CIVIS

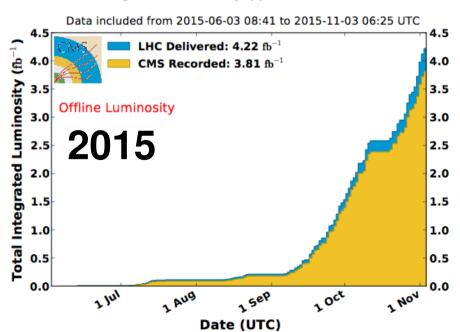
Fisici: 12.4 FTE

(incluse le attività di R&D di fase2: sigle RD_FASE2, AIDA2020, NEOLITE)

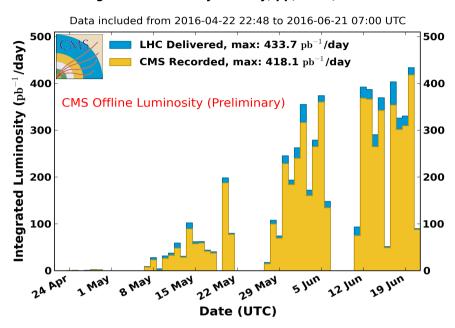
G.Barbagli, M. Bruzzi, V.Ciulli, C.Civinini, R.D'Alessandro, E.Focardi, G.Latino, P.Lenzi, M.Meschini, S.Paoletti, S.Pelli, L.Russo (PhD), S.Sciortino, G.Sguazzoni, L.Viliani (PhD).

personale tecnico:

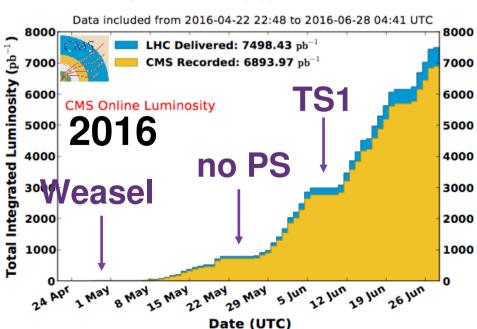
M. Brianzi, E. Scarlini


CdS INFN Gruppo I - 1 Luglio 2016

Lorenzo Viliani


Situazione di LHC

- L_{int} già raddoppiata rispetto al 2015
- Recenti fill da record:
 - L istantanea ~0.9 10³⁴cm⁻²s⁻¹
 - più di 0.5 fb⁻¹
- Previsti ~150 giorni di fisica pp
 - Attesi ~25 fb⁻¹ nel 2016


CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

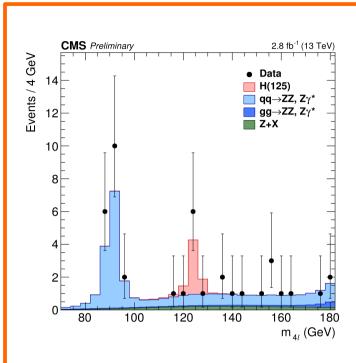
CMS Integrated Luminosity Per Day, pp, 2016, $\sqrt{s}=$ 13 TeV

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=$ 13 TeV

Situazione magnete: OK!

- Manutenzione straordinaria di inizio anno:
 - completato il lavoro di pulizia del sistema di criogenia
 - (l'analisi del fluido detergente flussato dentro la cold box ha confermato una rilevante contaminazione da BREOX)
 - Nuovo PORS (primary oil removal system)
 - sostituita una valvola criogenica nel dewar da 6000 L

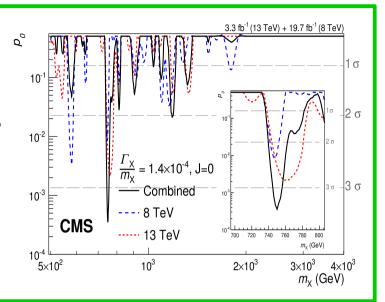
→ funzionamento molto stabile

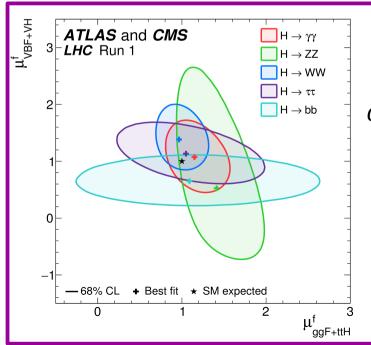

Magnet	State	1/A	Polarity	30-04-16 18:58:15
ALICE solenoid	FLT. OFF	22.08	negative	
ALICE dipole	FLT. OFF	0.00	negative	
ATLAS solenoid	FLT.OFF	-0.02	no polarity switch	
ATLAS toroid	FLT_OFF	0.00	no polarity switch	
CMS solenoid	FOUINE_PROOF	18164.00	no polarity switch	
LHCb dipole	FLT_OFF	-0.00	positive	

Effetto "faina": il magnete di CMS è rimasto acceso nonostante il power cut è stata sufficiente una transizione a 2T per recuperare.

Highlights delle analisi in CMS

"Studies of Higgs boson production in the fourlepton final state at √s= 13 TeV"


CMS-PAS-HIG-15-004


https://cds.cern.ch/record/2139978

"Search for resonant production of high-mass photon pairs in protonproton collisions at √s= 8 and 13 TeV"

Sottomesso a PRL

arXiv:1606.04093

"Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s= 7 and 8 TeV"

Sottomesso a JHEP

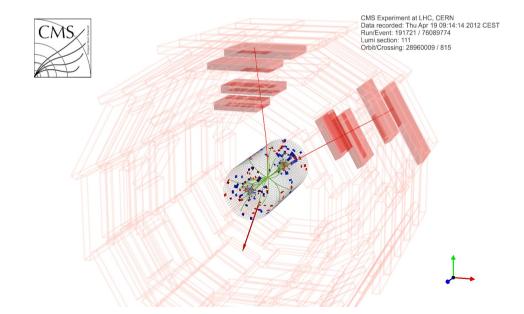
arXiv:1606.02266

Attività del gruppo di Firenze

- Analisi nel settore H → WW
- Studi per l'upgrade del tracciatore per la "fase2" (HL-LHC):
 - R&D sui sensori pixel
 - R&D sui sistemi di alimentazione per rivelatore pixel e "Outer Tracker"

sigle "parallele": RD FASE2, AIDA2020, NEOLITE

- Svariati task di servizio:
 - Manutenzione del sistema di alimentazione del tracciatore
 - Studio del rate di HLT per la presa dati
 - Calibrazione jet-energy
 - Ottimizzazione della tracciatura in presenza di PU ed in funzione del material budget
 - Mantenimento e validazione generatori



- Principali ruoli di responsabilità:
 - G. Sguazzoni deputy project manager tracker upgrade
 - M. Meschini coordinamento italiano per R&D sui sensori pixel fase2
 - V. Ciulli convener Matrix
 Element and Future Generator
 group

- shift, shift, shift ...
 - Computing
 - online Detector Quality Monitor
 - Shift Leader
 - Tracker Offline
 - Tracker Detector on Call

Le analisi a Firenze

- Varie analisi nel canale H → W⁺W^{-.} → 2ℓ2υ a 8 e 13 TeV
- Man-power: V. Ciulli, G. Latino, P. Lenzi, L. Russo (PhD), L. Viliani (PhD)
- Possibili misure in H→WW →2ℓ2υ:
 - Misure di accoppiamenti fra Higgs e bosoni/fermioni;
 - Misure differenziali (es. Higgs p_{τ} o altre variabili cinematiche);
 - Ricerche di nuove risonanze ad alta massa;
 - Misure di Higgs self-coupling (es. Ricerca di processi HH → W+W-bb);
 - Ed altro ancora...

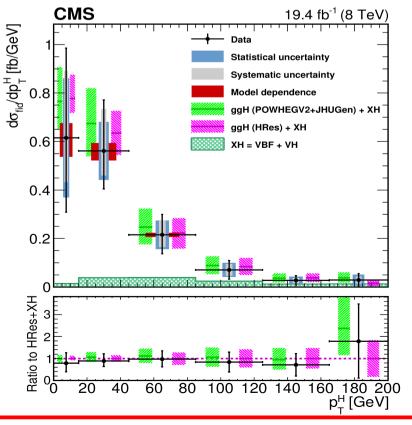
Vantaggi:

- Branching ratio H → WW elevato rispetto ad altri canali;
- Buon rapporto segnale/fondo

Svantaggi:

 Neutrini → impossibile ricostruire il picco di massa

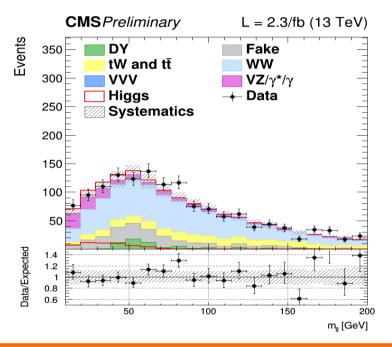
Analisi a 8 TeV


- "Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8
 TeV and derivation of constraints on its total decay width"
 - arXiv:1605.02329, sottomesso a JHEP (500° articolo di CMS!)
 - Risultato: limite sulla larghezza di decadimento: $\Gamma_{\rm H}$ < 13 MeV @95%CL
- Analisi completamente fiorentina: "Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at sqrt(s) = 8 TeV using H to WW decays"
 CMS
 19.4 fb⁻¹ (8 TeV)
 - arXiv:1606.01522, sottomesso a JHEP

$$\vec{p}_{\mathrm{T}}^{\mathrm{H}} = \vec{p}_{\mathrm{T}}^{\ \ell\ell} + \vec{p}_{\mathrm{T}}^{\mathrm{miss}}$$

 Spettro in p_T^H misurato in una regione fiduciale e corretto per gli effetti del rivelatore con una procedura di unfolding.

$$\sigma_{\rm fid} = 39 \pm 8 \; ({\rm stat}) \pm 9 \; ({\rm syst}) \; {\rm fb}$$


$$\sigma_{theory} = 48 \pm 8 \text{ fb}$$

Analisi a 13 TeV

- "First results on Higgs to WW at sqrt(s)=13 TeV"
 - http://cds.cern.ch/record/2161793?ln=en
 - Analisi di "ri-scoperta" del bosone di Higgs con 2.3 fb⁻¹ di dati raccolti nel 2015
 - Significanza per bosone di Higgs a 125 $GeV = 0.7\sigma$ (2.0 σ attese)

Massa invariante dei 2 leptoni nella categoria 0-jet

- Altra analisi fiorentina: "Search for high mass Higgs to WW with fully leptonic decays using 2015 data"
 - Ricerca di risonanze di alta massa (200GeV 1 TeV) che decadono in $W^+W^- \rightarrow 2\ell 2\upsilon$
 - In fase di approvazione da parte di CMS (analisi ancora blind)

Sigle per l'upgrade del tracciatore per HL-LHC

RD_FASE2:

2.65 FTE

Sigla "contenitore" aperta nel 2014 per far confluire le richieste per l' R&D di ATLAS e CMS per HL-LHC: **rivelatori a pixel innovativi, studi sul track-trigger con l'uso di memorie associative**

solo consumi: "vietate" richieste di missioni e metabolismi

AIDA2020

0.10 FTE

Progetto Europeo. H2020-INFRAIA-2014-2015

AIDA=Advanced European Infrastructures for Detectors at Accelerators http://aida2020.web.cern.ch

W.P.7: caratterizzazione di sensori, studio sotto radiazione ed in test beam

HTEAM
0 FTE
(in chiusura)

Bando MIUR 2013: Trigger, Elettronica Avanzata e Metodi innovativi per misure di precisione nel settore dell' Higgs ad LHC studio della selezione L1 per canali di fisica ad alta precisione

NEW NEOLITE 0.7 FTE

Nuove tEcnologie elettrOniche di aLimentazione In ambienTe ostilE Progetto di ricerca e sviluppo cofinanziato dalla Regione Toscana (Bando R.T. POR FESR RSI 2014-2020). CAEN (capofila), AGE SCIENTIFIC S.R.L., DESYS S.R.L., INFN-FI, UNIFI, UNIPI

Sviluppo di alimentatori capaci di lavorare in ambiente ostile (campo magnetico, radiazioni) di interesse per la fisica medica e per HL-LHC. (Budget complessivo per INFN ed UNIFI: 188 keuro ciascuno. (compreso cofinanziamento del 45% di R.T.).

Percentuali - FTE in queste sigle riconosciute a tutti gli effetti come partecipazione a CMS

R&D sui sensori pixel per HL-LHC

Scopo: identificare i sensori più adatti per il tracciatore interno a pixel.

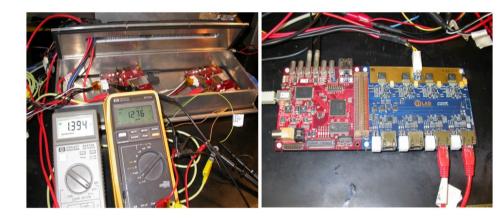
Produzione di sensori di test:

progetto parzialmente in comune con ATLAS → varie opzioni, geometrie e pitch, compatibilità con i chip di r/o di ATLAS (FEI4), CMS (PSI64dig) e RD53A.

Tre batch di produzione al momento:

- Standard planar 6"
 - Produzione completata nel Dicembre 2014 → realizzati 31 moduli → substrato sottile 100 μm!
- 3D "Single Side":
 - in produzione da Ott 2015, completata in marzo 2016 → due wafer presso Selex per il Bump Bonding
- Planar "Active Edge"
 - layout complesso, ultimato, pronto per la produzione

Previsti ulteriori due batch: 3D e planar AE alla fine del 2016.


Test su fascio

- Programma vario di test su fascio, sia a FNAL che al CERN.
- Test effettuati in collaborazione coi colleghi di Mi-Bicocca e FNAL
 - due test già effettuati a FNAL con p da 120GeV (dic 2015 e mag. 2016) su moduli planari del primo batch, alcuni dopo irraggiamento @ Los Alamos (LANSCE 800MeV proton beam)
 - ulteriori test previsti nel 2016 (già uno a luglio al CERN, con irraggiamento al PS-IRRAD)
 - altri 3-4 test previsti nel 2017

Studio del sistema di alimentazione pixel

- Alimentazione in serie individuata come soluzione più promettente per:
 - ridurre material budget (=cavi)
 - apportare l'elevata densità di potenza richiesta (fino a 1 W/cm² nei layer interni, totale 8-16 kW su circa 4 m²)
- R&D in collaborazione con ATLAS:
 - sistema basato sul circuito Shunt-LDO (attualmente implementato nel chip FEI4 di ATLAS-IBL "inner barrel layer")
 - una versione futura (65nm) dello shunt-LDO sarà implementata nel chip RD53 per i pixel HL-LHC di ATLAS/CMS

G. Sguazzoni convener per il serial power in CMS

Firenze al momento ha l'unica catena funzionante con più moduli in serie realizzata in CMS.

Studio del back-end (power supplies) in collaborazione con CAEN tramite il progetto NEOLITE

backup

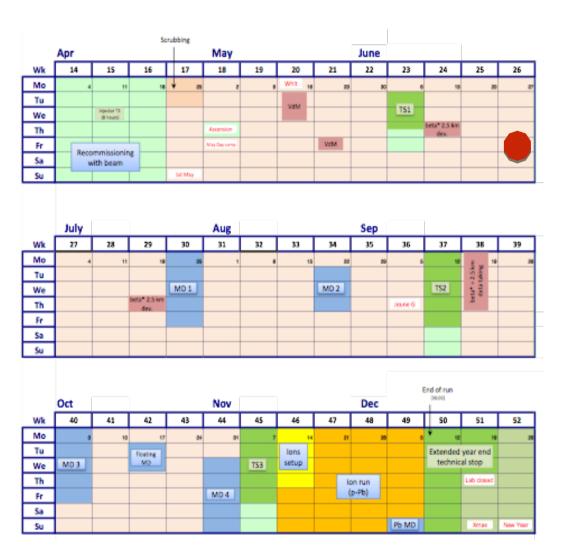
Richieste per il 2017

- N.B.: le richieste vanno ancora discusse all'interno di CMS Italia
 - → possibili cabiamenti
 - CMS
 - 174 k€ missioni, 26 k€ consumi
 - richiesta tecnici: 8 mesi Brianzi (80%) e 8 mesi Scarlini (80%)
 - richiesta servizi: 2 mesi-uomo servizio di elettronica
 - attività in clean room di sezione
- (poichè RD_FASE2 prevede solo consumi, nella richiesta di missioni per CMS sono considerati anche 3 test beam nel 2017 dedicati alle attività di upgrade)
 - RD_FASE2
 - 30 k€ (sensori pixel e serial powering)

Wafer FE-I4 per serial Power R&D single and quad modules	Raw wafers and processing costs, UBM, dicing. Quad Module flex and pcb	12	FI
USB-Pix3 FE-I4 DAQ board	Serial power test RD53/FE-I4	4	FI
RD53 readout boards	prototype readout cards	4	
New prototype ROC wafers	raw wafers and processing	10	

Microsaldatrice

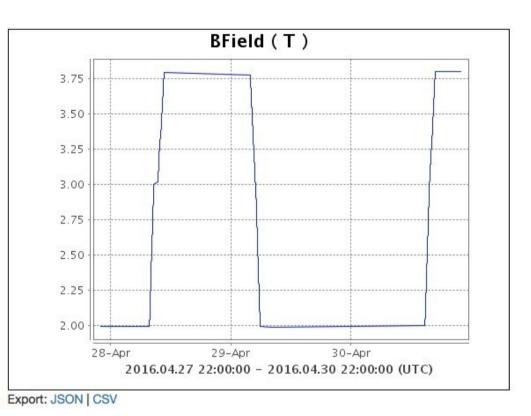
- L'attività di R&D sul sistema dei pixel ed i futuri impegni di costruzione richiedono l'acquisto di una nuova microsaldatrice (il modello che abbiamo non è più manutenuto).
- Costo stimato: O(150 keuro).
 - → Possibile sharing dell'acquisto tra sezione e contributo CSN1 per CMS?
- Altri centri italiani di CMS nella nostra stessa situazione
 - → quest'anno potremmo non avere la priorità per il finanziamento in CSN1.

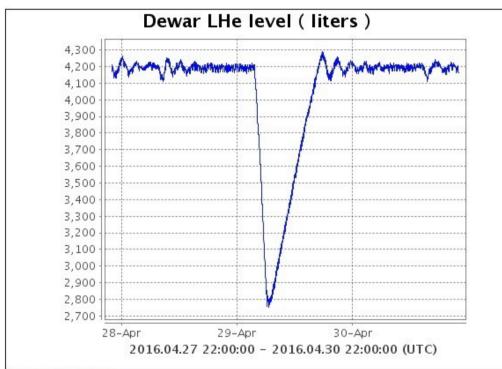

Analisi future

- Dopo qualche inconveniente LHC procede bene!!
- Ci aspettiamo ~10 /fb entro ICHEP (conferenza ad inizio Agosto)
 - Sufficienti per ottenere circa la stessa significanza del Run I
- ~25 /fb entro fine 2016!!
- L'era delle misure di precisione sull'Higgs ad LHC sta iniziando
 - Firenze parteciperà attivamente nelle misure future nel canale H→WW, specialmente sulle misure differenziali
 - Confronto accurato con le predizioni teoriche
 - Ricerca indiretta di nuova fisica

Situazione di LHC

previsti ~150 giorni di fisica p-p → attesi ~ 20-25 fb-1 bunch crossing a 25 ns


Phase	Days
Initial Commissioning	28
Scrubbing: 4 days initially and then as required during ramp-up	7
Proton physics 25 ns	152
Special physics runs (high beta*; VdM)	8
Machine development	22
Technical stops	15
Technical stop recovery	6
Ion setup/proton-lead run	4 + 24
Total	266 days (38 weeks)



https://lhc-commissioning.web.cern.ch/lhc-commissioning/performance/2016-performance.htm

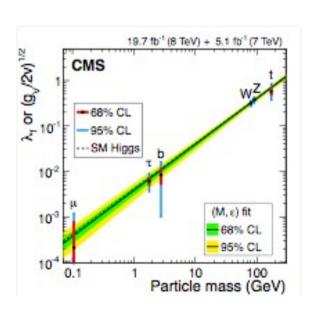
https://espace.cern.ch/be-dep/BEDepart mentalDocuments/BE/LHC Schedule 2016.p df

Campo magnetico e livello dewar durante incidente "faina"

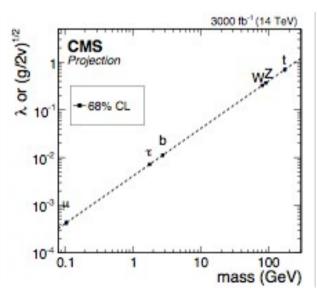
Export: JSON | CSV

L'upgrade di CMS per HL-LHC

Technical Proposal Upgrade CMS per HL-LHC


CERN-LHCC-2015-010 LHCC-P-008 CMS-TDR-15-02

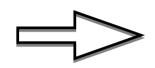
June 2015 https://cds.cern.ch/record/2020886


Programma:

 $\int L = 3000 \text{ fb-1 Collisioni p-p } @14\text{TeV}$

- Studio di alta precisione delle proprietà del bosone di Higgs.
- Ricerca diretta di nuove particelle alla scala del TeV.
- Esplorare le proprietà delle nuove particelle scoperte durante il Run2!:-)





CMS @ HL-LHC

Danneggiamento da radiazione

L1 rate $\sim 750 \text{ kHz}$ < PU > $\sim 140 - 200$

necessità di track-trigger L1

New Endcap Calorimeter

- Radiation Tolerant
- High Granularity
- 3D capability

Barrel Calorimeter

- Replace FE/BE electronics
- Lower operating temperature(8°)

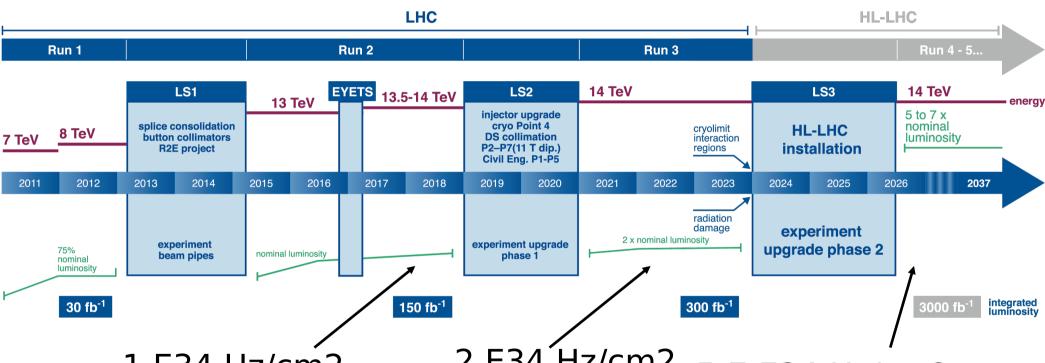
New Tracker

- Radiation tolerant less material
- 40 MHz selective readout (PT>2 GeV) for track trigger
- Extend to coverage of η~3.8

Muon system

- Replace DT/CSC FE/BE electronics
- Complete RPC coverage In region 1.5<η<2.4
- Muon tagging with GEMs for 2.4<η<3.0

Trigger/HLT/DAQ


- L1 Track Trigger
- L1 Trigger: 12.5 µs latency, 750 kHz output
- HLT output of 7.5 kHz

(Current L1: 4 µs latency, 100 kHz output)

L'evoluzione di LHC

LHC / HL-LHC Plan

1.E34 Hz/cm2

Bx=25ns

PU~25-30

2.E34 Hz/cm2

Bx=25ns

PU~50

5-7.E34 Hz/cm2 (init~20E34 Hz/cm2)

Bx=25ns

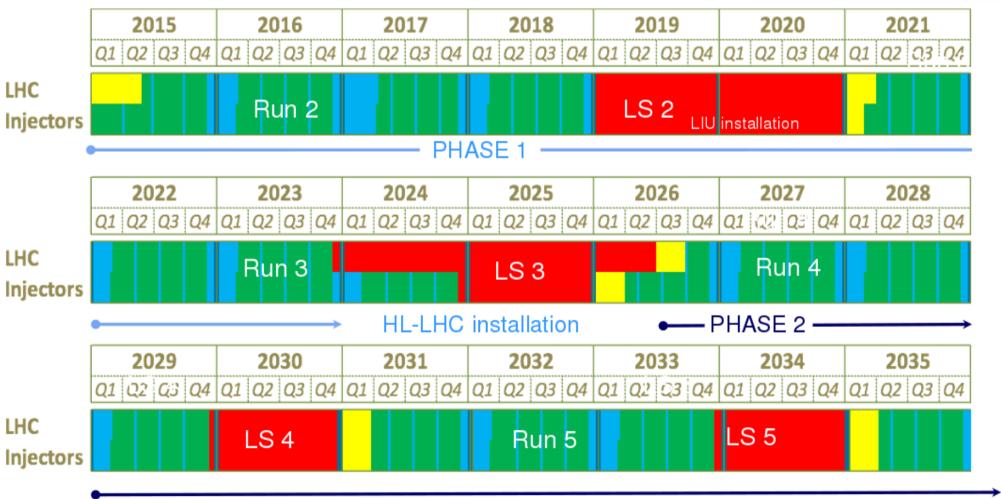
PU~140-200

http://hilumilhc.web.cern.ch /about/hl-lhc-project

LHC roadmap: according to MTP 2016-2020

LS2 starting in 2019

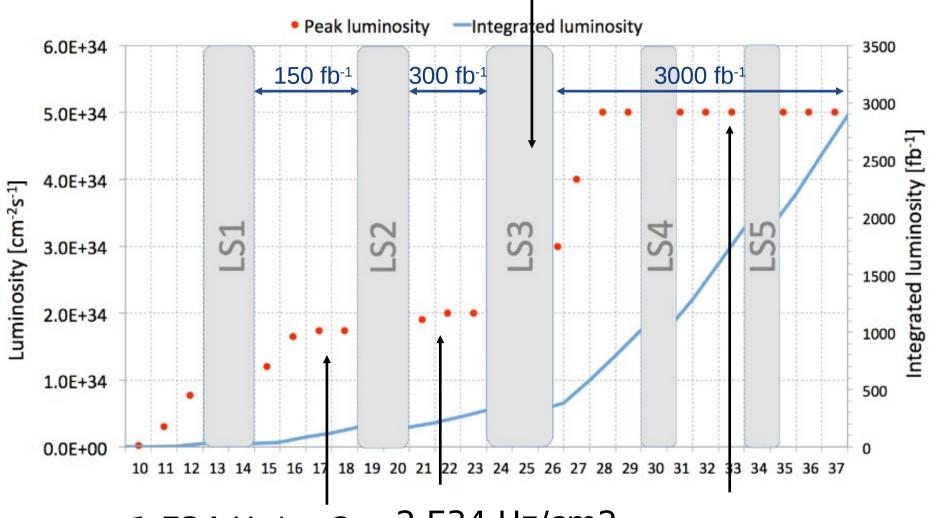
LS3 LHC: starting in 2024


Injectors: in 2025

=> 24 months + 3 months BC

=> 30 months + 3 months BC

=> 13 months + 3 months BC

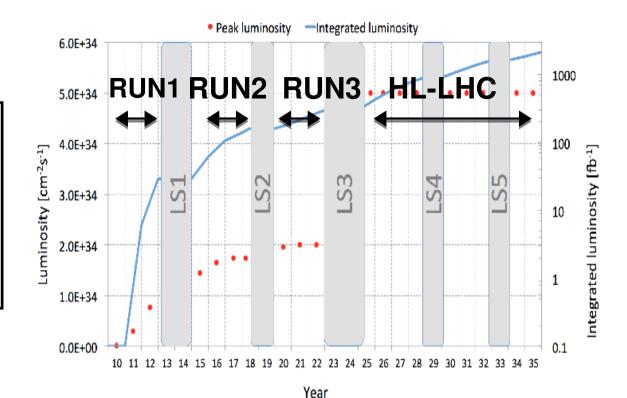


24th June 2015

L'evoluzione di LHC

new low-β triplets

1.E34 Hz/cm2 Bx=25ns PU~25-30


2.E34 Hz/cm2 Bx=25ns PU~50

5.E34 Hz/cm2 (init~2E35 Hz/cm2) Bx=25ns PU~140-200

HL-LHC

RD FASE2

Sigla contenitore delle richieste per l'R&D sui detector di HL-LHC congiunto ATLAS e CMS

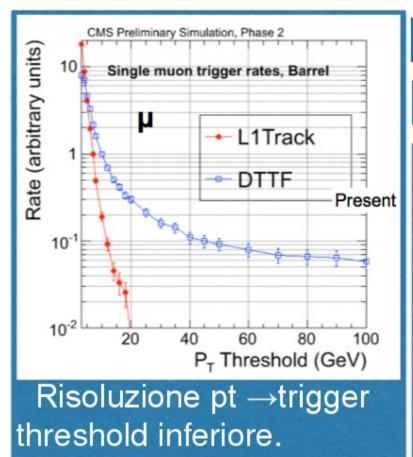
A Firenze:

R&D sul nuovo tracciatore centrale di CMS:

- Simulazione della geometria e tracciatura
- R&D e sviluppo del pixel detector
- new studio del sistema di alimentazione del pixel detector

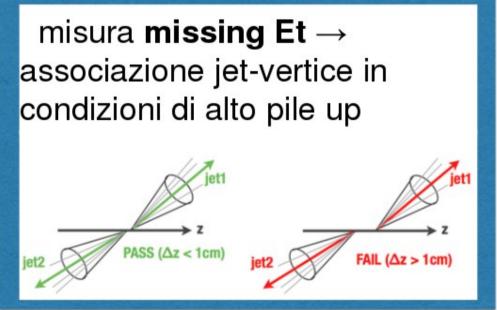
AIDA-2020 progetto europeo

Implementazione del tracciatore nel trigger L1:

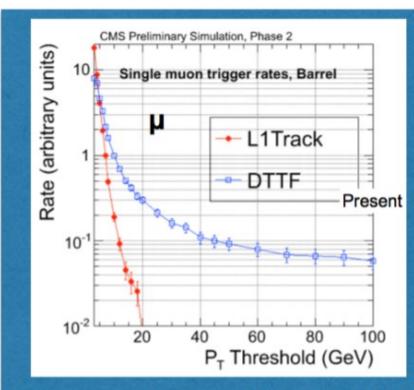

- studi di fisica
- utilizzo di memorie associative

PRIN H-TEAM

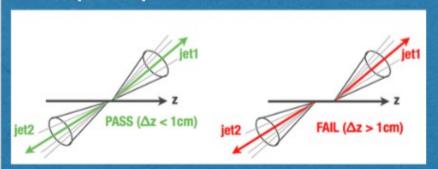
(aspetti di fisica del trigger Lv1 del tracciatore)


II track trigger L1

Il tracciatore permette di guadagnare selettività sugli oggetti primari (μ, e, τ, γ, missing Et). Già al L1.



distinzione y vs e

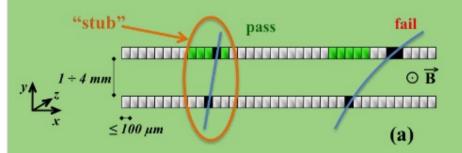

misura isolamento di γ,μ,e

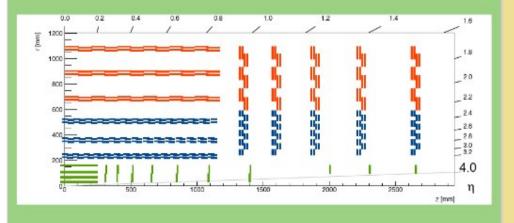
L1 Track Trigger

Threshold-pt γ vs e isol γ, e, μ Et with PU

Necessario per guadagnare selettività sugli oggetti primari a L1

a Firenze:

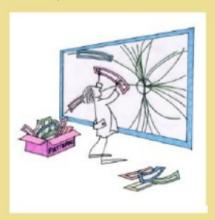

simulazioni per ottimizzare algoritmi di pattern-recognition e track-finding in funzione delle scelte sul track-trigger (esempio: ottimizzazione banche dati AM)

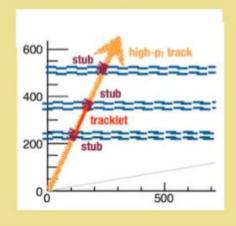

Studio dei canali di fisica quali H→WW e della loro selezione a L1

L1 Track Trigger: come

Condizioni al contorno: collision rate 40MHz, L1 latency richiesta ~10μs, L1 accept rate < 1MHz, HLT rate < 10 kHz

 Limitazione bw detector/backend: dati ridotti sul rivelatore imponendo soglia in pt ~ 2GeV/c




2) Pattern recognition e tracking. Tre approcci:

memorie associative (AM) per PR + FPGA per tracking

- FPGA based reco da coppie di stubs (tracklets)
- Time Multiplexed Triggers: ciascun BX esaminato isolatamente da un singolo processore→ switching network

