

Stato dell'esperimento

Iniziata la presa dati del 2016!

LHCb Integrated Luminosity at p-p in 2016

LHC sta lavorando ad un'elevata efficienza, al di sopra delle aspettative, per accumulare statistica prima di ICHEP.

LHCb rivede la **strategia di trigger** per approfittare di questo **bonus inaspettato**!

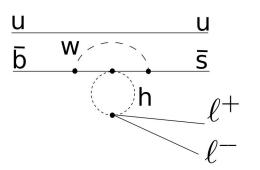
Le **analisi sulle collisioni a 13 TeV**, con dati raccolti nel 2015, sono in corso.

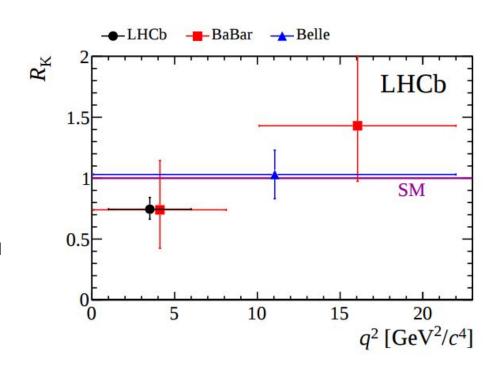
Alcuni importanti risultati già pubblicati:

- \Rightarrow Produzione J/ ψ
- Produzione quark charm
- \Rightarrow Produzione Z^0
- **二**

Le pubblicazioni riguardano ancora, maggiormente, i dati raccolti in Run1.

Ma a partire dalla fine del 2016 potremmo avere più statistica a 13 TeV che a 7 / 8.


Aggiorneremo le misure con indicazioni di deviazioni dal Modello Standard!

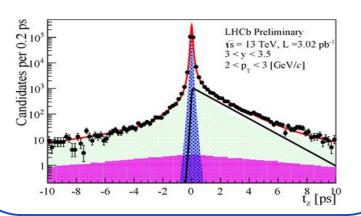

Per esempio: violazione dell'universalità leptonica

Studio di $B^+ \to K^+ I^+ I^-$ per deteriminare la deviazione dal modello standard.

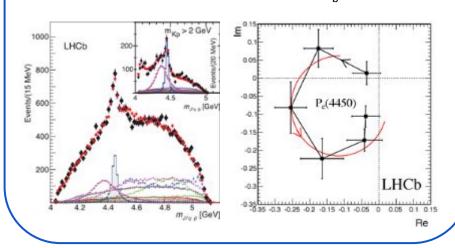
$$R_K = \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{d\Gamma[B^+ \to K^+ \mu^+ \mu^-]}{dq^2} dq^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{d\Gamma[B^+ \to K^+ e^+ e^-]}{dq^2} dq^2}$$

Nota: l'universalità leptonica è violata anche nel modello Standard.

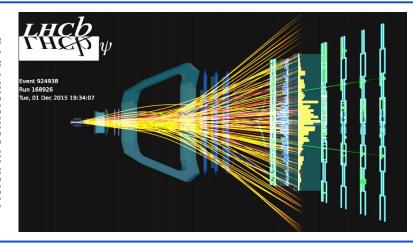
La discrepanza osservata con il modello standard supera i 3 σ .

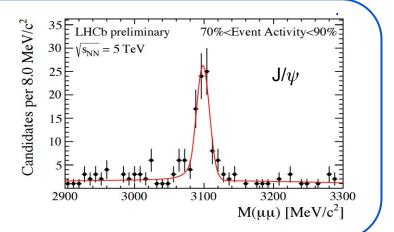

L'incertezza è ad oggi dominata dalla statistica, ma già dal prossimo update sarà indispensabile controllare meglio il sistematico sull'efficienza di identificazione di elettroni e muoni (Particle Id).

I maggiori successi di LHCb nell'ultimo anno


(secondo me)

Produzione della J/ ψ a 13 TeV:


Prima Misura di LHC 13 TeV
Il nuovo processamento dati per analisi in realtime funziona!



Osservazione di due stati Pentaquark!

Fisica in collisioni Pb-Pb

Attività a Firenze

Particle Identification

Expertise rivelatore di Muoni

Sofware di controllo, monitoring, calibrazioni, studi di performance (GP, GG)

Misura efficienze dei requisiti di PID

Definizione strategia di selezione online, Design del processamento dei dati con la grid (LA)

Trigger

Validazione della ricostruzione online

Sviluppo dei tool per validare la allineamento e ricostruzione online, oggi operativi in Control Room (LA)

Upgrade

Coordinamento (GP)

Studi di estrapolazione del muon detector (GG)

Definizione del programma di fisica
(spettroscopia) per un ulteriore upgrade (LA)

B-hadron e quarkonia

<u>Coordinamento</u> del gruppo (*LA*) Ricerca di $\Xi_{\rm bc}$: simulazione (*GG*) e strategia di selezione (*LA*).

Decadimenti rari

Ricerca del decadimento $K_s^0 \rightarrow \mu\mu$ (GG)

Fisica

Heavy Ion and Fixed Target

<u>Coordinamento</u> del gruppo (GG) Misura della sezione d'urto di produzione antiprotoni in collisioni *p*He (GG, GP, LA).

Statistica e Machine Learning

Sviluppo di algoritmi veloci per density estimation (LA)

Misura dell'efficienza di selezione di Particle ID

Dal Run2, LHCb prevede un «via breve» per il processamento dei dati: Utilizzare la ricostruzione software del trigger anche per l'analisi offline.

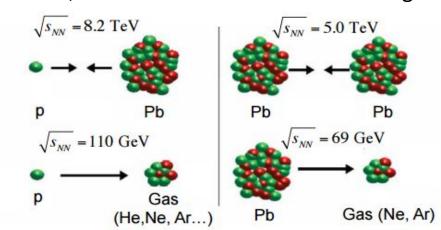
Pro. Risparmio spazio disco (hit e clusters non sono salvati) e tempo di CPU

Sfida. Esistono due ricostruzioni molto simili (online/offline), altrettanto affidabili, che devono essere calibrate con grande precisione, specialmente nella parte di PID.

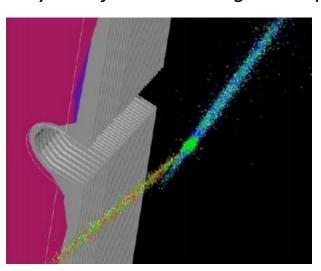
Ricostruzione duale dei campioni di calibrazione: sia online che offline. Campioni resi disponibili con informazione completa per **studi di rivelatore anche orientati all'upgrade**.

Incrementare la statistica, e aumentare l'informazione nei campioni di calibrazione ha richiesto di **progettare una struttura di data-processing nuova** che oggi serve come punto di partenza per la definizione del modello di computing per l'upgrade.

La messa in funzione del nuovo meccanismo si è completata questa settimana.

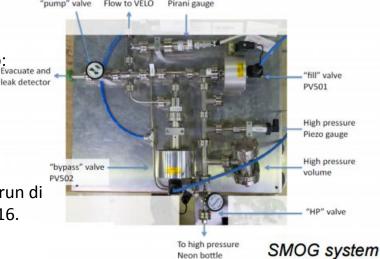

Proseguirà a lungo la fase di validazione e debug.

Oltre le collisioni pp


LHCb può operare, in contemporanea, in modalità "collider" e "fixed target":

Modalità Collider

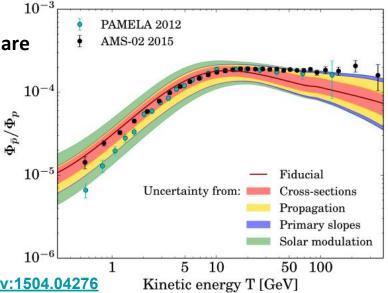
Modalità fixed target


System for **M**onitoring **O**verlap with **G**as (SMOG)

Gas utilizzati come bersaglio:

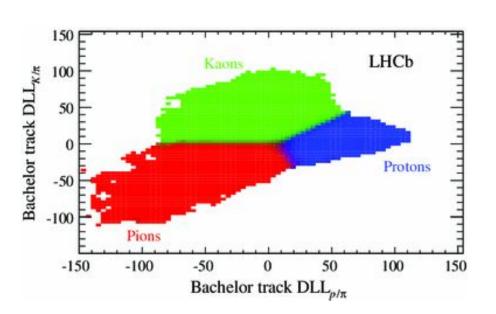
- Elio
- Neon
- Argon

Dopo i primi run pilota nel 2012/13, sono stati ripetuti run di presa dati nel 2015 e nel 2016.


Collisioni pHe: eccesso di antimateria nei cosmici?

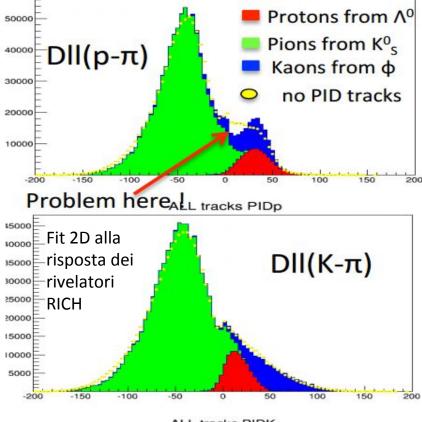
Pamela e AMS hanno riportato un "leggero eccesso" di anti-protoni ad alta energia nei raggi cosmici.

Purtroppo...


Le predizioni teoriche soffrono dell'incertezza sulla sezione d'urto di raggi cosmici con il mezzo interstellare (prevalentemente elio).

LHCb è in grado di esplorare il range cinematico di interesse con misure di collisione pHe in laboratorio.

Contare il numero di antiprotoni


- Selezione di tracce negative con criteri *geometrici* e *cinematici*
- Fit 2D della risposta del RICH utilizzando pdf *template* ottenute dai dati
- Correzione di accettanza ed efficienza affidata alla simulazione

L'analisi è in corso a Firenze.

Sinergia con altri gruppi in sezione!

TRACCE DI CARICA NEGATIVA

Conclusioni

Il gruppo LHCb Firenze è ampiamente coinvolto nel coordinamento e in tutte le aree di attività di LHCb (analisi, detector, trigger, computing e upgrade).

Abbiamo giocato un ruolo chiave negli highlight di LHCb dello scorso anno:

- ightharpoonup **Prima misura di LHC a** \sqrt{s} = 13 TeV: sezione d'urto di produzione della J/ ψ
- Osservazione di due stati pentaquark
- Ingresso di LHCb nella fisica degli ioni pesanti e misure a bersaglio fisso

LHCb Firenze ha gli elementi per offrire tesi di Laurea e Dottorato di alto impatto scientifico in molte delle aree di attività.

Responsabilità

Giovanni Passaleva	Upgrade Detector Coordinator
Giacomo Graziani	Ion Physics & Fixed Target Working Group Convener
Lucio Anderlini	b-hadron and quarkonia Working Group Convener

