Background to the search for dark photon

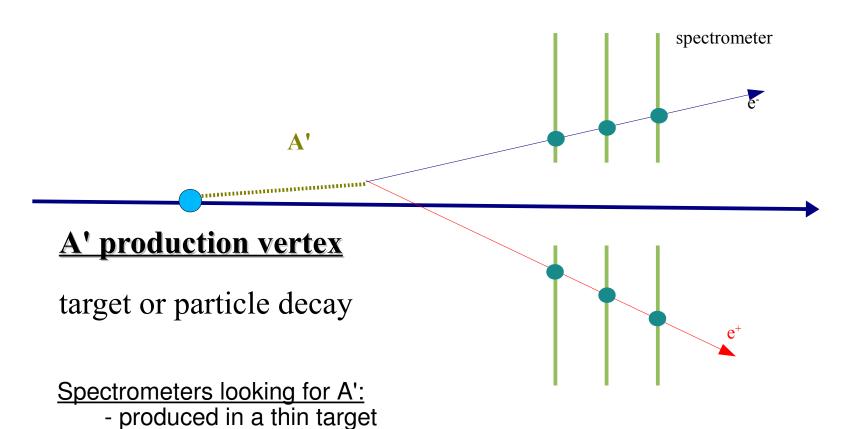
Venelin Kozhuharov

LNF-INFN and SU "St. Kl. Ohridski*"

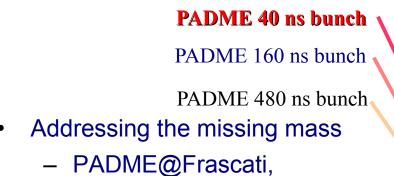
24 October 2016

Advances in Dark Matter and Particle Physics

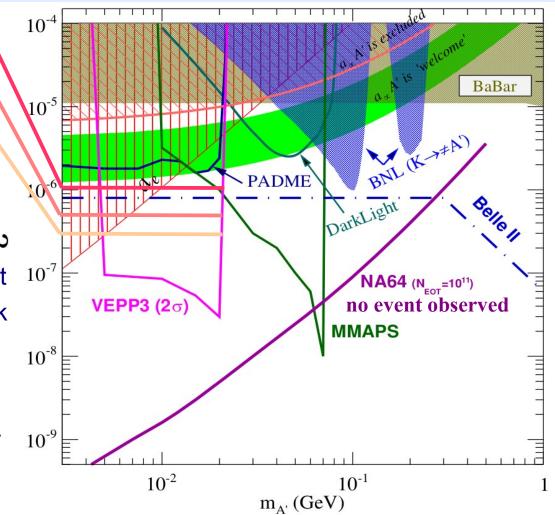
Messina, Sicily, Italy



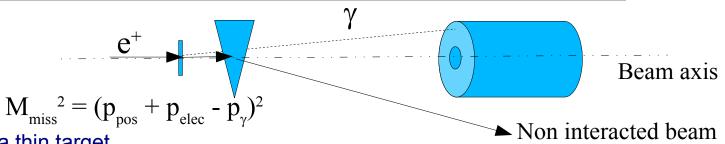
Overview


- Overview of annihilation experiments
- Dark photon production
- Multiphoton annihilation
- Bremsstrahlung
- Radiative
- Conclusions/open questions

Visible dark photons

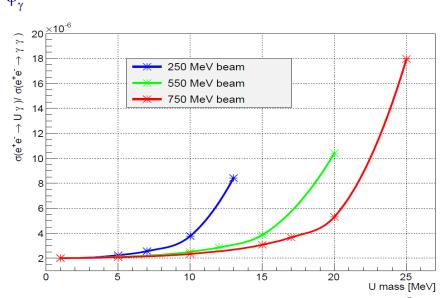

- decaying to leptons

<u>Invisible dark photons</u>



- VEPP3@Novisibirsk, MMAPS@Cornell
- Positron beam on a thin target
- Annihilation production of dark photons
- Missing energy
 - NA64: leakage of energy to the dark sector in high energy shower development
- Dark matter scattering
 - BDX

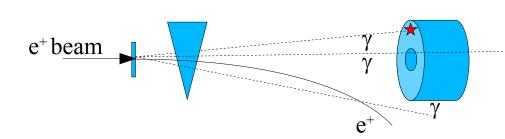
Missing mass technique


Study only the recoil photon

- Positron beam on a thin target
- Positron momentum is determined by the accelerator characteristics
- Missing mass resolution: annihilation point, Ε_γ, φ_γ

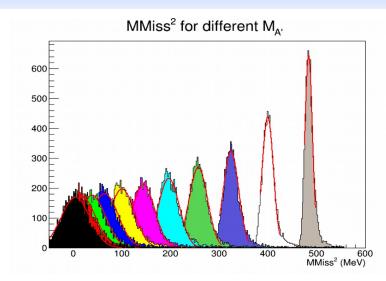
$$\frac{\sigma(e^+e^- \to U\gamma)}{\sigma(e^+e^- \to \gamma\gamma)} = \frac{N(U\gamma)}{N(\gamma\gamma)} * \frac{Acc(\gamma\gamma)}{Acc(U\gamma)} = \epsilon^2 * \delta,$$

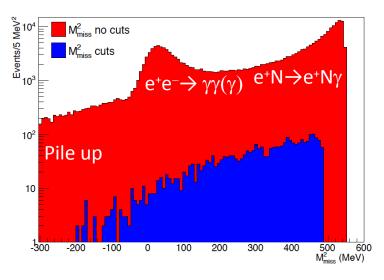
Cross section enhancement with the approach of the production threshold



Backgrounds

- Bremsstrahlung in the field of the target nuclei
 - Photons mostly @ low energy, background dominates the high missing masses
- e⁺ beam
- An additional lower energy positron that could be detected due to stronger deflection
- 2 photon annihilation
 - Peaks at $M_{miss} = 0$
 - Quasi symmetric in gamma angles for E_{γ} > 50 MeV




- Symmetry is lost decrease in the vetoing capabilities
- Does not peak
- Radiative bhabha scattering
 - Topology close to bremsstrahlung
 - Could have higher energy loss by the incident positron

e⁺ beam

Measurement strategy

Background suppression

	• •	
Background process	Cross section e ⁺ @550 MeV beam	Comment
$e^+e^- \rightarrow \gamma\gamma$	1.55 mb	
$e^+ + N \rightarrow e^+ N \gamma$	4000 mb	$E\gamma > 1MeV, C$
e⁺e⁻ →γγγ	0.16 mb	CalcHEP, Eγ > 1MeV
$e^+e^- \rightarrow e^+e^-\gamma$	180 mb	CalcHEP, Eγ > 1MeV

- Not a background free experiment!
- 3g and bremsstrahlung dominate and are of comparable size
- O(10⁴ 10⁵) foreseen background events for a given A' mass

Missing mass searches status

	PADME	MMAPS	VEPP3
Place	LNF	Cornell	Novosibirsk
Beam energy	550 MeV	Up to 5.3 (6.0) GeV	500 MeV
M _A . limit	23 MeV	74 MeV	22 MeV
Target thickness	2x10 ²² e ⁻ /cm ²	O(2x10 ²³) e ⁻ /cm ²	5x10 ¹⁵ e ⁻ /cm ²
Beam intensity	8 x 10 ⁻¹¹ mA	2.3 x 10 ⁻⁶ mA	30 mA
$e^+e^- \rightarrow \gamma\gamma$ rate [s ⁻¹]	15	2.2 x 10 ⁶	1.5 x 10 ⁶
ϵ^2 limit (plateau)	10 ⁻⁶ (10 ⁻⁷ SES)	10 ⁻⁶ - 10 ⁻⁷	10 -7
Time scale	2017 - 2018	?	2020 (ByPass)
Status	Approved	Funds identification	Approved

Processes and tools

- Types of background
 - Multiphoton annihilation $e^+e^- \rightarrow \gamma \gamma, e^+e^- \rightarrow \gamma \gamma, e^+e^- \rightarrow \gamma \gamma, \dots$
 - Bremsstrahlung in the field of the nuclei
 - Photon emission in the field of orbital electrons
- GEANT4
 - Bremsstrahlung, 2 photon annihilation
- CalcHEP
 - Cross-section calculation, 3 photon annihilation
- Different specialized MC generators
 - Babayaga
 - MCJPG

<u>Bremsstrahlung</u>

- Usually thoroughly simulated through GEANT4
- Different models exist
 - Parametric up to version 9.4

$$\sigma(Z, T, k_c) = Z(Z + \xi_{\sigma})(1 - c_{sigh}Z^{1/4}) \left[\ln \frac{T}{k_c} \right]^{\alpha} \frac{f_s}{N_{Avo}}$$

Seltzer-Berger model (default)

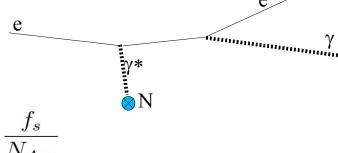
$$\frac{d\sigma}{dk} = \frac{d\sigma_n}{dk} + Z\frac{d\sigma_e}{dk}$$

- Parametrization of tabulated data
- Takes into account e-N and e-e interactions
- Analytic in the relativistic limit
 - Used for E > 1 GeV

$$\frac{d\sigma}{dk} = \frac{4\alpha r_e^2}{3k} \left[\{y^2 + 2[1 + (1-y)^2]\} [Z^2(F_{el} - f) + ZF_{inel}] + (1-y) \frac{Z^2 + Z}{3} \right]$$

0.8 5 0.7

0.6


0.5

0.4

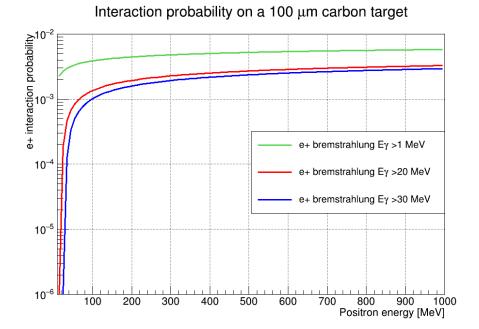
0.3

0.2

0.1

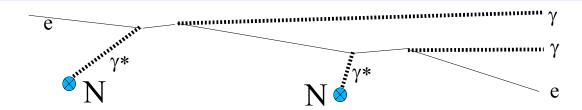
Parametrized Model

Bremsstrahlung Model


 $\log_{10}(E/MeV)$

Relativistic Model

SB Model


The PADME and VEPP3 case

- Positron energy 500 550 MeV
- The parametrized model seem to be well consistent with the SB model
 - Can be used for quick checks
- Using as a reference PADME
 - 100 um carbon target
- At E_γ << E_{e+} the cross section depends mostly on E_γ
- Bremsstrahlung probability @550 MeV
 - $E_{\gamma} > 1 \text{ MeV}: 0.55 \%$
 - E γ > 20 MeV: 0.28 %
 - E_{γ} > 30 MeV: 0.25 %

- Almost every bunch has numerous bremsstrahlung emitted photons
 - Most at small angles with respect to the positron flight direction

Double bremsstrahlung

- Non negligible probability for the two consequent bremsstrahlung by the same electron
 - P(2γ) with Eγ > 20 MeV @ 100 um carbon: ~10⁻⁵
 - Comparable with annihilation probability
- Possible background source
 - An event is rejected as signal only if $E_{\gamma} + E_{e+}$ is around the beam energy
 - Maximizes the acceptance for dark photon detection in the presence of pile-up bremsstrahlung

BUT

- Decreases the vetoing capabilities
- Should be able to perform at least two steps in the target volume

Uncertainties

- The PADME sensitivity estimation relies on the knowledge of the background
 - Statistical uncertainty of the simulated background taken as a reference to determine the 90% (or 68 %) confidence level exclusion limits

$$\sigma_{tot}(N) \sim (\sqrt{N})_{stat} \oplus (\delta_{model} * N)$$

- We use $\sigma_{tot}(N) / N(\gamma \gamma) / Acc(A')$ to describe the sensitivity
- GEANT4 model uncertainties
 - Parametric: 4-5 % for $E_{e+} > 1$ MeV
 - SB model: 3-5% for E_{e+} > 50 MeV
- @ 10^{13} events the number of background events due to bremsstrahlung per given A' mass interval varies from $10^4 10^5$ ($\sqrt{N}/N \le 1\%$)

Already at that level the model uncertainty matters!

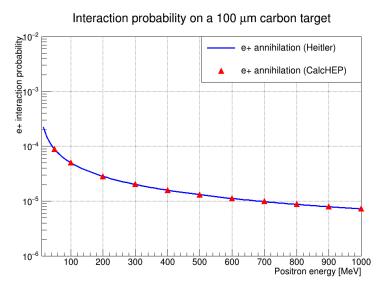
and even dominates...

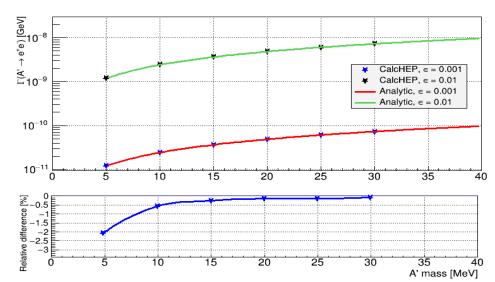
Is it sufficient to extend the validity of the relativistic limit down to 300 MeV?

Bremsstrahlung: open questions

- Can we use reliably the G4 bremsstrahlung simulation (and how)?
- Step modification to include possibility for double bremsstrahlung in the target? Or shall we introduce a custom double bremsstrahlung generator?
- How to decrease the bremsstrahlung uncertainty and tune the MC in the region $100 \text{ MeV} < E_{_{\rm ex}} < 1 \text{ GeV}$
 - Additional experimental measurements?
 - Might be possible also at LNF/BTF or elsewhere...
- Shall we employ data driven methods instead of MC ones for reliable bremsstrahlung background estimation?
 - Or a combination of both...

Annihilation

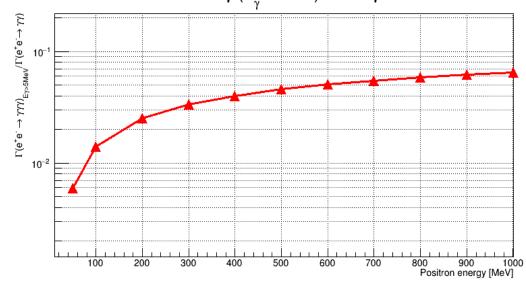

- E_{e+} = 550 MeV, annihilation in flight
- Analytic expression for the cross section Heitler formula


$$\sigma(Z, E) = \frac{Z\pi r_e^2}{\gamma + 1} \left[\frac{\gamma^2 + 4\gamma + 1}{\gamma^2 - 1} \ln\left(\gamma + \sqrt{\gamma^2 - 1}\right) - \frac{\gamma + 3}{\sqrt{\gamma^2 - 1}} \right]$$

- The simulation is straight forward
 - GEANT4 includes the positron annihilation process
 - Sample the lab frame photon energy using dσ/dEγ
 - Isotropic asimutal angle
 - Can be done with a custom event generator
 - 2-body → 2 body in the CM system, isotropic γ direction
 - Boost to the LAB-frame
- Well understood, background under control due to the strict kinematics

Annihilation: 3 photon

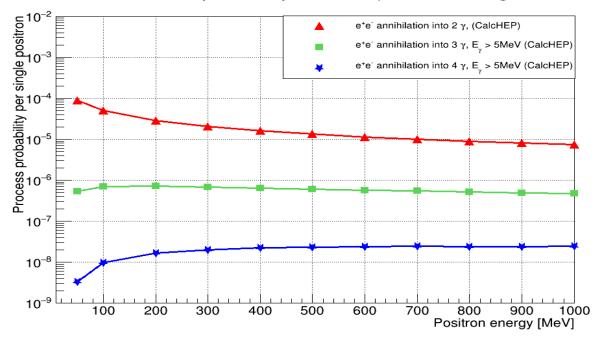
- The process is not included by default in the simulation of positron interactions
- Can be assumed as a radiative correction to the 2γ annihilation
- Different approaches to the treatment from naive to "proper"
- CalcHEP "a package for calculation of Feynman diagrams and integration over multi-particle phase space"
 - Development/support still active last version 28.06.2016
 - Easy to use and modify models, parameters, particle content, etc...



Annihilation: 3 photon

- Thought to be negligible, but in-flight annihilation different from annihilation at rest
- Soft addition photon might be interpreted as initial state radiation (ISR)
- Cross section divergent with Eγ → 0, a cut at Eγ > 5 MeV
 - 1% of the nominal BTF beam energy for PADME
 - Seem consistent with the miniminal detectable energy in the calorimeter
 - Seeding cell + shower

Ratio between 3 γ (E $_{_{\gamma}}$ >5MeV) and 2 γ annihilation



- 3γ events as much as ~4.5%
 @550 MeV positron energy
- Should be custom generated and treated separately for background estimation
 - The third photon spoils the symmetry and veto capability of the calorimeter

Annihilation: multi-photon

We could even go further – e⁺e⁻ → Nγ

Interaction probability on a 100 µm carbon target

 The low energy part of e⁺e⁻ → N_γ is absorbed in the virtual corrections of e⁺e⁻ → (N-1) γ

$$\Gamma(\text{annihilation}) = \Gamma(e^+e^- \to \gamma\gamma) + \Gamma(e^+e^- \to \gamma\gamma\gamma) + \Gamma(e^+e^- \to \gamma\gamma\gamma\gamma) + ... \approx 1.05 \text{ x } \Gamma(e^+e^- \to \gamma\gamma)$$

The N+1 photon annihilation can introduce a sizable correction to the N photon rate **Knowledge at better than % level necessary**

<u>Bhabha scattering</u>

- Exists in G4
- Radiative correction to the Bhabha: e⁺e⁻ → e⁺e⁻γ
 - In principle such a process is already considered in GEANT4 SB bremsstrahlung model the inelastic cross section dσ_a/dk term
 - Is this the whole story?
 - Simulation can be performed through external libraries
 - MCJPG
 - − Has to be upgraded since many formulas inside use m_e =0 approximation (recall E_{cm} (PADME/VEPP3) ~ 23 MeV)
 - Babayaga
 - No extra work necessary, ready to go
 - Should avoid double counting with GEANT4?
 - Take into account the screening from the atomic nuclei
- The specific treatment of this type of background has been neglected so far
 - Necessary to be tested and verified in consistent way

Conclusions

- Background evaluation is a key ingredient to understand the sensitivity of the dark photon searching experiments
- Different techniques
 - MC based
 - Data driven electron beam
 - Data driven fit sidebands
 - A combination of all three
- Just EM processes included but still not all machinary and tools experienced at that low center of mass energy
- How to assure the knowledge of the background contribution at < 1% level?