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Introduction LMs in BG

Abstract

The excited leptons that share the quantum numbers with the
Standard Model leptons but have larger masses are widespread in
many promising new physics theories. A subclass of excited leptons
that at low energies interact with the SM fermions dominantly
through the effective coupling to lepton and fermion-antifermion pair
can be referred as leptomesons. I will discuss possible generation of
the baryon asymmetry of the universe using these new particles. The
discussed baryogenesis does not contradict to the small neutrino
masses and the proton stability, and can be interesting for the
collider searches.
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Introduction LMs in BG

Motivation for physics beneath lepton-quark level

Indications on possible nonfundamentality of the SM fermions

Large number of them: {e−, ν, u, d and their antiparticles} × 3
generations;
Fractional electric charge of quarks;
Arbitrary fermion masses and mixing parameters;
Similarity between leptons and quarks in the SM flavor and gauge
structure;
Dark matter, cosmic-ray anomalies, etc.

Some of these issues are addressing in models with elementary `
and q, and external relationships or symmetries:
GUT, SUSY, superstrings, etc.

Alternative possibility with non-elementary ` and q is considered in
the models of particle compositeness.
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Introduction LMs in BG

Many theories of compositeness use various names of
the fundamental particle subcomponents:
subquarks, maons, alphons, quinks, rishons, tweedles,
helons, haplons, Y-particles, primons. . .

Most commonly fermion subcomponents are referred
as preons [Pati, Salam, 1974].

Typically models of fermion compositeness predict
new heavy composites, which can be constructed
using their sets of preons: excited fermions,
fermionic color multiplets, new gauge bosons, etc.

The new composites should be heavy since they were
not observed at O(10) GeV collision energies, where
the statistics is over 103 fb−1, and do not effect
significantly (g − 2)µ, etc.
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Some compositeness models

[Pati, Salam and Strathdee, ’74] [Akama, Chikashige and Terazawa, ’77]

Haplon Models [Fritzsch, ’81,. . . ]

These models are based on the symmetry SU(3)c × U(1)em × SU(N)h,
and contain the two cathegories of colored preons (haplons):
fermions α−1/2 and β+1/2, and scalars x−1/6, y+1/2, . . .

SM particles: νe = (ᾱȳ)1, e− = (β̄ȳ)1, d = (β̄x̄)3, W− = (ᾱβ)1, . . .
New composites: leptoquark (x̄y)3̄, leptogluon (β̄ȳ)8, . . .

Another possibility is the multipreon states: e∗ = (β̄x̄ ȳ x)1, etc.
This case gets more points from recent discoveries [Aaij et al., ’15] of the
multiquark states due to similarity between QCD and haplon dynamics.

Why the two different U(1) charges of the scalars: 1/6 and 1/2?
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Compositeness kitchen (personal view)
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One fundamental U(1) charge. Possible SU(3) and U(1) charge substructure

of the SM fermion cores: `+, `− and ν (upper), u, ū, d and d̄ (lower).

Assuming that the triples of charges can have spin 0 and 1
2 we may reproduce haplon models.

Electron’s spin: rotating wave packet, spinning gravitating solution,. . . ?

oblate spheroidal coordinates (Fig.2). The KN metric is singular at the circle
r = cos θ = 0, which is branch line of the Kerr space into two sheets r+ for
r > 0 and r− for r < 0, so that the field kµ(x) and the aligned with kµ metric
and vector potential of the electromagnetic (em) field,

αµ
KN = Re

e

r + ia cos θ
kµ, (2)

turn out to be twosheeted, taking different values on the different sheets of
the same point x ∈ M4. Twosheetedness represents one of the main puzzles
of the KN space-time. For electron parameters, gravitational field of the
KN solution is concentrated very close to singular ring, forming a circular
waveguide – analog of the closed relativistic string. It has been shown in
[2, 3] that the KN solution in vicinity of the Kerr ring corresponds to the ob-
tained by Sen solution to low-energy heterotic string theory. Meanwhile, the
long-term attack on the mysterious twosheetedness (Keres, Israel, Hamity,
López at all, [3]) resulted in the gravitating soliton model in the form of
the consistent with KN solution rotating vacuum bubble, metric of which is
regularized, approaching the flat minkowskian background in the Compton
region. It fixes unambiguously the form and some details of the consistent
with KN gravity electron model. Following [1] we discuss basic features of

−10
−5

0
5

10

−10

−5

0

5

10
−10

−5

0

5

10

Z 

Figure 1: Congruence of the lightlike
lines kµ(x) is focused on singular ring,
creating twosheeted Kerr space.
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Figure 2: Oblate co-
ordinate system (r, θ)
covers the Kerr space
twice, for r > 0 and
r < 0. Truncation of
the sheet r < 0 creates
the source at r = 0.

the regular KN electron model as a gravitating soliton. The most wonderful
fact is emergence of the quantum condition for spin of the KN soliton, as
a consequence of the pure classical relations completed by the condition on

2

[Chuu, Chang, Niu, 0911.4760] [A. Burinskii, 1212.2920] 10 / 46
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Mass bounds for some heavy composite fermions

Color (anti)sextet quarks q6: mq6 > 84GeV [CDF: Abe, PRL 63, 1447]

(3̄× 3̄ = 3 + 6̄)

Color octet neutrinos ν8: mν8 > 110GeV [CDF: Barger, PL B220, 464]

(3× 3̄ = 1 + 8)

Color octet charged leptons `8: m8 > 86GeV [CDF: Abe, PRL 63, 1447]

More recent
New bound on `8 mass: m8 > 1.2TeV [Goncalves-Netto et al., ’13]

Leptoquarks LQ: mLQ > 845GeV [CMS PAS EXO-12-041]

(1st generation)

Excited `∗ and q∗: m∗ & 1TeV [ATLAS, CMS]
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Excited lepton shares leptonic quantum number
with one of the SM leptons, has larger mass
and no color charge.

Excitation can be: radial, orbital (high spin ` & q),
topological (solitons, instantons, monopols)...,
and may have some difference in the substructure.

Compare to various types of “excited” mesons and baryons.

The SM fermion families can be either lower radial excitations
1S1/2 {νe , e, u, d}, 2S1/2 {νµ, µ, c, s},. . . [Visnjic-T., ’80]

or bound states of the 1st generation F1 with other fields, e.g.,

µ ∼ [F1h], τ ∼ [F1hh] [1606.01883].

Essentially, `∗ can be lighter than leptoquarks and
leptogluons due to the absence of color dressing.

Notice that many possible excitations of the leptons and quarks

may be not stable (like the bound states of t quark).
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Contact interactions for the SM fermions f and the excited fermions f ∗

are usually written in the color-singlet chirally invariant form as

LCI =
g2
∗

2Λ2 jµjµ, jµ =
∑

α=L,R

(ηα f̄αγµfα + η′α f̄ ∗α γ
µf ∗α + η′′α f̄ ∗α γ

µfα) + H.c.,

where Λ is the contact interaction scale, g2
∗ = 4π, and the new

parameters ηj ≤ 1 assigned in the fermion current jµ.

However more generic form for the contact interactions is [PDG2016]

LCI =
g2
∗

2Λ2

∑

α,β=L,R

[
ηαβ(f̄αγµfα)(f̄βγµfβ) + η′αβ(f̄αγµfα)(f̄ ∗β γ

µf ∗β )

+ η̃′αβ(f̄ ∗α γ
µf ∗α )(f̄ ∗β γ

µf ∗β ) + η′′αβ(f̄αγµfα)(f̄ ∗β γ
µfβ) + H.c. + . . .

]
,

since it has more free parameters, e.g., the 3 scales of ηαβ , η′αβ and η̃′αβ
can be different, and can not arise from the 2 scales of ηα and η′α.
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Contact interactions may proceed by the constituent exchange, if the
fermions have common constituents, and/or by exchange of the binding
quanta of the new interaction that couples to the constituents of both
particles.

Problem: The scale of constituent binding energies (e.g., ∼ 1 TeV)
is much larger than the SM fermion masses.

’t Hooft, Dimiopoulos, Raby and Susskind in 1980 developed mechanisms
to understand how forces which operate on the TeV scale (or above) can
conspire to produce the light SM particles. Generically this requires the
chiral current conservation, and involves the anomaly cancellation
between the massless composite states and the fundamental fermions.

(In particular, hierarchies of light fermion masses may come from the
secondary mass generation.)

Other ways to solve this problem are aslo discussed in the literature.
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Mass bounds for excited fermions assuming mf ∗ = Λ

[PDG2016; ATLAS: Aad et al., New J. Phys. 15, 093011; JHEP1508, 138]

me∗(µ∗) < 2.45 (2.47) TeV [CMS: Khachatryan et al., JHEP1603, 125]
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0ν2β decay bound for excited Majorana neutrino
Composite ν∗M in the neutrinoless double beta decay is discussed in

O. Panella and Y. Srivastava et al., ’94, ’97
(their bound is stronger by one order of magnitude)
E. Takasugi, ’95, ’97:

TeV

For ’94 limit of Heidelberg-Moscow exp.: T1/2(76Ge) > 5.6 × 1024 yr.

Current bound is few times stronger: T1/2(76Ge) > 3× 1025 yr
[1307.4720,1606.04886].
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LHC bounds on ν∗ ≡ N mass 4πη′′

Λ2 (q̄Lγµq′L)(N̄Lγ
µ`L)

CMS bound on NM mass for Λ = 5 ATLAS bounds on Λ vs.ND mass

Hence Λ√
η′′

& 5 TeV for NM , and can be few times smaller for Dirac N.
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Notice that the usual assumption of Λ ' M∗ with the nearly maximal
4-fermion coupling constants ηj is not very natural.

The fundamental couplings that bound together preons are expected to
be large. However the “residue” couplings between the composites can be
relatively small.

The alternative choice of Λ� M∗ with the nearly maximal ηj mimics the
natural case with small ηj . Hence relatively light excited fermions f ∗ and
even relatively small compositeness energy threshold are not excluded:

M∗ ∼ Λ . 1 TeV

ηj � 1,
Λ√
ηj

� M∗

Since σ ∼
(

Λ√
ηj

)−8
the contact interactions can be observed at the

high-luminosity LHC run, and even at the less energetic factories.
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η′′ bound estimation: The limit of

Λ > a2M∗ with η′′ = 1

very roughly (neglecting the background issues) translates to

η′′ <
1
a

with Λ = M∗.

Hence the discussed bounds will look more optimistic in coordinates
η′′ vs. M∗ rather than Λ vs. M∗.

Example:
ATLAS limit of Λ & 20 TeV for M∗ ' 200 GeV and η′′ = 1 reads as:

η′′ . 0.1 for Λ ∼ M∗ ' 200 GeV.
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Leptomesons in
Baryogenesis and
Neutrino Masses
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Leptomesons (LM) - excited leptons that at low energies interact
with the SM fermions dominantly through contact terms.

(Do not miss with the bound states of `+
8 `

−
8 [Pitkänen, ’90].)

Example: Λ ∼ MLQ � min( ΛGM
F , 4πη′′

Λ2

mq
)

LM

q

LQ

ℓ

q

→

LM

ℓ

q

q

LM

ℓ

q

q

where ΛGM (F ) is the scale (new coupling) of the gauge-mediated
interactions

LGM =
1

2ΛGM
LM σµν

(
gF

τ

2
Wµν + g ′F ′

Y
2

Bµν

)
PαL + H.c.
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One of the most important observations, which can not be explained
within the SM, is the baryon asymmetry of the universe

ηB =
nB − nB̄

nγ
= 7.04× nB − nB̄

s
∼ 6× 10−10,

which is derived indirectly by the two methods:
CMB spectrum (nγ) and anisotropies (nB/nγ)
by modeling the acoustic oscillations of the baryon/photon fluid
relic abundances of light elements: D, 3He, 4He, 7Li,. . .
using the predictions of nucleosynthesis

Baryogenesis (BG) mechanisms - possible scenarios of dynamical
generation of ηB during the evolution of the universe from a hot early
matter-antimatter symmetric stage.

Majority of these scenarios discussed in the literature satisfy the three
Sakharov [’67] conditions:

Violation of baryon number symmetry;
Violation of C and CP symmetries
(to have B = B̄ for the processes with particles ↔ antiparticles)
Departure from thermal equilibrium
(to have 〈B〉 6= 0 from the processes and the inverse processes)
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The SM does not provide a successful BG due to the lack of CP violation
and not strongly first order electroweak phase transition to achieve the
departure from thermal equilibrium.

Though in the economical SM extensions ηB can be generated through
the thermal leptogenesis (LG) mechanism in the two steps:
1) lepton number asymmetry is produced in the out-of-equilibrium decays
of heavy Majorana particles, 2) the SM sphaleron processes
convert it into the baryon asymmetry.

(Sphaleron transitions are effective at T > TEWSB ∼ 100 GeV.)

However LG in the supersymmetric generalizations of the SM suffers from
the gravitino problem, which comes from the too high reheating
temperature related to the strong lower bound on the right-handed
neutrino mass (Davidson-Ibarra bound). To avoid this problem the
resonant mechanisms of LG were introduced.
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Oscillations

(production)

Theories of baryogenesis

B-violation C- and CP -violation Departure from thermal equilibrium

Models that meet Exotic models

Sphaleron
processes

(till EWSB)

Decays

(freeze-out)

Strong 1st order
phase transition: topological

defects

(EWSB)

Sakharov conditions

bubble walls

2nd order PT :

(EWSB)

Figure : Types of BG and ways they meet Sakharov conditions.

The bold arrows are relevant to present consideration.

(Models that satisfy these conditions in a nontypical way are not specified here.)
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Can neutral leptomesons provide the successful BG?

Similarly to the sterile neutrino case, depending on the properties of LMs
the deviation from thermal equilibrium can occur at:

production
(so-called BG from oscillations [Akhmedov, Rubakov, Smirnov ’98])
freeze-out and decay
(thermal LG [Fukugita, Yanagida ’86])

In both scenarios for the case of LMs one should replace the Yukawa
interaction Y ¯̀NRφ by the contact one. Possible effects are promising.

25 / 46



Introduction LMs in BG

BG from LM oscillations
Once created in the early universe neutral long-lived LMs oscillate and
interact with ordinary matter. These processes do not violate the total
lepton number Ltot (for Dirac LMs). However the oscillations violate CP
and therefore do not conserve individual lepton numbers Li for LMs.
Hence the initial state with all zero lepton numbers evolves into a state
with Ltot = L +

∑
i Li = 0 but Li 6= 0.

At temperatures T � Λ the LMs communicate their lepton asymmetry
to neutrinos ν` and charged leptons ` through the effective interactions,
e.g., B-conserving (and L-conserving for Dirac LMs) vector couplings

∑

ψ`,f ,f ′

∑

α,β=L,R

[
εαβff ′ψ`

Λ2 (f̄αγµf ′α)(ψ̄`βγµN`β) +
ε̃αβff ′ψ`

Λ2 (ψ̄`αγ
µf ′α)(f̄βγµN`α)

]
+ H.c.,

where ψ` = `, ν`, constant
(∼)

ε = 4πη′′ can be real, f and f ′ denote
either quarks or leptons such that Qfα + Qf ′cα + Qψ`β = 0, and N` is the
neutral LM flavor state that is related to the mass eigenstates Ni as

N`α =
∑n

i=1 Uα
`iNi , ` = e, µ, τ .
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Suppose that LMs of at least one type i remain in thermal equilibrium
till the time of EWSB tEW at which sphalerons become ineffective, and
those of at least one other type j come out-of-equilibrium by tEW.
Hence the lepton number of former (later) affects (has no effect on) the
baryogenesis. In result, the final baryon asymmetry after tEW is nonzero.

At the time t � tEW all LMs decay into the leptons and the quarks
(hadrons). For this reason they do not contribute to the dark matter in
the universe, and do not destroy the Big Bang nucleosynthesis.

The system of n types of singlet LMs of a given momentum k(t) ∝ T (t)
that interact with the primordial plasma can be described by the n × n
density matrix ρ(t). In a simplified picture this matrix satisfies the kinetic
equation

i
dρ
dt

= [Ĥ, ρ]− i
2
{Γ, ρ}+

i
2
{Γp, 1− ρ},

where Γ (Γp) is destruction (production) rate, and effective Hamiltonian is

Ĥ = V (t) + U
M̂2

2k(t)
U†,

where M̂2 = diag(M2
1 , . . . ,M

2
n ), and V is a real potential.
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The 4-particle interaction cross section that contributes to the
destruction rate is

σ(a + b → c + d) =
C
4π
|ε|2 s

Λ4∝ s, [ σνR ∝ s−1 for νR in ARS model ]

where a, b, c and d denote the four interacting particles (f , f ′, ψ` and
N`), C = O(1) is the constant that includes the color factor in the case
of the interaction with quarks, and s is the total energy of the process.

The respective 2↔ 2 scattering rate density for Mi � T � Λ reads

γ =
6C
π5

gagb |ε|2
T 8

Λ4 , [ γνR ∝ T 4 ]

where ga is the number of internal degrees of freedom of the particle a.

Then the interaction rate that equilibrates LMs is

Γ ∝ |ε|2T 5

Λ4 [ ΓνR ∝ T ]
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The conditions that LMs of type Ni remain in equilibrium till the time of
the EWSB tEW , while Nj do not:

Γi (TEW ) > H(TEW ),

Γj(TEW ) < H(TEW ),

where H(T ) is the Hubble expansion rate.

These Γ are suppressed by the factor of (TEW /Λ)4 with respect to the
Higgs mediated interaction rate in usual BG via sterile neutrino νR
oscillations. Hence the couplings ε can be significantly larger than the
Yukawa couplings Y for νR . In particular, for Λ & 10 and 30 TeV
we have ε & 10−4 and 10−3, respectively. [Y ∼ 10−7]

Hence the considered scenario of the BG via neutral LMs can be relevant
for the LHC and next colliders without unnatural hierarchy of couplings.
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The asymmetry transformed to usual leptons by tEW can be estimated as

nL − nL̄
nγ

=
1
2

∑

j

|SM
j (tEW , 0)|2CP−odd,

where the factor 1/2 accounts for the photon helicities, and SM = U†SU
is the evolution matrix in the mass eigenstate basis (S(t, t0) is the
non-unitary evolution matrix corresponding to the operator Ĥ − (i/2)Γ).

In the case of three LM mass states the CP-violating effects come from
the Jarlskog determinant related to their mixing matrix U.
However extra LM mass states can enrich the picture of CP violation.

Also additional CP-violating phases may come from the active neutrino
sector similarly to the BG from νR oscillations [Asaka, Shaposhnikov ’05].
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BG from LM decays

Suppose that the neutral LMs are Majorana particles (N` = Nc
` ).

Consider their out-of-equilibrium, CP- and L-violating decays in the early
universe.

The relevant interactions can be written as

εαRff ′ψ`
Λ2 (f̄αγµf ′α)(ψ̄`RγµN`R) +

εSff ′ψ`
Λ2 (f̄R f ′L)(ψ̄`LN`R)

+
εTff ′ψ`

Λ2 (f̄ σµν f ′)(ψ̄`LσµνN`R) + H.c.

To be more specific in the following we consider the term

λ`i
Λ2 (q̄αγµq′α)(¯̀RγµNiR),

where λ`i = εαRqq′`U
R
`i is the complex parameter.
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Consider the interference of tree and one-loop diagrams

×
N1

ℓ

q

q′c ×
N1

ℓ

Njℓ

q, q′

q

q′c

×
N1

ℓ

q

Nj

ℓ

q, q′ q′c

Final CP asymmetry produced in decays of the lightest LMs N1

ε1 =
1

Γtot

∑

`

[Γ(N1 → `Rqαq′cα )− Γ(N1 → `cRqcαq′α)],

can be non-zero if Im[(λ†λ)21j ] 6= 0. Using the total width of LM1

Γtot =
∑

`

[Γ(N1 → `Rqαq′cα ) + Γ(N1 → `cRqcαq′α)] ' 1
128π3

(λ†λ)11
M5

1

Λ4 ,

the condition for the decay parameter K ≡ Γ1/H(T = M1) > 3
(strong washout regime) translates into the limit

(λ†λ)11 & 4× 10−7 ×
(

Λ

10 TeV

)4

×
(
1 TeV
M1

)3

.
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Example:
The discussed effective LM-quark-quark-lepton vertex can be realized,
e.g., through the exchange of SU(2)L singlet scalar leptoquark S0R with
Y = 1/3.

Relevant interaction terms in the Lagrangian can be written as

−Lint = (gij d̄c
RNiR + fj ūcR`R)S j

0R + H.c.

Then the above expressions are valid with the replacements λ→ gf ∗ and
Λ→ MS0R . The relevant for the BG values of the new couplings of
|g | ∼ |f | ∼ 0.01− 0.1, can be interesting for the collider searches.

Notice that the new contributions to the CP asymmetry coming from the
interferences with the one-loop diagrams that originate from the
self-energy corrections to the leptoquark propagator cancel each other
(for less than 3 interaction constants).
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The final baryon asymmetry can be written as

nB − nB̄
s

=

(
−28
79

)
× nL − nL̄

s
=

(
−28
79

)
× ε1κ

g∗
,

where nB , nL and nγ is the baryon, lepton and photon number density,
respectively; s is the entropy density, and κ ≤ 1 is the washout
coefficient.
To exactly determine κ the complete set of Boltzmann equations should be solved.

Using the resonant CP asymmetry of

εi ∼
Im{[(λ†λ)ij ]

2}
(λ†λ)ii (λ†λ)jj

Γj
Mj

MiMj

M2
i −M2

j
∼ µ−1 Γ1

M1

the observed baryon asymmetry ηB ∼ 6× 10−10 can be produced for the
decay parameter of K ∼ 100 with the degeneracy factor of

µ ≡ M2 −M1

M1
. 10−6

(
M1

1 TeV

)
.
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Neutrino masses from LMs
For Majorana LMs among the considered generic interactions the terms

εSff ν`
Λ2 (f̄R fL)(ν̄`LN`R) +

εTff ν`
Λ2 (f̄Rσµν fL)(ν̄`LσµνN`R) + H.c.

can generate the two-loop contributions to the light neutrino masses mν` .

×
νL νL

Ni

q, qc
×

νL νL

N

qL qR

×

×

LQ

LQ

qLqR

〈φ〉

〈φ〉

Figure : Contribution to mν in case of f = q: effective diagram (left), and
its particular realization in the model with leptoquarks (right).

Naive estimate gives
mν` ∼

∑

i

(εUR
`i )

2

(16π2)2
M3

i m2
f

Λ4 .

Then present bound of mν . 2 eV can be easily satisfied.
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Conclusion

New scenarios of the baryogenesis in the models with leptomesons are
introduced, which do not contradict to the observed neutrino masses and
the proton stability.

The discussed baryogenesis mechanisms may take place at relatively low
temperatures that can be interesting for the collider searches, and does
not lead to analog of the gravitino problem.
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The important difference from the standard LG is that the
Davidson-Ibarra bound on the heavy neutrino masses MN is in general
not applicable to LM masses.
(This bound comes from the see-saw relation mν = v2Y T 1

MN
Y ).

Then the LM masses can be MLM � MN & 109 GeV.

In both cases the required reheating temperature is not too high and
analog of gravitino problem does not exist in the model with LMs.

40 / 46



Introduction LMs in BG

Quark and lepton compositeness should manifest itself at low energies
in contact interactions (lowest dim. interactions with 4 SM fermions)
L =

g2

2Λ2 [ηLLψ̄LγµψLψ̄Lγ
µψL + ηRR ψ̄RγµψR ψ̄Rγ

µψR + ηLR ψ̄LγµψLψ̄Rγ
µψR ],

where Λ is the scale of compositeness, and ηαβ can be selected as either
±1 or 0, e.g., Λ = Λ±LL for (ηLL, ηRR , ηLR) = (±1, 0, 0).

Present limits on Λψψψψ [PDG 2016]

Λψψψψ Bound on Λ+
LL (Λ−LL), TeV Experiment

Λeeee > 8.3 (> 10.3) RVUE - LEP2
Λeeµµ > 8.5 (> 9.5) L3 (ALEPH)
Λeeττ > 7.9 (> 7.2) ALEPH, DLPHI (OPAL)
Λ```` > 9.1 (> 10.3) DLPHI (ALEPH)
Λeeqq > 23.3 (> 26.4) LEP2, etc.
Λµµqq > 12.5 (> 16.7) ATLAS
Λ`ν`ν > 3.1 [for Λ±LR ] SPEC - TRIUMF
Λeνqq > 2.81 CDF
Λqqqq > 9.9 CMS

However dominant effects of compositeness may come from ψψgg ,
ψ∗ψψψ, etc. 41 / 46
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Problem is that simple assignment of preons violates Heisenberg’s
uncertainty principle, giving the mass paradox: sum of the masses of
preons, which compose a SM fermion, should exceed the mass of this
fermion.

Possible solutions of mass paradox
Classical limit (~→ 0, Nc →∞, etc.)
Confined preons with either small or zero mass [’t Hooft, 1980;
Dimiopoulos, Raby and Susskind, 1980; Yu. P. Goncharov, 1312.4049]

Nonlocality (includes application of SUSY and string theory
methods)
Large binding force between preons, cancelling their mass-energies
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Historical excurse
When the electron spin was discovered, Uhlenbeck and Goudsmit
proposed (in 1925) that it comes from rotation of the electron charge
sphere. However Lorentz argued that the surface of the sphere would
have a tangential speed v = 137c to produce the accurate spin angular
momentum.

However in the picture of rotating wavepacket [Chuu, Chang, Niu, 2010]
the minimum intrinsic radius of the Dirac electron wavepacket is 137
times larger than the classical electron radius used in Lorentz’s argument.
Hence even tightest possible electron wavepacket does not have to rotate
faster than the speed of light.

May spin of the SM electron (and other fermions) have similar origin?

Can the intrinsic structure be responsible for the rotation?
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Spin of the Dirac electron comes from rotation of its wavepacket
Explanation of spin of the Dirac electron by its wave packet rotation was
introduced by Chuu, Chang and Niu [Solid State Commun. 150, 533 (2010)]2

set. The two spinors for the positive energy branch are
given by

|u1(q)〉 =

√
ε + 1

2ε




1
0

h̄qz

mc(ε+1)
λcq+

ε+1


 ,

|u2(q)〉 =

√
ε + 1

2ε




0
1

h̄q−
mc(ε+1)

−h̄qz

mc(ε+1)


 , (3)

with q± = qx ± iqy. At q = 0, they correspond to the
two spin eigenstates with σz = ±1.

On the other hand, the two spinors for the negative
energy branch are given by

|u3(q)〉 =

√
ε + 1

2ε




−h̄qz

mc(ε+1)
−h̄q+

mc(ε+1)

1
0


 ,

|u4(q)〉 =

√
ε + 1

2ε




−h̄q−
mc(ε+1)

h̄qz

mc(ε+1)

0
1


 . (4)

In order to have intuitive picture of spin other than ab-
stract operator in Dirac wave equation, we study its semi-
classical dynamics by regarding a relativistic electron as
a wavepacket, which contains only the positive energy
eigenstates of the Dirac equation,

|w〉 =

∫
dqa(q, t)eiq·r[η1(q, t)|u1(q)〉 + η2(q, t)|u2(q)〉],

(5)
where a(q, t) = |a|e−iγ(q) describes the distribution of
the wavepacket in momentum space. The wavepacket is
sharply peaked at the charge center qc, and is allowed to
have an overall phase γ(q). The probability amplitudes
η1 and η2 describe the composition of the wavepacket
in terms of two degenerate positive energy states with
spin up and spin down. The normalization condition of
the wavepacket 〈w|w〉 = 1 is satisfied if

∫
dq|a(q, t)|2 =

1, |η1|2 + |η2|2 = 1.
Now we will show that using only half of the Hilbert

space, the positive energy branch, to construct the
wavepacket results in a minimum size of the wavepacket.
This minimum size at q = 0 is the Compton wavelength.
To start with, we introduce a pair of projection operators,
P̂ = |u1〉〈u1|+ |u2〉〈u2| and Q̂ = |u3〉〈u3|+ |u4〉〈u4|. One

can see that P̂ projects to positive energy, P̂|w〉 = |w〉,
Q̂ projects to negative energy, and P̂ + Q̂ = 1.

The mean square radius ∆r of the wavepacket in terms
of the projection operators P̂ and Q̂ is,

∆2
r ≡ 〈w|r2|w〉 − 〈w|r|w〉2

= 〈w|r(P̂ + Q̂)r|w〉 − 〈w|r|w〉2
= 〈w|rP̂r|w〉 − 〈w|r|w〉2 + 〈w|rQ̂r|w〉
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FIG. 1. (Color online) Distribution of (a) probability density
and (b) probability current density of the wavepacket with a
Gaussian distribution a(q, t). The length scale is in units of
the Compton wavelength λc and the color bar is from high
density (red) to low density (blue). The profiles of (a) and
(b) along the x-axis are plotted in (c) and (d).

= ∆2
P̂rP̂ + 〈w|rQ̂r|w〉. (6)

∆P̂rP̂ is the mean square radius of the projected position

operator P̂rP̂ , and is a positive-definite quantity. The
second term is calculated as follows :

〈w|rQ̂r|w〉

=

(
λc

2ε(qc)

)2 ∣∣∣∣σ̄ − λ2
c

ε(qc)[ε(qc) + 1]
qc(qc · σ̄)

∣∣∣∣
2

, (7)

where we have used the relation between the matrix el-
ement of position operator and velocity operator. σ̄ ≡
η†

ασηα is the spinor-averaged spin with ηα =

(
η1

η2

)
, and

λc = h̄
mc is the Compton wavelength.

Thus, we obtain the lower bound of the mean square
wavepacket radius as 〈w|rQ̂r|w〉1/2. At qc = 0, it re-
duces to half of the Compton wavelength. We may re-
gard this as the minimum intrinsic radius of the electron
wavepacket. This minimum size is a consequence of using
only half of the Hilbert space in constructing an electron
wavepacket and it is 137 times larger than the classi-
cal electron radius used in Lorentz’s argument.[8] There-
fore, even for the tightest possible electron wavepacket,
the electron does not have to rotate faster than the
speed of light. To probe the wavepacket at length scales
smaller than the Compton wavelength, the negative en-
ergy branch has to be involved.

In Fig. 1, we plot the probability density, probabil-
ity current density of a wavepacket, which are defined as
ρ(r) = w†(r)w(r) and j(r) = w†(r)cαw(r). The elec-
tron wavepacket is spin up (in the ẑ direction) and has a
Gaussian distribution a(q) in momentum space with zero
mean momentum (qc = 0). A circulating current around

3

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

v(r)

r

FIG. 2. Velocity distribution v(r) (in units of c) of a rotating
wavepacket. The distance r (in units of the Compton wave-
length λc) measures from the center of charge. The figure
shows the rotating wavepacket has a rigid core with a diam-
eter equals to the Compton wavelength.

the spin axis is clearly seen in Fig.1b, with maxima at
r = λc. In Fig. 2, the current density of the wavepacket
shows a rotating velocity profile, v(r) = j(r)/ρ(r), much
like that of a rigid sphere (goes linearly with the radius),
except that beyond the edge it gradually saturates to the
speed of light. This implies a rigid core inside the self-
rotating wavepacket. A classical analogy of this is a uni-
formly charged, self-rotating sphere, with a diameter of
the Compton wavelength, which is exactly the spinning
ball picture of Uhlenbeck and Goudsmit.[7]

III. THE SPIN MAGNETIC MOMENT

The current circulating around the spin axis of the
wavepacket would generate a magnetic moment M =
−e
2

∫
dr(r − rc) × j(r) where rc = 〈w|r|w〉 is the cen-

ter of the wavepacket. With some algebra, one can show
that

M =
−e

2
〈w|(r − rc) × v|w〉

=
−e

2

∑

αβ

η∗
α(q)Rαβ × vβαηα(q), (8)

expressed in terms of the matrix element of the veloc-
ity operator vαβ = 〈uα|cα|uβ〉, and the so-called Berry

connection Rαβ = 〈uα|i ∂
∂q |uβ〉.

After putting in the velocity operator v = cα in cal-
culation, we obtain

M =
−eh̄

2mε2(qc)

[
σ̄ + λ2

c

qc · σ̄
ε(qc) + 1

qc

]
, (9)

where σ̄ = η†
ασηα is the spinor-average spin. At qc = 0,

it reproduces the classical result, M = − eh̄
2m σ̄ = −µBσ̄,

with the Bohr magneton being µB = eh̄
2m .

In the following, we will show that the magnetic mo-
ment induced by the charge circulation is characterized
not by the canonical angular momentum but by the spin.

The canonical angular momentum operator is defined
as L = mr × p = mr × h̄

i ∇. Unlike the momentum
p, the canonical angular momentum is not a conserved
quantity, dL/dt &= 0. It is the total angular momen-
tum J = L + S that is conserved. For a self-rotating
Dirac wavepacket, the canonical angular momentum is
zero (when the momentum operator p acts on the wave-
function |w〉, it gives h̄q, and the matrix element qαβ = 0
implies L = 〈w|(r − rc) × p|w〉 = 0).

In Dirac theory, spin is represented as a 4 × 4 matrix,

Σ = 1
2

(
σ 0
0 σ

)
. We can obtain the average spin by

calculating the expectation value of the spin operator,

Σ̄ = 〈w|Σ|w〉 =
∑

αβ

η∗
α(q)Σαβηβ(q)

=
1

2ε(qc)

[
σ̄ + λ2

c

qc · σ̄
ε(qc) + 1

qc

]
, (10)

where Σαβ = 〈uα|Σ|uβ〉. It is remarkable that the aver-
age spin calculated from the abstract spin operator has
the same structure (inside the square bracket of Eq.(9))
as the orbital magnetic moment obtained semiclassically.
We can therefore relate these two quantities by

M = −g
eh̄

2mε(qc)
Σ̄, (11)

where the g-factor is 2. Note that the ε in the denom-
inator can be absorbed in the relativistic mass to form
the relativistic Bohr magneton µB = eh̄/2mε(qc). With
qc = 0, M = −gµBΣ̄.

The spin therefore can be thought of as coming from
the charge circulation of the electron wavepacket. In fact,
the spin is related to the mechanical angular momentum
(the mass circulation current), Lmech = m〈w|(r − rc) ×
v|w〉 = 2h̄Σ̄. The g-factor of 2 is then explained by the
fact that the mechanical angular momentum calculated
from the mass circulating current, which is proportional
to the charge circulating current, is twice of the spin ex-
pectation value. In a semiconductor, the g-factor can
deviate from 2 dramatically.[10] The origin of the anoma-
lous g-factor can be explained as the same way coming
from the self rotation of electron wavepacket.[11]

In the past, there has been a number of attempts to
find an intuitive understanding of the spin magnetic mo-
ment within the framework of the Dirac theory. Huang
[12] suggested that it can be thought of as the cur-
rent produced by the zitterbewegung [13]. Ohanian [14]
showed that the electron spin magnetic moment origi-
nates from a circulating flow of energy of the wave field
based on an earlier idea of Belinfante [15]. These ideas
are similar in spirits with Uhlenbeck and Goudsmit’s pic-
ture of the spin. Here, we see that the rotating charge
model can indeed be re-established explicitly and firmly
within the wavepacket formulation.

(Dirac electrons “live" in the solid-state systems such as a graphene
sheet.)
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Particles from gravity site

“It is commonly recognized now that black holes are akin to elementary
particles" [A. Burinskii, 1212.2920] Matching of
metrics:

gµν = ηµν + 2Hkµkν ,

H =
mr − e2/2

r2 + a2 cos2 θ

oblate spheroidal coordinates (Fig.2). The KN metric is singular at the circle
r = cos θ = 0, which is branch line of the Kerr space into two sheets r+ for
r > 0 and r− for r < 0, so that the field kµ(x) and the aligned with kµ metric
and vector potential of the electromagnetic (em) field,

αµ
KN = Re

e

r + ia cos θ
kµ, (2)

turn out to be twosheeted, taking different values on the different sheets of
the same point x ∈ M4. Twosheetedness represents one of the main puzzles
of the KN space-time. For electron parameters, gravitational field of the
KN solution is concentrated very close to singular ring, forming a circular
waveguide – analog of the closed relativistic string. It has been shown in
[2, 3] that the KN solution in vicinity of the Kerr ring corresponds to the ob-
tained by Sen solution to low-energy heterotic string theory. Meanwhile, the
long-term attack on the mysterious twosheetedness (Keres, Israel, Hamity,
López at all, [3]) resulted in the gravitating soliton model in the form of
the consistent with KN solution rotating vacuum bubble, metric of which is
regularized, approaching the flat minkowskian background in the Compton
region. It fixes unambiguously the form and some details of the consistent
with KN gravity electron model. Following [1] we discuss basic features of
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Figure 1: Congruence of the lightlike
lines kµ(x) is focused on singular ring,
creating twosheeted Kerr space.
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Figure 2: Oblate co-
ordinate system (r, θ)
covers the Kerr space
twice, for r > 0 and
r < 0. Truncation of
the sheet r < 0 creates
the source at r = 0.

the regular KN electron model as a gravitating soliton. The most wonderful
fact is emergence of the quantum condition for spin of the KN soliton, as
a consequence of the pure classical relations completed by the condition on
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FIG. 1: Matching of the metric for regular bubble interior with metric of external KN field.

matter equation’ (14). This analysis is extended to the rotating case, in which r has to be considered as the Kerr
oblate ellipsoidal coordinate, and the boundary of bubble takes the form of an oblate rotating disk, [12, 13, 36].

We restrict further the treatment by the case of a flat interior corresponding to α = ρ = f(r) = 0, r < r0.
Stringy effect. In the rotating case the Arnowitt-Deser-Misner (ADM) mass of the KN source is determined by T 0

0

component of the stress-energy tensor in the asymptotically flat coordinate system. Contributions to the ADM mass
coming from the interior of the bubble, the intermediate region, and the external electromagnetic field were calculated

in [13]. For the flat interior, α = 0, and an infinitely thin transitional shell we have: m
(int)
ADM = 0; and

m
(shell)
ADM =

m

2
[1 − (

r0

a
+

a

r0
) arctan(

a

r0
)]; (15)

m
(ext)
ADM =

m

2
[1 + (

r0

a
+

a

r0
) arctan(

a

r0
)]. (16)

For a >> r0, the second term in the square brackets of (16) tends to the expression δstring ≈ aπ
2r0

which may be
interpreted as a stringy contribution to the mass-energy caused by concentration of the electromagnetic field on the
edge of bubble. [47] Stringy structure of the region near the Kerr ring was discussed many times, [23, 24, 37, 38].
Assuming that the closed Kerr string has a tension T with the rising potential E ≡ m = Ta, one can combine it with
the basic KN relation J = ma, and obtain the linear Regge trajectory J = 1

T m2 with the slope 1/T. However, one sees
from (15) and (16) that the ‘stringy’ contributions from the shell and external em field are mutually cancelled, and

the total mass m
(total)
ADM = m

(int)
ADM +m

(shell)
ADM +m

(ext)
ADM turns out to be equal to m. Indeed, this result could be predicted

a priori, since the total ADM mass is determined only by the asymptotical gravitational field, i.e. by the parameter
m in function H, (1). The treatment of the Tolman mass expression, or the transitional zone of a finite thickness
does not change the result. The partial stringy contributions to the mass are very intense (δm/m > 100), but mutual
cancelling of the negative and positive contributions prevents exhibition of the stringy effect in the considered isolated
system. However, the balance of matter may apparently be destroyed by an external field, and a considerable effect
may be expected in the bound systems or in consequence of the radiative corrections.

5. Regularization of the KN electromagnetic field.

We assume that for r < r0 the phase transition is completed and inside the bubble the field Φ(x) has the form
Φ(x) = |Φ(x)|eiχ(x) with a nonzero vev, |Φ(x)|r<r0 = Φ0. We have to obtain a regular solution of equation (7) for
r < r0 in the presumption of the flat interior, α = 0, which fixes the boundary of bubble at r0 = re = e2/2m. The
flat interior allows us to use the flat d’Alemberian and Dµ = ∂µ + ieAµ in (7) and yields

!Aµ = Iµ = e|Φ|2(χ,µ +eAµ). (17)

The current has to be expelled from the bulk of the superconducting interior to the boundary of the bubble and we
should set in the interior Iµ = 0, which yields

!A(in)
µ = 0 = e|Φ|2(χ,µ +eA(in)

µ ). (18)

The external KN field Aµ is given by (9) and (10). Its matching with the interior turns out to be nontrivial, since
the Kerr angular coordinate φK (2) is very specific, and inside the bubble it turns out to be inconsistent with the

Electron may be explained by a regular solution (charged, spinning and
gravitating) of Kerr-Newman geometry (in the thin-wall approximation).

In non-abelian case this solution predicts a disk-like core of e− formed by
the Higgs field, which is spinning and oscillating, and is bounded by a
closed circular current of the Compton radius. [A. Burinskii, 1003.2928]

KN solution has gyromagnetic ratio g = 2 as of the Dirac electron, and
the gravitational field as expected for e− from asymptotics.
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Example: Composite singlet neutrinos N
No gauge-mediated terms. The final states without the missing energy,
`+`−qq̄ (for Dirac N) and `±`±qq̄ (for Majorana N), can be produced at
the LHC by the B- and L-number-conserving contact interactions

L(0)
N =

4π
Λ2

∑

i,j,`

[
η′′ijRR(ūiRγ

µd j
R)(¯̀RγµN) + η′′ijLR(¯̀Lγ

µd j
L)(ūiRγµN)

]
+ H.c.

for either Dirac or Majorana N with zero weak hypercharge (Y = 0), and

L(−2)
N =

4π
Λ2

∑

i,j,`

η′′ijLR(ūiLγ
µd j

L)(¯̀RγµN) + H.c.

for Dirac N with Y = −2, where i is the quark generation index.

q
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ℓ

Expected mass bound: MN > few TeV.
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