of E-model ↵-attractors [2, 9],
which reduces to the Starobinsky model for ↵ = 1, ⇤ = 0

3

b ⇠ 10�15 one can have the gravitino mass in the of-
ten discussed TeV range. To have a proper amplitude of
scalar perturbations one should have M ⇠ 10�5 � a, b.

If we consider a model with the simplest canonical
Kähler potential (6), the potential (14) is quartic with re-
spect to the canonically normalized inflaton field, which
rules out this simple model.

The situation instantly improves in the theory with
the logarithmic Kähler potential (7), which yields the
following potential in terms of the canonically normalized
field ':

V = M2 tanh4
'p
6↵

+2aM tanh2
'p
6↵

+a2�3b2 . (16)

This is the typical T-model ↵ attractor potential [2]. In-
flation occurs at the plateau where tanh 'p

6↵
⇡ 1. In this

regime the second term in (16) is much smaller than the
first term, and both terms are much greater than ⇤, so
inflation is described by the quartic T-model potential

V = M2 tanh4
'p
6↵

. (17)

The observational predictions of this model for ↵ . 10
practically coincide with the predictions of the simpler
model V = M2 tanh2 'p

6↵
, for the same number of e-

foldings N [2]. However, at the end of inflation in the
model (17) the inflaton field begins to oscillate in the ap-
proximately quartic potential ⇠ '4. The average equa-
tion of state during this stage is the same as of the hot
plasma, p = ⇢/3, as if reheating finishes immediately
after inflation. This increases the required number of e-
foldings by �N ⇠ 3 [13]. In its turn, this leads to a slight
increase of the spectral index ns, which may provide even
better fit to the recent Planck data.

Model 2: f(�) = M�2 + a, g(�) = m�2 + b

The potential is

V = (M2 � 3m2)�4 +2(Ma� 3mb)�2 + a2 � 3b2 . (18)

This model is very similar to the previous one, but
there is one potentially interesting di↵erence: The grav-
itino mass depends on the inflaton, m3/2 = m�2 + b.

Model 3: f(�) =
q

M2

2 �2 + a2, g(�) = b

The potential is

V =
M2

2
�2 + a2 � 3b2 . (19)

The potential for � is exactly quadratic, plus a cosmo-
logical constant.

In the theory with the logarithmic Kähler potential
(7) this potential becomes a potential for the simplest

↵-attractor model of the canonically normalized field ':

V =
M2

2
tanh2

'p
6↵

+ a2 � 3b2 . (20)

The gravitino mass is m3/2 = b.

Model 4: f(�) =
q

M2

2 �2 + a2, g(�) =
q

m2

2 �2 + b2

In this model one has

V =
M2 � 3m2

2
�2 + a2 � 3b2 . (21)

In the theory with the logarithmic Kähler potential (7)
the potential of a canonically normalized inflaton field
becomes

V =
M2 � 3m2

2
tanh2

'p
6↵

+ a2 � 3b2 . (22)

This model is very similar to Model 3, but the gravitino

mass is �-dependent, m3/2 =
q

m2

2 �2 + b2.

Model 5: f(�) =
p

F 2(�) + a2, g(�) =
p
G2(�) + b2

In this model

V = F 2(�)� 3G2(�) + a2 � 3b2, m3/2 =
p
G2(�) + b2.

(23)
Because of the freedom of choice of the holomorphic func-
tions F and G, one can have a wide variety of potentials
fitting all observational data even if the fields � is canon-
ically normalized, with the Kähler potential (6), see e.g.
[14]. Meanwhile in the theories with the Kähler potential
(7) one finds a family of T-model ↵-attractors with

V = F 2(tanh
'p
6↵

)� 3G2(tanh
'p
6↵

) + a2 � 3b2 . (24)

For a wide range of functions F and G, these theo-
ries have universal cosmological predictions for ↵ . 10
and any given number of e-foldings: ns = 1 � 2/N ,
r = 12↵/N2 [2]. However, by a proper choice of the func-
tion F one can modify the required number of e-foldings
N , which can be useful for tuning the predictions for ns.

Model 6: f(�) =
p

(1� �)2 + a2, g(�) = b

It is a particular version of Model 5 for F (�) = M(1��)
and G(�) = 0. This yields

V = M2(1� �)2 + ⇤, ⇤ = a2 � 3b2, m3/2 = b. (25)

Using the half-plane Kähler potential (8) and the relation

� = e�
p

2
3↵' (13) one finds

V = M2
⇣
1� e�

p
2
3↵'

⌘2
+ ⇤ . (26)

This represents the family of E-model ↵-attractors [2, 9],
which reduces to the Starobinsky model for ↵ = 1, ⇤ = 0

3

b ⇠ 10�15 one can have the gravitino mass in the of-
ten discussed TeV range. To have a proper amplitude of
scalar perturbations one should have M ⇠ 10�5 � a, b.

If we consider a model with the simplest canonical
Kähler potential (6), the potential (14) is quartic with re-
spect to the canonically normalized inflaton field, which
rules out this simple model.

The situation instantly improves in the theory with
the logarithmic Kähler potential (7), which yields the
following potential in terms of the canonically normalized
field ':

V = M2 tanh4
'p
6↵

+2aM tanh2
'p
6↵

+a2�3b2 . (16)

This is the typical T-model ↵ attractor potential [2]. In-
flation occurs at the plateau where tanh 'p

6↵
⇡ 1. In this

regime the second term in (16) is much smaller than the
first term, and both terms are much greater than ⇤, so
inflation is described by the quartic T-model potential

V = M2 tanh4
'p
6↵

. (17)

The observational predictions of this model for ↵ . 10
practically coincide with the predictions of the simpler
model V = M2 tanh2 'p

6↵
, for the same number of e-

foldings N [2]. However, at the end of inflation in the
model (17) the inflaton field begins to oscillate in the ap-
proximately quartic potential ⇠ '4. The average equa-
tion of state during this stage is the same as of the hot
plasma, p = ⇢/3, as if reheating finishes immediately
after inflation. This increases the required number of e-
foldings by �N ⇠ 3 [13]. In its turn, this leads to a slight
increase of the spectral index ns, which may provide even
better fit to the recent Planck data.

Model 2: f(�) = M�2 + a, g(�) = m�2 + b

The potential is

V = (M2 � 3m2)�4 +2(Ma� 3mb)�2 + a2 � 3b2 . (18)

This model is very similar to the previous one, but
there is one potentially interesting di↵erence: The grav-
itino mass depends on the inflaton, m3/2 = m�2 + b.

Model 3: f(�) =
q

M2

2 �2 + a2, g(�) = b

The potential is

V =
M2

2
�2 + a2 � 3b2 . (19)

The potential for � is exactly quadratic, plus a cosmo-
logical constant.

In the theory with the logarithmic Kähler potential
(7) this potential becomes a potential for the simplest

↵-attractor model of the canonically normalized field ':

V =
M2

2
tanh2

'p
6↵

+ a2 � 3b2 . (20)

The gravitino mass is m3/2 = b.

Model 4: f(�) =
q

M2

2 �2 + a2, g(�) =
q

m2

2 �2 + b2

In this model one has

V =
M2 � 3m2

2
�2 + a2 � 3b2 . (21)

In the theory with the logarithmic Kähler potential (7)
the potential of a canonically normalized inflaton field
becomes

V =
M2 � 3m2

2
tanh2

'p
6↵

+ a2 � 3b2 . (22)

This model is very similar to Model 3, but the gravitino

mass is �-dependent, m3/2 =
q

m2

2 �2 + b2.

Model 5: f(�) =
p

F 2(�) + a2, g(�) =
p
G2(�) + b2

In this model

V = F 2(�)� 3G2(�) + a2 � 3b2, m3/2 =
p
G2(�) + b2.

(23)
Because of the freedom of choice of the holomorphic func-
tions F and G, one can have a wide variety of potentials
fitting all observational data even if the fields � is canon-
ically normalized, with the Kähler potential (6), see e.g.
[14]. Meanwhile in the theories with the Kähler potential
(7) one finds a family of T-model ↵-attractors with

V = F 2(tanh
'p
6↵

)� 3G2(tanh
'p
6↵

) + a2 � 3b2 . (24)

For a wide range of functions F and G, these theo-
ries have universal cosmological predictions for ↵ . 10
and any given number of e-foldings: ns = 1 � 2/N ,
r = 12↵/N2 [2]. However, by a proper choice of the func-
tion F one can modify the required number of e-foldings
N , which can be useful for tuning the predictions for ns.

Model 6: f(�) =
p

(1� �)2 + a2, g(�) = b

It is a particular version of Model 5 for F (�) = M(1��)
and G(�) = 0. This yields

V = M2(1� �)2 + ⇤, ⇤ = a2 � 3b2, m3/2 = b. (25)

Using the half-plane Kähler potential (8) and the relation

� = e�
p

2
3↵' (13) one finds

V = M2
⇣
1� e�

p
2
3↵'

⌘2
+ ⇤ . (26)

This represents the family of E-model ↵-attractors [2, 9],
which reduces to the Starobinsky model for ↵ = 1, ⇤ = 0

In	canonical	variables,

3

b ⇠ 10�15 one can have the gravitino mass in the of-
ten discussed TeV range. To have a proper amplitude of
scalar perturbations one should have M ⇠ 10�5 � a, b.

If we consider a model with the simplest canonical
Kähler potential (6), the potential (14) is quartic with re-
spect to the canonically normalized inflaton field, which
rules out this simple model.

The situation instantly improves in the theory with
the logarithmic Kähler potential (7), which yields the
following potential in terms of the canonically normalized
field ':

V = M2 tanh4
'p
6↵

+2aM tanh2
'p
6↵

+a2�3b2 . (16)

This is the typical T-model ↵ attractor potential [2]. In-
flation occurs at the plateau where tanh 'p

6↵
⇡ 1. In this

regime the second term in (16) is much smaller than the
first term, and both terms are much greater than ⇤, so
inflation is described by the quartic T-model potential

V = M2 tanh4
'p
6↵

. (17)

The observational predictions of this model for ↵ . 10
practically coincide with the predictions of the simpler
model V = M2 tanh2 'p

6↵
, for the same number of e-

foldings N [2]. However, at the end of inflation in the
model (17) the inflaton field begins to oscillate in the ap-
proximately quartic potential ⇠ '4. The average equa-
tion of state during this stage is the same as of the hot
plasma, p = ⇢/3, as if reheating finishes immediately
after inflation. This increases the required number of e-
foldings by �N ⇠ 3 [13]. In its turn, this leads to a slight
increase of the spectral index ns, which may provide even
better fit to the recent Planck data.

Model 2: f(�) = M�2 + a, g(�) = m�2 + b

The potential is

V = (M2 � 3m2)�4 +2(Ma� 3mb)�2 + a2 � 3b2 . (18)

This model is very similar to the previous one, but
there is one potentially interesting di↵erence: The grav-
itino mass depends on the inflaton, m3/2 = m�2 + b.

Model 3: f(�) =
q

M2

2 �2 + a2, g(�) = b

The potential is

V =
M2

2
�2 + a2 � 3b2 . (19)

The potential for � is exactly quadratic, plus a cosmo-
logical constant.

In the theory with the logarithmic Kähler potential
(7) this potential becomes a potential for the simplest

↵-attractor model of the canonically normalized field ':

V =
M2

2
tanh2

'p
6↵

+ a2 � 3b2 . (20)

The gravitino mass is m3/2 = b.

Model 4: f(�) =
q

M2

2 �2 + a2, g(�) =
q

m2

2 �2 + b2

In this model one has

V =
M2 � 3m2

2
�2 + a2 � 3b2 . (21)

In the theory with the logarithmic Kähler potential (7)
the potential of a canonically normalized inflaton field
becomes

V =
M2 � 3m2

2
tanh2

'p
6↵

+ a2 � 3b2 . (22)

This model is very similar to Model 3, but the gravitino

mass is �-dependent, m3/2 =
q

m2

2 �2 + b2.

Model 5: f(�) =
p

F 2(�) + a2, g(�) =
p
G2(�) + b2

In this model

V = F 2(�)� 3G2(�) + a2 � 3b2, m3/2 =
p
G2(�) + b2.

(23)
Because of the freedom of choice of the holomorphic func-
tions F and G, one can have a wide variety of potentials
fitting all observational data even if the fields � is canon-
ically normalized, with the Kähler potential (6), see e.g.
[14]. Meanwhile in the theories with the Kähler potential
(7) one finds a family of T-model ↵-attractors with

V = F 2(tanh
'p
6↵

)� 3G2(tanh
'p
6↵

) + a2 � 3b2 . (24)

For a wide range of functions F and G, these theo-
ries have universal cosmological predictions for ↵ . 10
and any given number of e-foldings: ns = 1 � 2/N ,
r = 12↵/N2 [2]. However, by a proper choice of the func-
tion F one can modify the required number of e-foldings
N , which can be useful for tuning the predictions for ns.

Model 6: f(�) =
p

(1� �)2 + a2, g(�) = b

It is a particular version of Model 5 for F (�) = M(1��)
and G(�) = 0. This yields

V = M2(1� �)2 + ⇤, ⇤ = a2 � 3b2, m3/2 = b. (25)

Using the half-plane Kähler potential (8) and the relation

� = e�
p

2
3↵' (13) one finds

V = M2
⇣
1� e�

p
2
3↵'

⌘2
+ ⇤ . (26)

This represents the family of E-model ↵-attractors [2, 9],
which reduces to the Starobinsky model for ↵ = 1, ⇤ = 0
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Example	2:

3

b ⇠ 10�15 one can have the gravitino mass in the of-
ten discussed TeV range. To have a proper amplitude of
scalar perturbations one should have M ⇠ 10�5 � a, b.

If we consider a model with the simplest canonical
Kähler potential (6), the potential (14) is quartic with re-
spect to the canonically normalized inflaton field, which
rules out this simple model.

The situation instantly improves in the theory with
the logarithmic Kähler potential (7), which yields the
following potential in terms of the canonically normalized
field ':

V = M2 tanh4
'p
6↵

+2aM tanh2
'p
6↵

+a2�3b2 . (16)

This is the typical T-model ↵ attractor potential [2]. In-
flation occurs at the plateau where tanh 'p

6↵
⇡ 1. In this

regime the second term in (16) is much smaller than the
first term, and both terms are much greater than ⇤, so
inflation is described by the quartic T-model potential

V = M2 tanh4
'p
6↵

. (17)

The observational predictions of this model for ↵ . 10
practically coincide with the predictions of the simpler
model V = M2 tanh2 'p

6↵
, for the same number of e-

foldings N [2]. However, at the end of inflation in the
model (17) the inflaton field begins to oscillate in the ap-
proximately quartic potential ⇠ '4. The average equa-
tion of state during this stage is the same as of the hot
plasma, p = ⇢/3, as if reheating finishes immediately
after inflation. This increases the required number of e-
foldings by �N ⇠ 3 [13]. In its turn, this leads to a slight
increase of the spectral index ns, which may provide even
better fit to the recent Planck data.

Model 2: f(�) = M�2 + a, g(�) = m�2 + b

The potential is

V = (M2 � 3m2)�4 +2(Ma� 3mb)�2 + a2 � 3b2 . (18)

This model is very similar to the previous one, but
there is one potentially interesting di↵erence: The grav-
itino mass depends on the inflaton, m3/2 = m�2 + b.

Model 3: f(�) =
q

M2

2 �2 + a2, g(�) = b

The potential is

V =
M2

2
�2 + a2 � 3b2 . (19)

The potential for � is exactly quadratic, plus a cosmo-
logical constant.

In the theory with the logarithmic Kähler potential
(7) this potential becomes a potential for the simplest

↵-attractor model of the canonically normalized field ':

V =
M2

2
tanh2

'p
6↵

+ a2 � 3b2 . (20)

The gravitino mass is m3/2 = b.

Model 4: f(�) =
q

M2

2 �2 + a2, g(�) =
q

m2

2 �2 + b2

In this model one has

V =
M2 � 3m2

2
�2 + a2 � 3b2 . (21)

In the theory with the logarithmic Kähler potential (7)
the potential of a canonically normalized inflaton field
becomes

V =
M2 � 3m2

2
tanh2

'p
6↵

+ a2 � 3b2 . (22)

This model is very similar to Model 3, but the gravitino

mass is �-dependent, m3/2 =
q

m2

2 �2 + b2.

Model 5: f(�) =
p

F 2(�) + a2, g(�) =
p
G2(�) + b2

In this model

V = F 2(�)� 3G2(�) + a2 � 3b2, m3/2 =
p
G2(�) + b2.

(23)
Because of the freedom of choice of the holomorphic func-
tions F and G, one can have a wide variety of potentials
fitting all observational data even if the fields � is canon-
ically normalized, with the Kähler potential (6), see e.g.
[14]. Meanwhile in the theories with the Kähler potential
(7) one finds a family of T-model ↵-attractors with

V = F 2(tanh
'p
6↵

)� 3G2(tanh
'p
6↵

) + a2 � 3b2 . (24)

For a wide range of functions F and G, these theo-
ries have universal cosmological predictions for ↵ . 10
and any given number of e-foldings: ns = 1 � 2/N ,
r = 12↵/N2 [2]. However, by a proper choice of the func-
tion F one can modify the required number of e-foldings
N , which can be useful for tuning the predictions for ns.

Model 6: f(�) =
p

(1� �)2 + a2, g(�) = b

It is a particular version of Model 5 for F (�) = M(1��)
and G(�) = 0. This yields

V = M2(1� �)2 + ⇤, ⇤ = a2 � 3b2, m3/2 = b. (25)

Using the half-plane Kähler potential (8) and the relation

� = e�
p

2
3↵' (13) one finds

V = M2
⇣
1� e�

p
2
3↵'

⌘2
+ ⇤ . (26)

This represents the family of E-model ↵-attractors [2, 9],
which reduces to the Starobinsky model for ↵ = 1, ⇤ = 0

3

b ⇠ 10�15 one can have the gravitino mass in the of-
ten discussed TeV range. To have a proper amplitude of
scalar perturbations one should have M ⇠ 10�5 � a, b.

If we consider a model with the simplest canonical
Kähler potential (6), the potential (14) is quartic with re-
spect to the canonically normalized inflaton field, which
rules out this simple model.

The situation instantly improves in the theory with
the logarithmic Kähler potential (7), which yields the
following potential in terms of the canonically normalized
field ':

V = M2 tanh4
'p
6↵

+2aM tanh2
'p
6↵

+a2�3b2 . (16)

This is the typical T-model ↵ attractor potential [2]. In-
flation occurs at the plateau where tanh 'p

6↵
⇡ 1. In this

regime the second term in (16) is much smaller than the
first term, and both terms are much greater than ⇤, so
inflation is described by the quartic T-model potential

V = M2 tanh4
'p
6↵

. (17)

The observational predictions of this model for ↵ . 10
practically coincide with the predictions of the simpler
model V = M2 tanh2 'p

6↵
, for the same number of e-

foldings N [2]. However, at the end of inflation in the
model (17) the inflaton field begins to oscillate in the ap-
proximately quartic potential ⇠ '4. The average equa-
tion of state during this stage is the same as of the hot
plasma, p = ⇢/3, as if reheating finishes immediately
after inflation. This increases the required number of e-
foldings by �N ⇠ 3 [13]. In its turn, this leads to a slight
increase of the spectral index ns, which may provide even
better fit to the recent Planck data.

Model 2: f(�) = M�2 + a, g(�) = m�2 + b

The potential is

V = (M2 � 3m2)�4 +2(Ma� 3mb)�2 + a2 � 3b2 . (18)

This model is very similar to the previous one, but
there is one potentially interesting di↵erence: The grav-
itino mass depends on the inflaton, m3/2 = m�2 + b.

Model 3: f(�) =
q

M2

2 �2 + a2, g(�) = b

The potential is

V =
M2

2
�2 + a2 � 3b2 . (19)

The potential for � is exactly quadratic, plus a cosmo-
logical constant.

In the theory with the logarithmic Kähler potential
(7) this potential becomes a potential for the simplest

↵-attractor model of the canonically normalized field ':

V =
M2

2
tanh2

'p
6↵

+ a2 � 3b2 . (20)

The gravitino mass is m3/2 = b.

Model 4: f(�) =
q

M2

2 �2 + a2, g(�) =
q

m2

2 �2 + b2

In this model one has

V =
M2 � 3m2

2
�2 + a2 � 3b2 . (21)

In the theory with the logarithmic Kähler potential (7)
the potential of a canonically normalized inflaton field
becomes

V =
M2 � 3m2

2
tanh2
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+ a2 � 3b2 . (22)

This model is very similar to Model 3, but the gravitino

mass is �-dependent, m3/2 =
q

m2

2 �2 + b2.

Model 5: f(�) =
p

F 2(�) + a2, g(�) =
p
G2(�) + b2

In this model

V = F 2(�)� 3G2(�) + a2 � 3b2, m3/2 =
p
G2(�) + b2.

(23)
Because of the freedom of choice of the holomorphic func-
tions F and G, one can have a wide variety of potentials
fitting all observational data even if the fields � is canon-
ically normalized, with the Kähler potential (6), see e.g.
[14]. Meanwhile in the theories with the Kähler potential
(7) one finds a family of T-model ↵-attractors with

V = F 2(tanh
'p
6↵

)� 3G2(tanh
'p
6↵

) + a2 � 3b2 . (24)

For a wide range of functions F and G, these theo-
ries have universal cosmological predictions for ↵ . 10
and any given number of e-foldings: ns = 1 � 2/N ,
r = 12↵/N2 [2]. However, by a proper choice of the func-
tion F one can modify the required number of e-foldings
N , which can be useful for tuning the predictions for ns.

Model 6: f(�) =
p

(1� �)2 + a2, g(�) = b

It is a particular version of Model 5 for F (�) = M(1��)
and G(�) = 0. This yields

V = M2(1� �)2 + ⇤, ⇤ = a2 � 3b2, m3/2 = b. (25)

Using the half-plane Kähler potential (8) and the relation

� = e�
p

2
3↵' (13) one finds

V = M2
⇣
1� e�

p
2
3↵'

⌘2
+ ⇤ . (26)

This represents the family of E-model ↵-attractors [2, 9],
which reduces to the Starobinsky model for ↵ = 1, ⇤ = 0

3

b ⇠ 10�15 one can have the gravitino mass in the of-
ten discussed TeV range. To have a proper amplitude of
scalar perturbations one should have M ⇠ 10�5 � a, b.

If we consider a model with the simplest canonical
Kähler potential (6), the potential (14) is quartic with re-
spect to the canonically normalized inflaton field, which
rules out this simple model.

The situation instantly improves in the theory with
the logarithmic Kähler potential (7), which yields the
following potential in terms of the canonically normalized
field ':

V = M2 tanh4
'p
6↵

+2aM tanh2
'p
6↵

+a2�3b2 . (16)

This is the typical T-model ↵ attractor potential [2]. In-
flation occurs at the plateau where tanh 'p

6↵
⇡ 1. In this

regime the second term in (16) is much smaller than the
first term, and both terms are much greater than ⇤, so
inflation is described by the quartic T-model potential

V = M2 tanh4
'p
6↵

. (17)

The observational predictions of this model for ↵ . 10
practically coincide with the predictions of the simpler
model V = M2 tanh2 'p

6↵
, for the same number of e-

foldings N [2]. However, at the end of inflation in the
model (17) the inflaton field begins to oscillate in the ap-
proximately quartic potential ⇠ '4. The average equa-
tion of state during this stage is the same as of the hot
plasma, p = ⇢/3, as if reheating finishes immediately
after inflation. This increases the required number of e-
foldings by �N ⇠ 3 [13]. In its turn, this leads to a slight
increase of the spectral index ns, which may provide even
better fit to the recent Planck data.

Model 2: f(�) = M�2 + a, g(�) = m�2 + b

The potential is

V = (M2 � 3m2)�4 +2(Ma� 3mb)�2 + a2 � 3b2 . (18)

This model is very similar to the previous one, but
there is one potentially interesting di↵erence: The grav-
itino mass depends on the inflaton, m3/2 = m�2 + b.

Model 3: f(�) =
q

M2

2 �2 + a2, g(�) = b

The potential is

V =
M2

2
�2 + a2 � 3b2 . (19)

The potential for � is exactly quadratic, plus a cosmo-
logical constant.

In the theory with the logarithmic Kähler potential
(7) this potential becomes a potential for the simplest

↵-attractor model of the canonically normalized field ':

V =
M2

2
tanh2

'p
6↵

+ a2 � 3b2 . (20)

The gravitino mass is m3/2 = b.

Model 4: f(�) =
q

M2

2 �2 + a2, g(�) =
q

m2

2 �2 + b2

In this model one has

V =
M2 � 3m2

2
�2 + a2 � 3b2 . (21)

In the theory with the logarithmic Kähler potential (7)
the potential of a canonically normalized inflaton field
becomes

V =
M2 � 3m2

2
tanh2

'p
6↵

+ a2 � 3b2 . (22)

This model is very similar to Model 3, but the gravitino

mass is �-dependent, m3/2 =
q

m2

2 �2 + b2.

Model 5: f(�) =
p

F 2(�) + a2, g(�) =
p
G2(�) + b2

In this model

V = F 2(�)� 3G2(�) + a2 � 3b2, m3/2 =
p
G2(�) + b2.

(23)
Because of the freedom of choice of the holomorphic func-
tions F and G, one can have a wide variety of potentials
fitting all observational data even if the fields � is canon-
ically normalized, with the Kähler potential (6), see e.g.
[14]. Meanwhile in the theories with the Kähler potential
(7) one finds a family of T-model ↵-attractors with

V = F 2(tanh
'p
6↵

)� 3G2(tanh
'p
6↵

) + a2 � 3b2 . (24)

For a wide range of functions F and G, these theo-
ries have universal cosmological predictions for ↵ . 10
and any given number of e-foldings: ns = 1 � 2/N ,
r = 12↵/N2 [2]. However, by a proper choice of the func-
tion F one can modify the required number of e-foldings
N , which can be useful for tuning the predictions for ns.

Model 6: f(�) =
p

(1� �)2 + a2, g(�) = b

It is a particular version of Model 5 for F (�) = M(1��)
and G(�) = 0. This yields

V = M2(1� �)2 + ⇤, ⇤ = a2 � 3b2, m3/2 = b. (25)

Using the half-plane Kähler potential (8) and the relation

� = e�
p

2
3↵' (13) one finds

V = M2
⇣
1� e�

p
2
3↵'

⌘2
+ ⇤ . (26)

This represents the family of E-model ↵-attractors [2, 9],
which reduces to the Starobinsky model for ↵ = 1, ⇤ = 0

E-model	alpha-attractors,	generalizing	the	Starobinsky	model,	but	with	
arbitrary	SUSY	breaking	and	cosmological	constant	
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W = m S �+ (
p
3P + 1)m3/2 . (2.3)

Investigation of the potential V (S,�) in this theory shows
that, just as in the general class of theories studied in [13, 14]
with the superpotential W = m S f(�), the imaginary parts
of the fields S and � vanish during inflation. Moreover,
both imaginary and real parts of these fields vanish after
inflation. However, the real part of the field S no longer
vanishes during inflation.

Indeed, the potential for non-vanishing canonically nor-
malized scalar components s and � for a = � = 0 is

V =
m2

2
e

s2

2

⇣
�2 + s2

⇣
1� 2� s2

4
�2
⌘

+
m3/2

m
s
⇣
(s2 � 4)�+

m3/2

m
s
⌘⌘

. (2.4)

The main e↵ect of the term (
p
3P +1)m3/2 in the superpo-

tential on the dynamics of inflation is the shift of the position
of the minimum of the potential with respect to the field s.
Throughout the paper we will assume that

m3/2

m ⌧ 1. For
m3/2 = 0 the minimum is at s = 0, but for m3/2 6= 0 it is
slightly displaced by

s = 2�
m3/2

m
, (2.5)

up to the terms higher order in the small parameter
m3/2

m .
The inflaton potential along the shifted inflationary trajec-
tory becomes

V =
�2

2
(m2 � 4m2

3/2) . (2.6)

This trivial modification does not a↵ect the inflationary dy-
namics for m3/2 ⌧ m, but now supersymmetry becomes
broken in the minimum of the potential.

In order to describe a small cosmological constant, one can
add a tiny correction to the superpotential,

W = m S f(�) + (
p
3 + � P + 1)m3/2 . (2.7)

This correction leads to the cosmological constant,

V0 = �m2
3/2 , (2.8)

up to higher order corrections in m3/2. For V0 ⇠ 10�120,
the corresponding modification of the potential results in a
negligible modification of the inflationary scenario.

For a more general scenario with

W = S f(�) + (
p
3 + � P + 1)m3/2 , (2.9)

in the first approximation in the small parameter
m3/2

m the
field s has a minimum at

s = 2
p
2m3/2

f( �p
2
)

(f 0( �p
2
))2

(2.10)

and the potential is

V = f2
� �p

2

�
 
1�

4m2
3/2

(f 0( �p
2
))2

!
. (2.11)

3. ↵-ATTRACTORS

Now we will consider the simplest ↵-attractor model with
the Kähler potential vanishing along the inflaton direction
� = �̄ [17]:

K = �3↵

2
log

"
(1� ��)2

(1� �2)(1� �
2
)

#
+ SS, (3.1)

and the same superpotential as before,

W = m S � . (3.2)

In this theory, the inflaton potential is also quadratic with
respect to the field Re�, but this field is not canonical. After
the transition to the canonically normalized field ', such that

Re� = tanh
'p
6↵

, (3.3)

the inflaton potential becomes

V = m2 tanh2
'p
6↵

. (3.4)

This is a plateau potential representing the simplest example
of what we called T-model [15]. Once again, at the minimum
of the potential all fields vanish, the potential vanishes, and
supersymmetry is unbroken.

Now we will generalize this model in the same way as we
did in the previous section:

K = �3↵

2
log

"
(1� ��)2

(1� �2)(1� �
2
)

#
+ SS + PP , (3.5)

and

W = m S �+ (
p
3 + � P + 1)m3/2 . (3.6)

At small �, investigation of this model is reduced to the
one performed in the previous section. This means that our
results for the position of the minimum of the potential at
� = 0, S = 0, the gravitino mass, and the expression for the
cosmological constant (2.8) remain intact. Investigation of
inflation is una↵ected by the tiny parameter �. Therefore in
what follows we will concentrate on the simplest case � = 0.

As before, one can show that the term (
p
3P+1)m3/2 does

not induce imaginary part of the fields � and S. Therefore
one can replace S by its canonically normalized real com-
ponent, S = s/

p
2, and � by the canonically normalized

inflaton field ' (3.3).

In terms of ' and s, the potential is given by

V = e
s2

2 m2
h
tanh2

'p
6↵

+
s2

12↵

⇣
2 tanh4

'p
6↵

+ 2

+
�
3↵s2 � 2(3↵+ 2)

�
tanh2

'p
6↵

⌘

+
⇣sm3/2p

2m

⌘2
�

sm3/2p
2m

(4� s2) tanh
'p
6↵

i
. (3.7)

Here	S	and	F are	usual	unconstrained	chiral,	and	P	is	a	
nilpotent	Polonyi-type	field,	which	breaks	SUSY,	gives	rise	to	a	
non-vanishing	cosmological	constant,	and	then	disappears,	
without	causing	the	infamous	Polonyi	field	problem,	which	
plagued	SUGRA	cosmology	for	more	than	3	decades. S	is	non-
zero	but	very	small	during	inflation,	and	
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W = m S Φ+ (
√
3P + 1)m3/2 . (2.3)

Investigation of the potential V (S,Φ) in this theory shows
that, just as in the general class of theories studied in [13, 14]
with the superpotential W = m S f(Φ), the imaginary parts
of the fields S and Φ vanish during inflation. Moreover,
both imaginary and real parts of these fields vanish after
inflation. However, the real part of the field S no longer
vanishes during inflation.

Indeed, the potential for non-vanishing canonically nor-
malized scalar components s and φ for a = χ = 0 is

V =
m2

2
e

s2

2

(

φ2 + s2
(

1−
2− s2

4
φ2

)

+
m3/2

m
s
(

(s2 − 4)φ+
m3/2

m
s
))

. (2.4)

The main effect of the term (
√
3P +1)m3/2 in the superpo-

tential on the dynamics of inflation is the shift of the position
of the minimum of the potential with respect to the field s.
Throughout the paper we will assume that

m3/2

m ≪ 1. For
m3/2 = 0 the minimum is at s = 0, but for m3/2 ̸= 0 it is
slightly displaced by

s = 2φ
m3/2

m
, (2.5)

up to the terms higher order in the small parameter
m3/2

m .
The inflaton potential along the shifted inflationary trajec-
tory becomes

V =
φ2

2
(m2 − 4m2

3/2) . (2.6)

This trivial modification does not affect the inflationary dy-
namics for m3/2 ≪ m, but now supersymmetry becomes
broken in the minimum of the potential.

In order to describe a small cosmological constant, one can
add a tiny correction to the superpotential,

W = m S f(Φ) + (
√
3 + δ P + 1)m3/2 . (2.7)

This correction leads to the cosmological constant,

V0 = δm2

3/2 , (2.8)

up to higher order corrections in m3/2. For V0 ∼ 10−120,
the corresponding modification of the potential results in a
negligible modification of the inflationary scenario.

For a more general scenario with

W = S f(Φ) + (
√
3 + δ P + 1)m3/2 , (2.9)

in the first approximation in the small parameter
m3/2

m the
field s has a minimum at

s = 2
√
2m3/2

f( φ√
2
)

(f ′( φ√
2
))2

(2.10)

and the potential is

V = f2
( φ√

2

)

(

1−
4m2

3/2

(f ′( φ√
2
))2
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. (2.11)

3. α-ATTRACTORS

Now we will consider the simplest α-attractor model with
the Kähler potential vanishing along the inflaton direction
Φ = Φ̄ [17]:

K = −
3α

2
log

[

(1− ΦΦ)2

(1 − Φ2)(1− Φ
2
)

]

+ SS, (3.1)

and the same superpotential as before,

W = m S Φ . (3.2)

In this theory, the inflaton potential is also quadratic with
respect to the field ReΦ, but this field is not canonical. After
the transition to the canonically normalized field ϕ, such that

ReΦ = tanh
ϕ√
6α

, (3.3)

the inflaton potential becomes

V = m2 tanh2
ϕ√
6α

. (3.4)

This is a plateau potential representing the simplest example
of what we called T-model [15]. Once again, at the minimum
of the potential all fields vanish, the potential vanishes, and
supersymmetry is unbroken.

Now we will generalize this model in the same way as we
did in the previous section:

K = −
3α

2
log

[

(1− ΦΦ)2

(1− Φ2)(1 − Φ
2
)

]

+ SS + PP, (3.5)

and

W = m S Φ+ (
√
3 + δ P + 1)m3/2 . (3.6)

At small Φ, investigation of this model is reduced to the
one performed in the previous section. This means that our
results for the position of the minimum of the potential at
Φ = 0, S = 0, the gravitino mass, and the expression for the
cosmological constant (2.8) remain intact. Investigation of
inflation is unaffected by the tiny parameter δ. Therefore in
what follows we will concentrate on the simplest case δ = 0.

As before, one can show that the term (
√
3P+1)m3/2 does

not induce imaginary part of the fields Φ and S. Therefore
one can replace S by its canonically normalized real com-
ponent, S = s/

√
2, and Φ by the canonically normalized

inflaton field ϕ (3.3).

In terms of ϕ and s, the potential is given by

V = e
s2
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. (3.7)
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W = m S Φ+ (
√
3P + 1)m3/2 . (2.3)

Investigation of the potential V (S,Φ) in this theory shows
that, just as in the general class of theories studied in [13, 14]
with the superpotential W = m S f(Φ), the imaginary parts
of the fields S and Φ vanish during inflation. Moreover,
both imaginary and real parts of these fields vanish after
inflation. However, the real part of the field S no longer
vanishes during inflation.

Indeed, the potential for non-vanishing canonically nor-
malized scalar components s and φ for a = χ = 0 is

V =
m2

2
e
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2

(

φ2 + s2
(

1−
2− s2

4
φ2

)

+
m3/2

m
s
(

(s2 − 4)φ+
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m
s
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. (2.4)

The main effect of the term (
√
3P +1)m3/2 in the superpo-

tential on the dynamics of inflation is the shift of the position
of the minimum of the potential with respect to the field s.
Throughout the paper we will assume that

m3/2

m ≪ 1. For
m3/2 = 0 the minimum is at s = 0, but for m3/2 ̸= 0 it is
slightly displaced by

s = 2φ
m3/2

m
, (2.5)

up to the terms higher order in the small parameter
m3/2

m .
The inflaton potential along the shifted inflationary trajec-
tory becomes

V =
φ2

2
(m2 − 4m2

3/2) . (2.6)

This trivial modification does not affect the inflationary dy-
namics for m3/2 ≪ m, but now supersymmetry becomes
broken in the minimum of the potential.

In order to describe a small cosmological constant, one can
add a tiny correction to the superpotential,

W = m S f(Φ) + (
√
3 + δ P + 1)m3/2 . (2.7)

This correction leads to the cosmological constant,

V0 = δm2

3/2 , (2.8)

up to higher order corrections in m3/2. For V0 ∼ 10−120,
the corresponding modification of the potential results in a
negligible modification of the inflationary scenario.

For a more general scenario with

W = S f(Φ) + (
√
3 + δ P + 1)m3/2 , (2.9)

in the first approximation in the small parameter
m3/2

m the
field s has a minimum at
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3. α-ATTRACTORS

Now we will consider the simplest α-attractor model with
the Kähler potential vanishing along the inflaton direction
Φ = Φ̄ [17]:

K = −
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+ SS, (3.1)

and the same superpotential as before,

W = m S Φ . (3.2)

In this theory, the inflaton potential is also quadratic with
respect to the field ReΦ, but this field is not canonical. After
the transition to the canonically normalized field ϕ, such that

ReΦ = tanh
ϕ√
6α

, (3.3)

the inflaton potential becomes

V = m2 tanh2
ϕ√
6α

. (3.4)

This is a plateau potential representing the simplest example
of what we called T-model [15]. Once again, at the minimum
of the potential all fields vanish, the potential vanishes, and
supersymmetry is unbroken.

Now we will generalize this model in the same way as we
did in the previous section:
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At small Φ, investigation of this model is reduced to the
one performed in the previous section. This means that our
results for the position of the minimum of the potential at
Φ = 0, S = 0, the gravitino mass, and the expression for the
cosmological constant (2.8) remain intact. Investigation of
inflation is unaffected by the tiny parameter δ. Therefore in
what follows we will concentrate on the simplest case δ = 0.

As before, one can show that the term (
√
3P+1)m3/2 does

not induce imaginary part of the fields Φ and S. Therefore
one can replace S by its canonically normalized real com-
ponent, S = s/
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2, and Φ by the canonically normalized

inflaton field ϕ (3.3).
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The main effect of the term (
√
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tential on the dynamics of inflation is the shift of the position
of the minimum of the potential with respect to the field s.
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At	large	fields,	this	potential	remains	10	orders	of	magnitude	
below	Planck	density.	Can	we	have	inflation	with	natural	
initial	conditions	here?	The	same	question	applies	for	the	
Starobinsky	model	and	Higgs	inflation.

-100 -50 0 50 100
φ

0.2

0.4

0.6

0.8

1.0

1.2
�

Carrasco,	Kallosh,	AL		1506.00936
East,	Kleban,	AL,	Senatore		1511.05143
Kleban,	Senatore	1602.03520



To	explain	the	main	idea,	note	that	this	potential	coincides	with	
the	cosmological	constant	almost	everywhere.
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Start	at	Planck	density,	in	an	expanding	universe	dominated	by	
inhomogeneities.	The	energy	density	of	matter	is	diluted	by	the	
cosmological	expansion	as	1/t2.	What	could	prevent	exponential	
expansion	of	the	universe	which	becomes	dominated	by	the	
cosmological	constant	L after	the	time	t	=	L-1/2 ?

Inflation	does	NOT	happen	in	the	universe	with	the	cosmological	
constant	L =10-10 only	if	the	whole	universe	collapses	within	10-28	
seconds	after	its	birth.
In	other	words,	only	instant	global	collapse	could	allow	
the	universe	to	avoid	exponential	expansion	dominated	
by	the	cosmological	constant.	If	the	universe	does	not	

instantly	collapse,	it	inflates.

For	the	universe	with	a	cosmological	constant,	the	
problem	of	initial	conditions	is	nearly	trivial.		



This	optimistic	conclusion	related	to	the	cosmological	
constant	applies	to	a-attractors	as	well,	because	their	
potential	coincides	with	the	cosmological	constant	
almost	everywhere.
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During	the	last	3	years,	a	new	class	of	inflationary	
models	was	constructed:	cosmological	attractors.	These	
models	give	predictions	matching	Planck	data,	
generalize	Starobinsky	model,	GL	model	and	Higgs	
inflation,	can	be	implemented	in	supergravity,	and	can	
simultaneously	describe	inflation,	the	cosmological	
constant,	and	SUSY	breaking.	

New	ideas	initiated	by	cosmological	discoveries	may	
lead	to	novel	possibilities	in	particle	phenomenology:	
Some	superpartners	may	not	be	found	because	of	the	
non-linear	realized	supersymmetry	involving	nilpotent	
superfields.



The	total	cost	of	finding	the	Higgs	boson	ran	about	$10	billion…	
which	seems	like	a	bargain…	especially	when	you	consider	the	fact	
that	LHC	and	its	associated	experiments	are	bringing	us	much	closer	
to	understanding	the	mysteries	of	the	universe.
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The	total	cost	of	the	Planck	satellite,	which,	arguably,	brings	us	much	
closer	to	understanding	the	mysteries	of	the	universe	than	LHC,	is	
about	$1	billion.	

Long	way	to	go!


