
FOOT software framework

04/16 A. Sarti FOOT meeting

A framework for FOOT
➡ What is and why we need a framework

– A framework is a library that provides templates and tools for handling some
basic software actions, regardless of the actual content and data structure that
is being handled.

• Data I/O. E.g. I want to read either data (decoding the VME output) or MC
(taking as input the root files) in a transparent way.

• “per event” data processing arranged in sequences that are easy customizable by
the user. E.g. I want to be able to decide which algorithms are executed in each
event and in what sequence

• Calibration constants and geometry informations (not “event” related),
containing the info on the actual experiment and data under study, should be
handled/used in an easy way with dedicated templates

➡ Proposal: ROOT based framework developed @ GSI and used by the
FIRST experiment.

04/16 A. Sarti FOOT meeting

What is not covered here
➡ The basic input production!

– The framework will handle from an input file onwards. We are not discussing
here how to encode the data that are the output of the DAQ nor the MC
simulation softwares.

➡ The framework is completely transparent to the adopted solutions for
providing the input data (either exp. or simulation).. The only needed
info is the coding of the input information, to be used in the decoding
classes that will access the info at run time.

– Examples / templates of those classes are available in the current version of
the framework.

3

04/16 A. Sarti FOOT meeting

TAG* framework
➡ Prerequisites:

– MacOsx or Linux with root.
– 3D graphics should be enabled (for Event display): if you have installed root

by hand, check that the Eve lib is available.
➡ Basic classes (TAGbase lib):

– TAGaction (everything that has to be executed for each event)
– TAGdata* (handles the data types, used for I/O, accessed event by event)
– TAGpara* (handles the calibration info, loaded during the initialization,

available event by event)
– TAGgeo* (handles the geometry info and transformations of reference

systems)
➡ There are a lot more classes that are used to do “ROOT” related stuff: reading/writing,

create 3D event display, etc etc… The framework has a lot of tools developed for
fragmentations studies that could be re-used / adapted for our needs….

4

04/16 A. Sarti FOOT meeting

The reconstruction organization
➡ The proposed scheme (fully adaptable, changeable according to other

ideas, proposals) foresee 2 levels:
– L0: sub-detector level. Each detector of FOOT (“trigger” and “run info”

included) decodes its own data, providing a set of “finite” objects:
• E.g. beam monitor: read the info from the input files, provides a set of “fired

cells, total number of hits reconstructed, track candidates with attached χ2”
• This step has to be properly configured to deal with data and MC

input files in different ways!
– HL: global event reconstruction level. The global reconstruction algorithms

start from the building blocks assembled @ L0 and provide a final full
reconstruction of the event.

• E.g. reco chain: tracks from BM, tracks from VTX and trackers, hits from
scintillator and calo are combined using the mag field info to build a list of
“global track candidates”.

• This step is completely transparent to the event types (data or MC).

5

04/16 A. Sarti FOOT meeting

L0 detector templates
➡ There are few templates for the L0 step that have been “imported”

from the FIRST experiment, and hence have to be properly
adapted.

6

TABMbase/TABMactDatRaw.cxx
TABMbase/TABMactNtuMC.cxx
TABMbase/TABMactNtuRaw.cxx
TABMbase/TABMactNtuTrack.cxx

TABMbase/TABMdatRaw.cxx
TABMbase/TABMntuRaw.cxx
TABMbase/TABMntuTrack.cxx

TABMbase/TABMparCon.cxx
TABMbase/TABMparGeo.cxx
TABMbase/TABMparMap.cxx

TABMbase/TABMvieTrackFIRST.cxx

➡ Ex. the beam monitor
– Actions [and the related TAGdata classes] to

decode and tuple the raw data (DatRaw), the MC
info (NtuMC), the candidate tracks (NtuTrack)

– The output structure (Data) of the decoding is the
SAME for data and MC (it is the input for the HL
reco!)

– The par* classes providing the necessary
calibration and geometrical info needed for the
decoding of the raw information (e.g. ST
relations, positioning of the wires in absolute
space, map of active cells,.….)

Viewer class to be adapted
from FIRST

04/16 A. Sarti FOOT meeting

L0 detectors II
➡ Other already implemented classes, to be adapted are handling:

– The SC
– The vex detector
– The magnet
– The trigger info

➡ Templates for scintillator and calo detectors could be easily inferred
from the already existing classes.

7

04/16 A. Sarti FOOT meeting

HL methods and classes
➡ The high level classes templates are already available in the TAGfoot

folder but are a simple porting of the FIRST code… Of course any
attempt to combine at high level the basic building blocks should
proceed first trough a complete revision and implementation of the
actual detectors and relative positioning in the FOOT reference
frame.

➡ However, just to give an overview of what is available:

8

Classes for Fragment ID (ChargBetheBlock), Event display
(EventDispl*; TAGVie*), Tracking algorithms
(GlobalTrack* ; TA*GlbTrack*; Tracking, Trackable*)

There’s also a class for handling the Mag field:
MagneticField… Will handle the FOOT magnetic field for
the tracking…

04/16 A. Sarti FOOT meeting

Reconstruction example
➡ A real example (already

available in git, for details
see later)

1.Define the input and
output files.

9

INPUT

OUTPUT [code provided by TAGbase]

04/16 A. Sarti FOOT meeting

Reconstruction example II
2.Define the data that has to be read and write by each action and any

geometry or calibration information that is needed in the processing
3.Define the sequence of actions that has to be performed

10

Data and action for MC truth block
decoding

Data and action for Beam Monitor
decoding: provides hits, cells,
tracks….

04/16 A. Sarti FOOT meeting

Reconstruction example III
2.Loop on events starts, and “NextEvent()” is executed to trigger the list

of actions for each event!

11

E.g. of an executable in which the info from the
MC eve block is decoded and saved…

04/16 A. Sarti FOOT meeting

Example: reading MC info
➡ Code is available under the Reconstruction/level0 folder
➡ The executable (RecoL0.cc) makes use of RecoTools.{cc,h}libraries

12

➡ Takes in input the MC
block and produces an
output class for use in
hlreco or analysis
studies.

➡ First/quick porting
from FIRST code: still
plenty of “FIRST”
relics have to be
cleaned up!!! It is just
an example of how to
play with MC events
using the framework!

http://recol0.cc

04/16 A. Sarti FOOT meeting

The BM example
➡ For now it is a mere

tupling of the MC
truth info… no “ST”
relation calibration is
implemented nor
some more
elaborated post
processing of the
info….

– This will go into the
TABMpar* and
TABMact* actions
ASAP….

13

04/16 A. Sarti FOOT meeting

The proposed choice: pros
➡ What are the advantages of the proposed framework choice

– ROOT framework is easily portable to different platforms, uses c++ (widely
diffused), highly customizable

– Several parts of the code can be reused (SC, BM, part of vtx detector, trigger
class) + geometry , calibration classes… This provides a lot of templates for
people that have to start from scratch (calo, scintillator, new trackers…)

– HL reconstruction implementing forward tracking in mag field is available!
Has to be adapted to FOOT, of course.. Has to be retuned, redesigned and
needs to include Kalman filtering, but some basic starting structure is in
place, as well as the VTX tracking trough Hough transforms and the particle
ID of the fragments trough the DeltaE/ToF ID tools.

➡ Of course ANY other options is welcomed and there’s no
prejudice against any other proposal.

14

04/16 A. Sarti FOOT meeting

Sharing the code
➡ While a first set of templates and tools is available, the work to

implement the framework in the FOOT landscape has to be done
from scratch for most of the code/algorithms and foresees the
contribution from a lot of different peoples/experts.

➡ How to organize the parallel in the most efficient way?
– Solution proposed: share the code using git @ INFN.

➡ GIT @ INFN guarantees:
– Fully backupped and online service for code access anytime.
– Easy handling of the rights to commit/read/contribute to the code trough the

INFN interface: all the infn users can access the baltig portal [https://
baltig.infn.it/] to register with their credentials.

15

(A proposal for)

04/16 A. Sarti FOOT meeting

Handling the users…
➡ Baltig provides

– Web interface or command line interface..
➡ Started the baltig “software” project with 3 users:

– Reporter (can download and compile/run the code)
– Developer (Reporter + can commit to non protected branches)
– Master (Developer + can commit to protected branches)

16

An agreement on how to proceed with code releases / branches creation will have to be
taken in order to allow the collectivity to have always a stable, running version to be used
for code testing and developments…

04/16 A. Sarti FOOT meeting

Documenting the code
➡ Proposed solution: twiki pages.

– Started a FOOT software project under twiki server @ roma1. http://arpg-
serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSoftware

• This page documents how to get and install the code.
• Few tips on how to deal with “git” are given.

– Anyone can register and help maintaining the code!
– For now two pages have been setup:

• Reconstruction: holds the documentation on how to process data and MC
events http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/
FOOTReconstruction

• Simulation: holds the documentation on how to decode the MC events. http://
arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSimulation

– Additional pages could be easily implemented for specific needs of
subdetectors….

17

http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSoftware
http://arpg-serv.ing2.uniroma1.it/twiki/bin/view/Main/FOOTSimulation

04/16 A. Sarti FOOT meeting

Disclaimer….
➡ When switching from ROOT 5 to ROOT 6 some problems were

encountered..
– https://root.cern.ch/phpBB3/viewtopic.php?f=3&t=21981
– Not everything has been re-checked… Some classes still implements the

“buggy” ROOT v5 streamer definition… : will go trough all the instances as
long as people start using the code and validate it….

18

https://root.cern.ch/phpBB3/viewtopic.php?f=3&t=21981

