New directions in Composite Higgs models

Diego Becciolini

works by

A. Agugliaro, O. Antipin, S. De Curtis, M. Redi, A. Strumia, E. Vigiani

Consiglio di Sezione – INFN Firenze – I Luglio 2016

Subject of the talk

Subject of the talk

Compositeness not breaking EW symmetry:
 Vectorlike

Subject of the talk

- Compositeness not breaking EW symmetry:
 Vectorlike
- Linking the strong sector to an elementary Higgs: interpolation to Composite Higgs

Hierarchy problem main motivation for TeV-scale BSM

- Hierarchy problem main motivation for TeV-scale BSM
- SUSY: hopes for no-tuning faded away

- Hierarchy problem main motivation for TeV-scale BSM
- SUSY: hopes for no-tuning faded away
- Strong dynamics: arguably tuning expected anyway

- Hierarchy problem main motivation for TeV-scale BSM
- SUSY: hopes for no-tuning faded away
- Strong dynamics: arguably tuning expected anyway
- Perhaps wrong perspective, but exploration not over yet

• Condensate does not break EWS

- Condensate does not break EWS
- Not addressing Hierarchy Problem: still an elementary Higgs

- Condensate does not break EWS
- Not addressing Hierarchy Problem: still an elementary Higgs
- Dark Matter candidates: pion or baryon

- Condensate does not break EWS
- Not addressing Hierarchy Problem:
 still an elementary Higgs
- Dark Matter candidates: pion or baryon

number of		N=3		N = 4		
techni-flavors	Yukawa	TCb	$TC\pi$	TCb	$TC\pi$	
$N_F = 2$		2	3	1	3	under TC-flavor SU(2)
$model 1: \mathcal{Q} = 2_{Y=0}$	0	charged	3	1	3	DM, under $SU(2)_L$
$N_F = 3$		8	8	<u></u>	8	under TC-flavor SU(3)
model 1: $Q = 1_Y + 2_{Y'}$	1	1	no	1	no	DM, under $SU(2)_L$
$model 2: \mathcal{Q} = 3_{Y=0}$	0	3	3	1	3	DM, under $SU(2)_L$
$N_F = 4$		20	15	20'	15	under TC-flavor SU(4)
$model 1: \mathcal{Q} = 4_{Y=0}$	0	charged	3	1	3	DM, under $SU(2)_L$
$N_F = 5$		$\overline{40}$	24	$\overline{50}$	24	under TC-flavor SU(5)
model 1: $Q = 2_Y + 3_{Y'}$	1	1	no	charged	no	DM, under $SU(2)_L$
$model 2: \mathcal{Q} = 5_{Y=0}$	0	3	3	1	3	DM, under $SU(2)_L$

Antipin, Redi, Strumia – 1410.1817

Further classifications

SU(N) techni-color.	Yukawa	Allowed	Techni-	Techni-	
Techni-quarks	couplings	N	pions	baryons	under
$N_{\rm TF} = 3$			8	$8, \overline{6}, \dots \text{ for } N = 3, 4, \dots$	$SU(3)_{TF}$
Q = V	0	3	3	VVV = 3	$SU(2)_L$
$\mathcal{Q}=N\oplus L$	1	3,, 14	unstable	$N^{N*} = 1$	$SU(2)_L$
$N_{\mathrm{TF}} = 4$			15	$\overline{20}, 20', \dots$	$SU(4)_{TF}$
$\mathcal{Q} = V \oplus N$	0	3	3×3	$VVV, VNN = 3, \ VVN = 1$	$SU(2)_L$
$\mathcal{Q}=N\oplus L\oplus \tilde{E}$	2	3,4,5	unstable	$N^{N*} = 1$	$\mathrm{SU}(2)_L$
$N_{\mathrm{TF}} = 5$			24	$\overline{40}, \overline{50}$	$SU(5)_{TF}$
$\mathcal{Q}=V\oplus L$	1	3	unstable	VVV = 3	$\mathrm{SU}(2)_L$
$\mathcal{Q}=N\oplus L\oplus \tilde{L}$	2	3	unstable	$NL ilde{L}=1$	$\mathrm{SU}(2)_L$
=	2	4	unstable	$NNL ilde{L}, L ilde{L}L ilde{L}=1$	$\mathrm{SU}(2)_L$
$N_{\mathrm{TF}} = 6$			35	$70, \overline{105'}$	$SU(6)_{TF}$
$\mathcal{Q} = V \oplus L \oplus N$	2	3	unstable	VVV, VNN = 3, VVN = 1	$SU(2)_L$
$\mathcal{Q} = V \oplus L \oplus \tilde{E}$	2	3	unstable	VVV = 3	$\mathrm{SU}(2)_L$
$\mathcal{Q} = N \oplus L \oplus ilde{L} \oplus ilde{E}$	3	3	unstable	$NL ilde{L}, ilde{L} ilde{L} ilde{E}=1$	$\mathrm{SU}(2)_L$
=	3	4	unstable	$NNL ilde{L}, L ilde{L}L ilde{L}, N ilde{E} ilde{L} ilde{L}=1$	$\mathrm{SU}(2)_L$
$N_{ m TF}=7$			48	112	$SU(7)_{TF}$
$\mathcal{Q} = L \oplus \tilde{L} \oplus E \oplus \tilde{E} \oplus N$	4	3	unstable	$LLE, \tilde{L}\tilde{L}\tilde{E}, L\tilde{L}N, E\tilde{E}N = 1$	$\mathrm{SU}(2)_L$
$\mathcal{Q} = N \oplus L \oplus ilde{E} \oplus V$	3	3	unstable	$VVV, VNN = 3, \ VVN = 1$	$\mathrm{SU}(2)_L$
$N_{\rm TF} = 9$			80	240	$SU(9)_{TF}$
$\mathcal{Q} = Q \oplus \tilde{D}$	1	3	unstable	$QQ\tilde{D}=1$	$\mathrm{SU}(2)_L$
$N_{\mathrm{TF}} = 12$			143	572	$SU(12)_{TF}$
$Q = Q \oplus \tilde{D} \oplus \tilde{U}$	2	3	unstable	$QQ\tilde{D}, \tilde{D}\tilde{D}\tilde{U} = 1$	$\mathrm{SU}(2)_L$

Antipin, Redi, Strumia, Vigiani — 1503.08749

Yukawas with SM Higgs allowed in some cases

$$yH\Psi\Psi$$

transforms as H and condenses into K

Yukawas with SM Higgs allowed in some cases

$$yH\Psi\Psi$$

transforms as H and condenses into K

• 2HDM with K and H (Type I)

$$\langle H \rangle = v_{EW} \sin \beta \quad \langle K \rangle = v_{EW} \cos \beta$$

Yukawas with SM Higgs allowed in some cases

$$yH\Psi\Psi$$

transforms as H and condenses into K

2HDM with K and H (Type I)

$$\langle H \rangle = v_{EW} \sin \beta \quad \langle K \rangle = v_{EW} \cos \beta$$

Changes alignment direction of condensate

$$\begin{pmatrix} \mu_K^2 & \mu_{mix}^2 \\ \mu_{mix}^2 & \mu_H^2 \end{pmatrix}$$

$$\begin{pmatrix} \mu_K^2 & \mu_{mix}^2 \\ \mu_{mix}^2 & \mu_H^2 \end{pmatrix}$$

Require instability (negative determinant):
 either one diagonal term negative

or
$$\mu_{mix}^2 \gtrsim \mu_H \mu_K$$

$$\begin{pmatrix} \mu_K^2 & \mu_{mix}^2 \\ \mu_{mix}^2 & \mu_H^2 \end{pmatrix}$$

Require instability (negative determinant):
 either one diagonal term negative

or
$$\mu_{mix}^2 \gtrsim \mu_H \mu_K$$

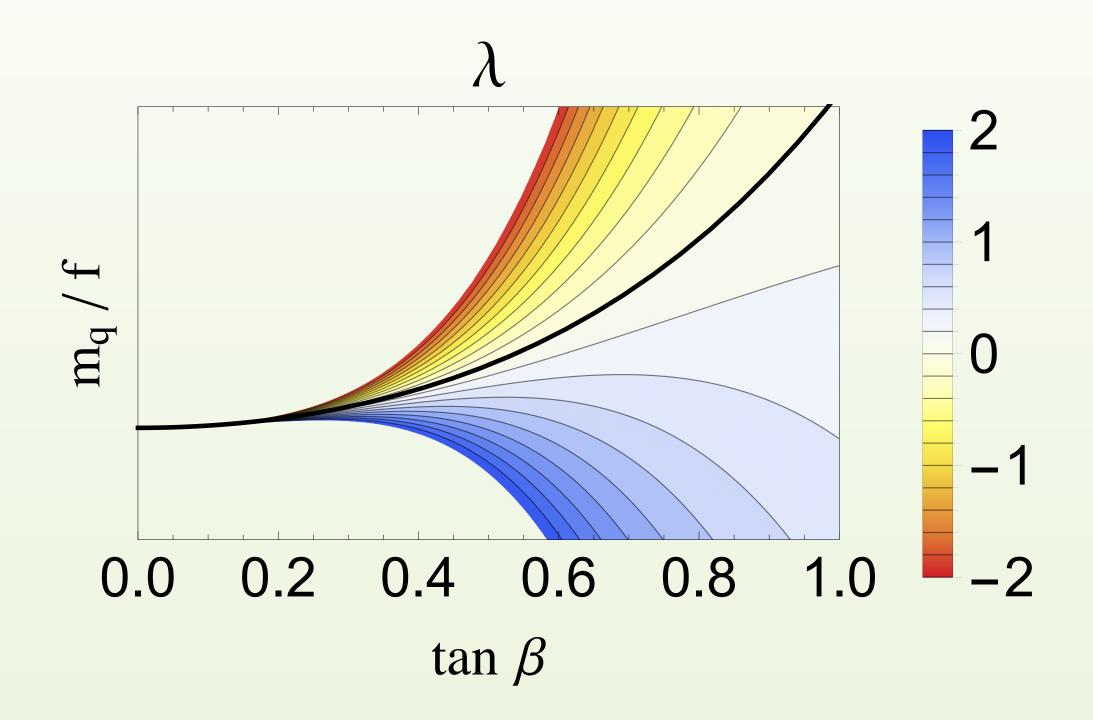
Potential of H SM-like & effect of mixing small: elementary

$$\begin{pmatrix} \mu_K^2 & \mu_{mix}^2 \\ \mu_{mix}^2 & \mu_H^2 \end{pmatrix}$$

 Require instability (negative determinant): either one diagonal term negative

or
$$\mu_{mix}^2 \gtrsim \mu_H \mu_K$$

- Potential of H SM-like & effect of mixing small: elementary
- Large H scale & EWSB from mixing: composite


Getting the Higgs mass

• Mass of Higgs (in SU(4)/Sp(4)) $\frac{m_h^2}{v_{EW}^2} \propto \frac{m_q}{f} \cos^4 \beta + \lambda \sin^4 \beta$

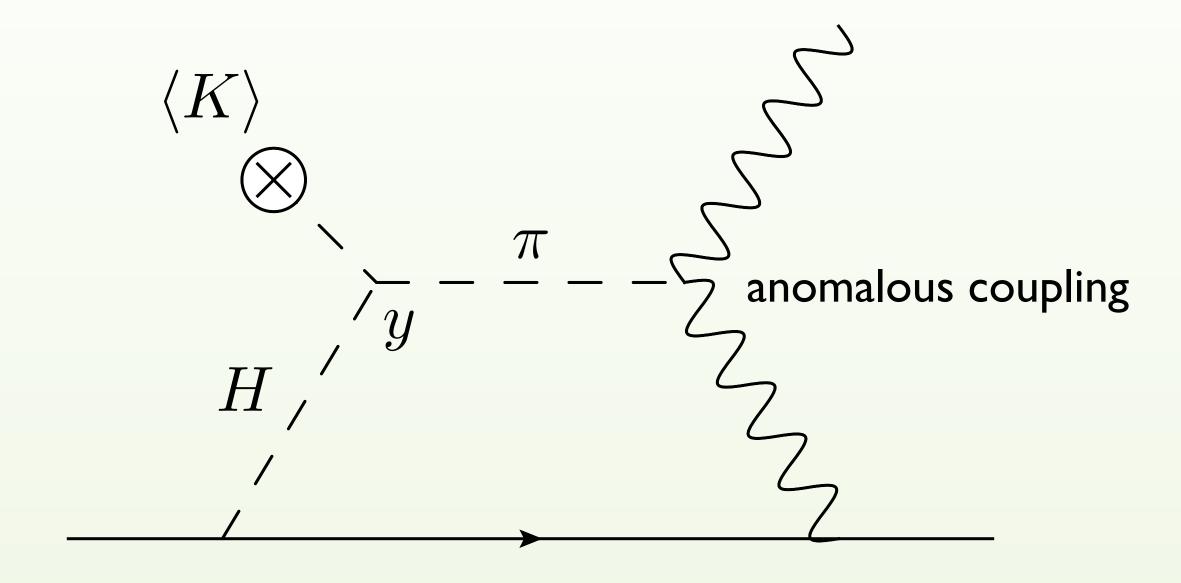
Getting the Higgs mass

• Mass of Higgs (in SU(4)/Sp(4)) $\frac{m_h^2}{v_{EW}^2} \propto \frac{m_q}{f} \cos^4 \beta + \lambda \sin^4 \beta$

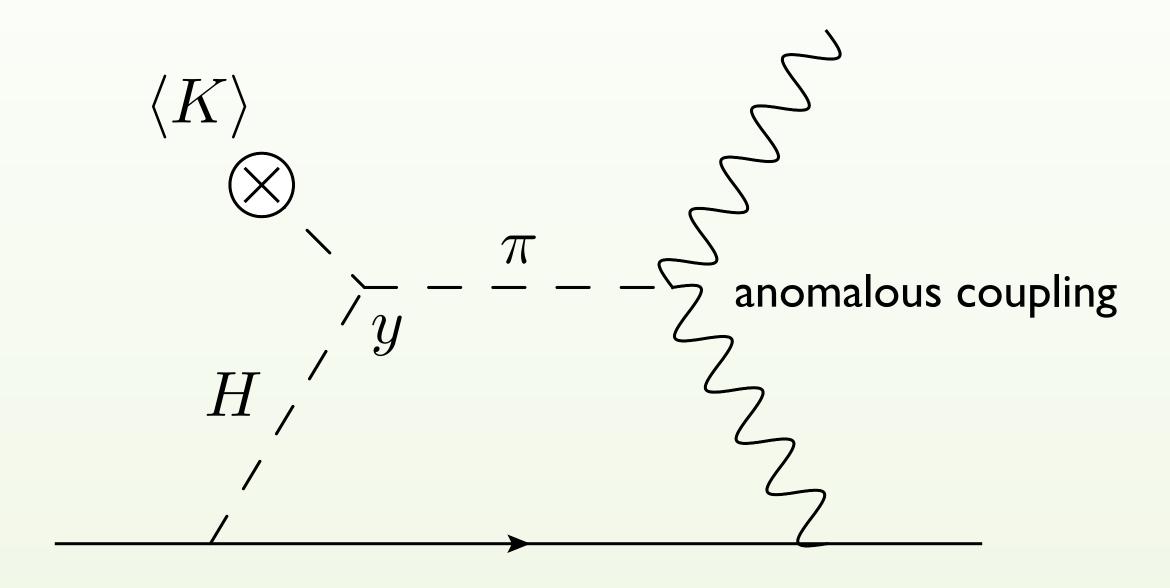
$$\frac{m_h^2}{v_{EW}^2} \propto \frac{m_q}{f} \cos^4 \beta + \lambda \sin^4 \beta$$

From elementary to composite

From elementary to composite


- Potential of H SM-like & effect of mixing small: large tanβ, elementary
 - → Antipin, Redi 1508.01112: link with Relaxion

From elementary to composite


- Potential of H SM-like & effect of mixing small: large tanβ, elementary
 - → Antipin, Redi 1508.01112: link with Relaxion
- Large H scale & EWSB from mixing: small tanβ, composite
 - → In preparation with Agugliaro, Antipin, De Curtis, Redi

Electron Dipole Moment

Electron Dipole Moment

Electron Dipole Moment

Generally expected, however in minimal
 SU(4)/Sp(4) ~ SO(6)/SO(5) not present

• New Physics still expected, somewhere...

- New Physics still expected, somewhere...
- Link between compositeness and EWSB flexible: range of possibilities between Technicolour, Composite
 Higgs, and Vectorlike compositeness

- New Physics still expected, somewhere...
- Link between compositeness and EWSB flexible: range of possibilities between Technicolour, Composite Higgs, and Vectorlike compositeness
- Let's wish for a TeV hint soon

- New Physics still expected, somewhere...
- Link between compositeness and EWSB flexible: range of possibilities between Technicolour, Composite Higgs, and Vectorlike compositeness
- Let's wish for a TeV hint soon

Grazie!