

EuroNNAc and EuPRAXIA Workshop on a European Plasma Accelerator
June 29th - July 1st, CNR - Pisa
EUSPARC Meeting
July 12th, LNF - Frascati

# WP5: Electron Beam Design and Optimization

INFN (enrica.chiadroni@Inf.infn.it),

CEA (antoine.chance@cea.fr), UROM, DESY, ULIV, USTRATH, SOLEIL, UHH



#### INFN People



Enrica Chiadroni: WP5 Leader



- Accelerator physicist, expert in high brightness photoinjectors and electron beam diagnostics, both transverse and longitudinal
  - Responsible for the machine operation at SPARC\_LAB (Laboratori Nazionali di Frascati, INFN)
- Principal Investigator of the "FIRB 2012" grant, funded by the Italian Minister of Research, for the development of experiments to be performed at SPARC\_LAB on the acceleration of high brightness electron beams in a plasmabased accelerator
- INFN Team: Massimo Ferrario (WP9), Enrica Chiadroni, Alberto Marocchino (WP5 and WP2)



# CEA/IRFU People

#### • Antoine Chance: WP5 co-Leader

- Accelerator physicist, expert in beam dynamics, storage rings and colliders (design)
- Transfer line @200 MeV between both acceleration stages for CILEX WP2 leader (« arc design ») for EuroCirCol
- Interests: beam dynamics and simulations for plasma acceleration of electrons
- CEA/Irfu Team: Olivier Delferrière, Claire Simon, Antoine Chance, Phi Nghiem (WP2), Alban Mosnier (WP2), Xiangkun Li (post-doc, WP2 & WP5) + PhD student (WP2,not yet selected)



#### WP5 Description



- In external injection schemes, the optimum performance of a plasma accelerator is set by the quality of the injected electron beam
- High brightness bunches have to be generated directly at the cathode and transported without losses and with minimum quality degradation down to the plasma entrance
  - Mitigation of sources of emittance degradation
    - Proper choice of the electron injector
    - Emittance compensation schemes to assure an optimized matching to the plasma
  - Longitudinal compression techniques to provide bunch lengths << plasma wavelength</li>
- Optimization of
  - witness bunch parameters
    - at the *entrance of the plasma* accelerating structure
      - matching studies both for the LWFA and PWFA performances
    - at the *plasma exit* to fit user needs
  - driver bunch parameters
    - at the entrance of the plasma accelerating structure
      - matching tolerance studies for alternative electron beam driven plasma structures
- Design of electron beam diagnostics before and after the plasma channel, taking profit from both standard and novel techniques
  - Task 5.1: Coordination and Communication (INFN, CEA)
  - Task 5.2: Electron Beam for external injection (RF injector) (UROM, DESY, ULIV, USTRATH)
  - Task 5.3: Electron Beam Manipulation (INFN, CEA, UROM, DESY, ULIV, USTRATH, SOLEIL)
  - Task 5.4: Electron Beam Diagnostics and Practical Issue (INFN, CEA, UROM, DESY, ULIV, USTRATH, UHH)



# Milestones and Deliverables



- M 5.1: Personell recruitment [M12]
  - ✓ INFN-LNF Post-doc assigned
    - Alberto Marocchino: 50% to WP5, 50% to WP9
  - √ CEA Post-doc assigned
    - Xiangkun Li: WP5 and WP2
- M 5.2: <u>Preliminary RF accelerator specifications</u> [M12]
  - Project report (WPs involved: 5,2,3,6,7,9,12,14)
    - Charge, average and peak current, energy, both for laser and particle driven plasma acceleration to drive the choice of the most suitable injector
- M 5.3: Specification of the transfer line from the RF injector to the plasma [M24]
  - Project report
- M 5.4: <u>Definition of diagnostics before and after the plasma channel</u> [M40]
  - Project report
- D 5.1: <u>Design report photo injector recruitment</u> [M30]
  - Definition of laser, photocathode, cavities, emittance compensation schemes and tools for the diagnostics of the required electron beam parameters for both laser and particle driven schemes
- D 5.2: Report on optimal beam handling [M42]
  - Beam matching to the plasma and transport beam lines to users
- D 5.3: Full design report EuPRAXIA, WP5 contribution [M48]
  - Section 12 of the Conceptual Design Report (CDR)



#### **Task 5.2**



- Task 5.2: Electron Beam for external injection (RF injector) (UROM, DESY, ULIV, USTRATH)
  - External RF Injector consists of laser, cathode, gun and first acceleration stage
    - Tolerance and reliability
    - LWFA
      - Ultra-short (fs scale) electron bunch
        - Define main parameters to drive injector choice
    - PWFA
      - Multi-bunch train (i.e. comb-like), ramped charge bunches
        - Define main parameters to drive injector choice





#### • LWFA

Ultra-short (fs scale) electron bunch for single spike SASE FEL operation

| Charge (pC) | Energy (MeV) | Energy spread (%) | Duration (fs) | Emittance (mm mrad) | Peak current (A) |
|-------------|--------------|-------------------|---------------|---------------------|------------------|
| 20          | 114          | 0.1               | 26            | 1.2                 | 400              |

#### Single-spike FEL means high quality ultra-short beam!



Collected FEL light, 100 fs (rms), 40 µJ

F. Villa, V. Petrillo et al., submitted to Proc. of HBB 2016







#### PWFA

• Multi-bunch train (i.e. comb-like), ramped charge bunches: laser comb profile and Velocity Bunching regime



|              | Beam Energy (MeV) | Energy spread (%) | Bunch duration (ps) | Charge (pC)  |
|--------------|-------------------|-------------------|---------------------|--------------|
| Witness Beam | 112.58(0.03)      | 0.084(0.003)      | <0.088(0.001)       | 24.04(0.28)  |
| Driver 4     | 112.28(0.03)      | 0.159(0.003)      | 0.042(0.001)        | 74.91(0.46)  |
| Driver 3     | 112.17(0.03)      | 0.112(0.003)      | 0.092(0.001)        | 69.39(0.36)  |
| Driver 2     | 112.26(0.02)      | 0.087(0.003)      | 0.113(0.001)        | 36.34(0.20)  |
| Driver 1     | 112.20(0.02)      | 0.045(0.004)      | <0.100(0.024)       | 36.34(0.20)  |
| Whole Beam   | 112.27(0.03)      | 0.162(0.003)      | 1.275(0.003)        | 220.00(0.78) |





#### • PWFA

• Multi-bunch train (i.e. comb-like) and transverse shape: hollow comb beam

#### Witness degradation occurs during bunch crossing

- Driver acts as nonlinear lens
  - emittance growth
- Driver field is opposed to RF
  - lower compression

#### Hollow driver beam

- No beam-beam effects
  - unperturbed witness
- Higher driver emittance (larger spot on cathode)











#### **Task 5.3**



- Task 5.3: Electron Beam Manipulation (INFN, CEA, UROM, DESY, ULIV, USTRATH, SOLEIL)
  - Beam transport from the source
    - either external RF injector or plasma injector (WP3) to the plasma
  - Transfer line from the plasma accelerating structure to Pilot Application beam line
  - Plasma lens for injection and extraction





- Plasma lens for injection
  - Active plasma lens (Panofsky & Baker, 1950)





**Red arrow**: focusing force received by the electron beam within an active plasma lens is represented by the red arrow

$$f = \frac{1}{kL}; \quad k = \frac{eg}{p}; \quad g_{flat1} = \frac{\partial B_y}{\partial x} = \frac{\partial}{\partial x} \left[ \frac{4\mu_0 ir}{6\pi R^2} \right] = \frac{4\mu_0 i}{6\pi R^2}$$







Courtesy of M. P. Anania, A. Biagioni, D. Di Giovenale, F. Filippi, S. Pella











#### Plasma lens for injection







#### Emittance scan VS delay to study emittance degradation due to plasma





- Plasma lens for extraction
  - Adiabatic plasma lens
    - tapering plasma density

Linear tapering: The incoming bunch is deal with double Gaussian profiles, 17 fs long (FWHM), < 30 fs timing jitter, 5.5 um wide (rms), 10 pC charge, 80 MeV and 1 mm mrad normalized emittance







#### Task 5.4



- Task 5.4: Electron Beam Diagnostics and Practical Issue (INFN, CEA, UROM, DESY, ULIV, USTRATH, UHH)
  - Before injection
    - Beam transverse and longitudinal size
    - The relative time of arrival jitter of the two beams, i.e. laser and electron in LWFA,
      - timing system between the electron beam and the laser pulse
  - After acceleration in plasma
    - Energy, energy spread, emittance => single shot diagnostics



#### Before injection

- Beam *longitudinal* diagnostics
  - Electro-Optical Sampling
    - Single shot, non-intercepting diagnostics to monitor multi-bunch train injection in plasma: temporal spacing (to check the resonance condition in resonant-PWFA) and duration
    - Measurement of the relative time of arrival jitter of the two beams, i.e. laser and electron in LWFA
      - The position of signal, where laser crosses with crystal, indicates the time of arrival of beam, the width of signal is related to longitudinal profile of beam









- Before injection
  - Beam transverse size
    - **um scale** resolution diagnostics
- After acceleration in plasma
  - Beam transverse size
    - Energy, energy spread, *emittance => single shot diagnostics*
- Optical Transition Radiation Imaging and Angular Distribution
  - One Shot Emittance (OSE)





# Interaction with other WPs



- WP2: Physics and Simulations (A. Mosnier, L. Oliveira Silva)
  - Both plasma dynamics and RF injectors
- WP3: High Gradient Laser Plasma Accelerating Structure (B. Cross, Z. Najmudin)
  - beam handling from plasma injector => Input: beam parameters
  - plasma lens design
- WP6: FEL Pilot Application (M.-E. Couprie, G. Dattoli)
  - Design transfer line => Input: Matching conditions at the undulator
    - Accelerated witness beam parameters: 1 5 GeV, 1 mm mrad, 0.1% energy spread



Courtesy of G. Dattoli and F. Nguyen

- WP7: High Energy Physics and other Pilot Applications
  - Design transfer line => Input: Matching conditions at the interaction point
- WP9: Alternative e-Beam Driven Plasma Structure
  - RF injector requirements for PWFA
    - Multi-bunch train for increasing transformer ratio
- WP10: Use of Other Novel Technologies
  - Study other novel injector concepts
    - Cryogenic injector
- WP12: Accelerator Prototyping and Experiments at Test Facilities
  - Experimental tests
- WP14: Hybrid Laser-Electron-Beam Driven Acceleration
  - Timing and synchronization issues
    - femtosecond scale

# Eupra (IA RF Injector preliminary parameters

- Charge: 10 pC 100 pC
  - Cathodes
    - robustness, fast response (to allow pulse shaping), high QE, low intrinsic emittance
- Injector energy: 100-200 MeV
- energy spread: ~0.1‰
- Rep. rate: ??
- Normalized emittance: ~< 1 mm mrad</p>
- Peak current: ~kA
  - Preferably two compression stages: hybrid compression
    - Low energy RF compression
      - rectilinear trajectories (no CSR which dilutes emittance), integrated in emittance compensation scheme
    - High energy magnetic compression
      - Jitter (e-beam to external laser): ~10 fs



# **Preliminary Working Point**

The wish parameter list strongly depends on the beam parameters for the given application.

For a FEL pilot experiment lasing at 10 nm, "1 cube" working point, plasma accelerator should provide

- Charge: from few pC to hundreds pC level
- Peak current: 1 kA
- Energy: 1 GeV
- energy spread: ~ 0.1%
- Normalized slice emittance: 1 mm mrad



# Conceptual Design Report

#### Section 12 of the CDR

- Electron Beam Design and Optimization (WP5)
  - ▶ 1.1 Introduction
    - State-of-the-art electron injectors
  - 1.2 Design of the photo-injector
    - Photo-cathode laser
    - Cathode
    - RF gun
  - ▶ 1.3 Beam handling
    - Beam manipulation for high brightness preservation
    - Includes measurement, correction, feedback? It should include diagnostics
    - Up- and downstream of plasma? Yes
      - Beam transfer lines to user experiments
  - ▶ 1.4 Collimation and beam shaping
    - 3rd harmonic accelerator cavity for longitudinal phase-space linearization
    - Longitudinal beam shaping, e.g. triangularly ramped current profiles
    - Done by WP or done by DESY



# Contribution to EUSPARC

#### **Working group 1: Injector and Linac**

- Survey of the state-of-the-art electron injectors for high brightness beams
  - Photo-injectors allowed for both transverse and longitudinal pulse shaping
    - e.g. Hollow comb beam
- Next Generation High Brightness Electron Beams From Ultra-High Field Cryogenic RF Photocathode Sources
  - Extreme low emittance scenarios obtained at low operating charge
  - Cryogenic operation to reduce intrinsic cathode temperature,
     therefore intrinsic emittance
  - Cathode cooling to suppress dark current despite the large fields employed