A high performance tracker in the forward angle experiments

Nilanga Liyanage University of Virginia

<u>Outline</u>

High rate tracking needs for forward angle experiments.
Tracking at very high rates: Pixel Sensors - HV - MAPS
MPGD technology for high rate tracking.
GEM detectors for forward angle experiments.
Future possibilities.

Tracking needs for forward angle experiments

- High rates kHz to MHz per cm²
- Good spatial Resolution: ~0.1 mm
- Old wire-chamber technology can't deliver.
- Two possible solutions
 - Pixel detectors like HV-MAPS promise:
 - ultra high rates,
 - very good resolution
 - affordability.
 - Very thin
 - Micro-Pattern Gas Detectors (MPGD) provide:
 - Mature technology
 - high rates
 - Good resolution
 - Highly affordable

High Voltage Monolithic Active Pixel Sensors (HV-MAPS)

Ivan Perić (I.Perić, P. Fischer et al., NIM A 582 (2007) 876)

- Use a high voltage commercial process (automotive industry)
- Small active region, fast charge collection via drift
- Readout electronics directly built on pixel

- MuPix chip developed for Mu3e exp. at PSI
- Large area detector planed for P2 @ MESA

The MuPix system-on-chip for the Mu3e experiment: http://dx.doi.org/ 10.1016/j.nima.2016.06.095

- Resolutions < 38 μm: limited by pixel size
- 50 μm thin full system chip with sensor and full readout
- 0.1% radiation length
- Ultra fast: 100s of MHz/cm²
- Still in development stage

Micro-Pattern Gas Detectors (MPGD)

Solution to MWPC rate limitation: Fast evacuation of the ions ⇒ Combine Micro structure technology with gas amplification \Rightarrow Birth of the MPGDs

Micro Gap Chambers

Figure 25 Two variants of unail-gap chambers, using thick polyimide edges to prevent the onset of discharges.

Angelini F, et al. Nucl. Instrum. Methods A335:69 (1993)

Micro Gap Wire Chamber

Figure 2.27 Scheme of a MGWC with equipotential and field lines. The circle filled with lines is the sections of an anode wire [CHRISTOPHEL1997].

E. Christophel et al, Nucl. Instr. and Meth, vol 398 (1997) 195

Micro Wire Chamber

B. Adeva et al., Nucl. Instr. And Meth. A435 (1999) 402

μPIC

Ochi et al NIMA 471 (2001) 264 MicroPin

MicroGroove

MicroWELL

Micro-Pattern Gas Detectors (MPGD)

Two MPGD Technologies stood out

GEM foil: Electron amplification device

- Thin, metal-clad polymer foil chemically perforated by a high density of holes, typically 100/mm²
- Voltage of ~ 350 V across the Cu electrode creates a strong field in the hole leading to amplification
- · The ionization pattern is preserved by design with the electric field focusing the charges inside the holes

UNIQUE FEATURE

Charge amplification is decoupled from the charge collection \Rightarrow Multi-stage amplification

Why GEMs?

- Gas Electron Multiplier (GEM) detectors provide a cost effective solution for high resolution tracking under high rates over large areas.
- Rate capabilities higher than many 100s of MHz/cm²
- High position resolution (< 70 $\mu\text{m})$
- Ability to cover very large areas (10s 100s of m²) at modest cost.
- Low thickness (~ 0.5% radiation length)
- Already Used for many experiments around the world: COMPASS, Bonus, KLOE, TOTEM, Prototypes for CMS upgrade, SBS etc.
- Now come in many sizes and shapes:
- To go to the highest possible rates need a pixel readout.
- With large areas and high resolution needs lead to impossible channel counts

• Strip readouts give good resolution with affordable readout, but lead to very high occupancy and multi-hit ambiguity.

• Need to come up with creative solutions.

Recent developments: now very large areas possible

123 cm x 55 cm active area GEM detectors for pRad experiment during construction at UVa

- Non-magnetic and calorimetric method with GEM detectors, aiming at an unprecedented low Q² region, $Q^2 = 2 \times 10^{-4} 1 \times 10^{-1} (GeV/c)^2$ with sub-percent precision
- Simultaneous measurement of e-p elastic scat. and Møller processes
- Beam currents up to 100 nA.
- But very thin gas flow target.
- Rate in GEM detectors ~ 100 Hz/cm²

Moller Geometry

SoLID-EIC GEM prototype

Large Size GEMs in MT6-2B @ FTBF (Fermilab)

Solid GEM Prototype test results

EIC-FT-GEM (SoLID) Prototype I

- Trapezoid shape 1-m long triple-GEM (3-2-2-2): widths at the inner radius and outer radius equal to 23 cm and 44 cm respectively.
- Readout board: flexible 2D U-V strip readouts (COMPASS style) with a pitch of 550 µm, top layer (140 µm, wide U-strips) run parallel to one radial side of the detector and bottom layer (490 µm, V-strips) run parallel to the other side.
- Test beam results published in <u>NIM A 808 (2016) 83-92</u>

Cluster size vs. HV

U-V strip Readout of EIC-SoLID GEM Proto I

variable length of the U strips of top layer

For the future Low-Mass GEM R&D: Chromium GEM foil (Cr-GEM)

Standard GEM

Triple-GEM with standard GEM foil

Triple-GEM with Cr-GEM foil

	Quantity	Thickness	Density	XО	A/ea	XD	S-Density		Quantity	Thickness	Density	X0	Area	XO	S-Density
		//172	g/cm3	mm	Fraction	96	g/cm2			,000	g/cm3	mm	Fraction	96	g/cm2
Window								Window							
Kapton	2	25	1.42	285	1	0.0175	0.0071	Kapton	2	25	1.42	286	1	0.0175	0.0071
Drit								Drit							
Copper	1	. 5	8.96	14.3	1	0.0350	0.0045	Copper	1	0	8.96	14.3	1	0.0000	0.0000
Kapton	1	50	1.42	285	1	0.0175	0.0071	Kapton	1	50	1.42	286	1	0.0175	0.0071
GEM Foil								GEM Foil							
Copper	6	5	8.96	14.3	0.8	0.1678	0.0215	Copper	6	0	8.96	14.3	0.8	0.0000	0.0000
Kapton	3	50	1.42	286	0.8	0.0420	0.0170	Kapton	3	50	1.42	286	0.8	0.0420	0.0170
Grid Space	r							Grid Space	r						
G10	3	2000	1.7	194	0.008	0.0247	0.0082	G10	3	2000	1.7	194	0.008	0.0247	0.0082
Readout								Readout							
Copper-80	1	. 5	8.96	14.3	0.2	0.0070	0.0009	Copper-80	1	0	8.96	14.3	0.2	0.0000	0.0000
Copper-350	1	. 5	8.96	14.3	0.75	0.0262	0.0034	Copper-350	1	0	8.96	14.3	0.75	0.0000	0.0000
Kapton	1	50	1.42	286	0.2	0.0035	0.0014	Kapton	1	50	1.42	286	0.2	0.0035	0.0014
Kapton	1	50	1.42	296	1	0.0175	0.0071	Kapton	1	50	1.42	286	1	0.0175	0.0071
NoFlu glue	1	60	1.5	200	1	0.0300	0.0090	NoFlu glue	1	60	1.5	200	1	0.0300	0.0090
Gas								Gas							
(CO2)	1	15000	1.84E-03	18310	1	0.0819	0.0028	(CO2)	1	15000	1.84E-03	18310	1	0.0819	0.0028
1				Total 0.473			0.090	1				Total		0.235	0.060

About 50% reduction in the amount of material in a EIC-FT-GEM with Cr-GEM

Response uniformity

ADC Spectrum with Fe55

Cr-GEM foil:

- Copper (Cu) clad raw material comes with 100 nm Chromium (Cr) layer between Cu and Kapton, 5μm Cu layers removed, leave only 100 nm residual Cr layers as electrodes, Cr-GEM foils provided CERN PCB workshop
- Using Cr-GEM foil lead to almost 50% reduction of the material of an SoLID-like light weight triple-GEM detector: this is because the material in a lightweight triple-GEM is dominated by the GEM foils & readout board

For the future The newcomers: InGrid + Timepix

Combining: Gaseous amplification (Micromegas) & Silicon readout (Timepix)

Micromegas grid

RD51 Week CERN,06/19/2014

Timepix

Facts about the Timepix ASIC

- 256×256 pixels, $55 \times 55 \, \mu m^2$ pitch
- $1.4 \times 1.4 \text{ cm}^2$ active area
- Charge sensitive amplifier and discriminator in each pixel, 90 e ENC
- Two modes: Charge or Time

Integrated Micromegas - InGrid

Chefdeville et al - Nucl. Inst. Meth. A 556(2006), p 490

Micromegas on top of Timepix ASIC

- Fabrication by means of photolithographic postprocessing
- Very good alignment of grid and pixels
- Each avalanche is collected on one pixel
- Detection of single electrons possible

Timepix + InGrid

Carrier board

Production of InGrids

- Single and few chip processing: NIKHEF / Mesa+ (Twente)
- Wafer processing (~ 100 chips at once): in cooperation with IZM Berlin

Energy Resolution

- Resolutions down to $\sigma_E/E \approx 3.85\%$ at 5.9 keV were observed in Ar/iC₄H₁₀ 90/10 at optimized settings (Energy determined from pixel counting)
- In Ar/iC_4H_{10} 97.7/2.3 resolutions down to $\sigma_E/E\approx$ 5.33 % at 5.9 keV are possible

- Currently installing a 120 k chan. APV 25 system (based on an INFN designed system) for SBS.
- Plan to read at ~ 5 kHz with Jlab CODA
- Large amounts of data: need to address bandwidth and data writing limitations.
- Online zero suppression/background suppression at FPGA level.

Conclusion

- The large area GEM detector + high granularity calorimeter provided a powerful combination for forward tracking in pRad.
- Experiments requiring tracks will need 2-3 layers of GEMs.
- Calorimeter + 2-3 layers of GEMs + pixel detector in front will allow forward experiments at very high rates.

Backup

GEM foils and frames

- The foil is divided into 32 HV sectors of roughly 100 cm2 with
- The V applied on the 16 sectors from the top and 16 from the bottom
- Frames with 300 μm spacers, 8 mm width on the side and 60 mm width on top and bottom
- Extra frame material with alignment holes for the assembly, production by RESARM (Belgium)

Preliminary results: EIC-SoLID readout strip capacitance noise

ADC counts

- Pedestal noise distribution over all 1536 strips (768 narrow top strips and 768 wider bottom strips)
- Strips of different lengths (U/V strips on trapezoidal readout)
- Average pedestal RMS noise 16 ADC counts, maximum 30

Figure 6: rms of the pedestal (noise level) vs. strip position on the outer radius side of the chamber

Prototype test beam results

Data with beam scan covering the active area of the GEM module. (average particle rate $\sim 10 \text{ kHz/cm}^2$)

Frequency