The End Point Tagger physics program at A2@MAMI $-\eta'$ and others –

$\underset{{}^{steffeo@uni-mainz.de}}{Oliver Steffeo@uni-mainz.de} for the A2-Collaboration at MAMI$

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

27th October 2016

International Symposium on Advances in Dark Matter and Particle Physics Messina, Italy

wwwa2.kph.uni-mainz.de

Outline

Introduction

Introduction

- Experiments with real photons
 - Baryon Resonances
 - Meson photoproduction
 - Study light mesons
- Study the η^\prime
 - Transition Formfactors
 - Rare decays
 - Hadronic decays
- η' Production
 - Specialized tagging device
 - Upgraded DAQ speed
 - 10 weeks beam time (2014):
 over 6M η' produced

The Mainz Microtron MAMI

- $\bullet \ e^- \ accelerator$
- up to 1604 MeV
- 100 % duty factor

• Excellent beam properties

Eur. Phys. J. Spec. Top. (2011) 198: 19

Energy Tagged Photons

Detector System: Crystal Ball & TAPS

Crystal Ball:

• 672 Nal(TI) Crystals

•
$$\frac{\sigma}{E_{\gamma}} = \frac{2\%}{\sqrt[4]{E_{\gamma}/GeV}}$$

•
$$\sigma_{\theta} = 2^{\circ}$$
 to 3°

•
$$\sigma_{\phi} = \frac{\sigma_{\theta}}{\sin \theta}$$

TAPS:

C

- 366 BaF₂
- 72 PbWO₄ at low angles

$$\frac{\sigma}{E_{\gamma}}=rac{0.8\,\%}{\sqrt{E_{\gamma}/GeV}}+1.8\,\%$$

Particle ID:

- Plastic Scintillators
- (MWPCs)

Together:

- > 96 % 4π
- Perfect for photons in the final state

Ongoing Analyses

Large dataset obtained!

First analyses started:

- $3\pi^0$ photoproduction cross section
- $\eta' \to \eta \pi^0 \pi^0$: Dalitz Plot and Cusp Effect
- Pseudo-scalar-Vector- γ interactions:

•
$$\eta' \to \omega \gamma$$

• $\omega \to \eta \gamma$

- Electromagnetic Transition Formfactor $\eta' \rightarrow {\rm e^+e^-}\gamma$

Previous Analysis:

$3 \pi^0$ photoproduction cross section

 $\gamma p
ightarrow 3\pi^0 p$

۵

arXiv:1101.3744 [nucl-ex]

Martin Wolfes, PhD Thesis, in preparation

1400

$\eta' \to \eta \pi^0 \pi^0$: Cusp Effect

- First seen in ${\rm K}^+ \to \pi^0 \pi^0 \pi^+$ by NA48/2 Phys. Lett. B 633 (2006) 2-3
- Predicted in $\eta/{\rm K_L^0} \rightarrow 3\pi^0$, few % effect

- $\pi^+\pi^- \to \pi^0\pi^0$ rescattering
- Allows extraction of the S-wave $\pi^0 \pi^0$ scattering length
- Prediction for $\eta' \rightarrow \eta \pi^0 \pi^0$: 8% below $\pi^+ \pi^-$ threshold

Kubis, Schneider, S.P. Eur. Phys. J. C (2009) 62: 511 Cabbibo, Isidori, JHEP03(2005) Gullström, Kupść, Rusetsky, Phys. Rev. C 79, 028201

$\eta' \to \eta \pi^0 \pi^0$: Dalitz Plot

Dalitz Plot Parameters: $|A|^{2} = |N|^{2} \left[1 + aY + bY^{2} + cX + dX^{2}\right]$

- Test χ PT extensions:
- Test of large N_C models

 $\eta' \rightarrow \eta \pi^0 \pi^0$ Branching Ratios TFFs

• Test Resonance models

 $\begin{array}{c} {\rm Events} \\ \eta' \to \eta \pi^+ \pi^- \mbox{ (BESIII)} & 4.3 \times 10^4 \\ {\rm Phys. \ Rev. \ D83 \ (2011) \ 012003} \end{array}$

 $\begin{array}{ll} \eta' \rightarrow \eta \pi^0 \pi^0 (\mathsf{GAMS4}\pi) & 1.5 \times 10^4 \\ \text{Phys. Atomic Nucl., 2009, Vol. 72, 231} \end{array}$

 $\eta^\prime
ightarrow \eta \pi^0 \pi^0$ (A2) $1.3 imes 10^5$ preliminary

Kaiser, Leutwyler, Eur. Phys. J. C (2000) 17: 623 Ecker, Gasser, et al., Phys. Lett. B 223 (1989) 425 Escribano, Masjuan, Sanz-Cillero, JHEP(2011) 2011: 94.

$\eta' ightarrow \eta \pi^0 \pi^0$: Status

Patrik Adlarson, Sergey Prakhov, paper in preparation

Pseudo-scalar-Vector- γ interactions

- PVγ type interaction interesting input for effective field theories implementing vector particles
- Goal: Consistent picture of pseudo-scalar, and vector mesons
- Measure Branching Ratios

• BR
$$(\eta' \to \omega \gamma)$$

• BR(
$$\omega
ightarrow \eta \gamma$$
)

 $\pi' \eta' \rightarrow \eta \pi' \pi'$ Branching Ratios TFFs

 $\mathsf{BR}(\eta' \to \omega \gamma)$

- Relative measurement
- Estimated signal events: $pprox 10^4$
- BESIII Result: $(2.55\pm0.03_{stat}\pm0.16_{syst})\,\%$ Phys. Rev. D 92, 051101(R)

A. Neiser, PhD Thesis, in preparation

 $\mathsf{BR}(\omega \to \eta \gamma)$

- $29 \times 10^{6} \omega$ produced • Relative measurement Signal $\omega \rightarrow \eta \gamma$ (4.6 ± 0.4) × 10⁻⁴ $\eta \rightarrow \gamma \gamma$ (39.41 ± 0.20) % Reference $\omega \rightarrow \pi^{0} \gamma$ (8.28 ± 0.28) % $\pi^{0} \rightarrow \gamma \gamma$ (98.82 ± 0.03) %
- Expected Signal Events: pprox 1500

Oliver Steffen, PhD Thesis, in preparation

VMD

Electromagnetic Transition Formfactor: $\eta' \rightarrow e^+e^-\gamma$

QED

Hanhart, C., Kupść, A., Meißner, U. et al. Eur. Phys. J. C (2013) 73: 2668

Electromagnetic Transition Formfactor: Motivation

- $a_{\mu} = \frac{g-2}{2}$ anomalous magnetic moment of the muon
- ${\scriptstyle \bullet}$ Deviation from SM by $> 3\sigma$
- Theoretical predictions limited
 - hadronic Light-by-Light
 - hadronic vacuum polarization
- TFF: model validation

arXiv:1207.6556 [hep-ph]

η/η' mixing

- Pseudo-scalar Mesons: $J^P = 0^-$
- $3\otimes 3 = 8\oplus 1 \rightarrow \text{Octet}$, Singlet
- SU(3) Flavor Symmetry broken: $m_s \neq m_{u,d}$
- $\rightarrow \eta_8$, η_0 mixing

 $\eta = \eta_8 \cos \vartheta - \eta_0 \sin \vartheta$ $\eta' = \eta_8 \sin \vartheta + \eta_0 \cos \vartheta$

• TFF enters into mixing angle calculation

arXiv:hep-ph/0111278

π^0 and η Transition Form Factors

Electromagnetic Transition Formfactor: $\eta' \rightarrow e^+e^-\gamma$: Status

 BESIII Result Phys. Rev. D 92, 012001 (2015) • A2:

- covering up peak region
- slightly higher statistics at large q^2

Sascha Wagner, PhD Thesis, in preparation

Summary

- Large dataset of η' (and other) decays has been obtained
- First analyses ongoing:
 - $3\pi^0$ photoproduction cross section
 - $\eta' \to \eta \pi^0 \pi^0$
 - Cusp Effect
 - Dalitz Plot
 - $PV\gamma$
 - BR $(\eta' \to \omega \gamma)$ BR $(\omega \to \eta \gamma)$
 - η' electromagnetic TFF
- Many opportunities for further studies

Backup

The Target System: IH₂

- Liquid Hydrogen / deuterium
- *T* = 20 K
- Kapton Windows
- 10 cm long cell

FIG. 6 (color online). Fit to the single-pole form factor $|F|^2$ using Eq. (4). The (black) crosses are data, where the statistical and systematic uncertainties are combined; the (blue) solid curve shows the fit results. The (gray) dotted line shows the pointlike case (i.e. with $|F|^2 = 1$) for comparison.

FIG. 4 (color online). Results from bin-by-bin fits to the $M(pr^{+}e^{-})$ distributions for different $M(e^{+}e^{-})$ bins. The (black) crosses are data, the (red) dashed curves represent the signal, the (green) dot-dashed curves show the nopexaling backgrounds, and the (canage) shaded component for the $M(e^{+}e^{-}) > 100 \text{ MeV}/c^{2}$ bin is the shape of the peaking background from $J/\psi \rightarrow \gamma r$. The total fit results are shown as (blue) solid curves.