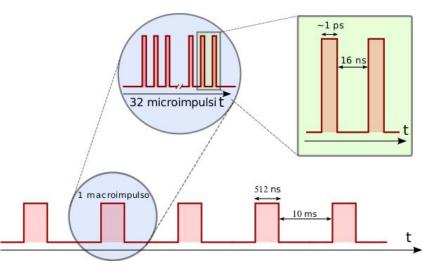
EuroGammaS


European Collaboration for a Gamma-Beam System to the ELI-NP Project

- ELI-NP, in costruzione in Romania, è il pilastro del progetto europeo ELI dedicato alla ricerca e alle applicazioni in fisica e astrofisica nucleare
- La collaborazione EuroGammaS si occupa della realizzazione del Gamma Beam System
- Il fascio γ sarà ottenuto dal backscattering Compton di un fascio laser particolarmente intenso e un fascio di elettroni relativistici

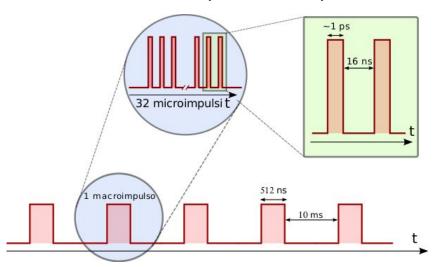
Il fascio γ ad ELI-NP:

- Due linee di fascio:
 - Low energy: 1-3 MeV
 - High energy: 3-20 MeV
- Monocromatico:
 - Bandwith 0.5%
- Intenso:
 - 10⁵ fotoni per microimpulso;

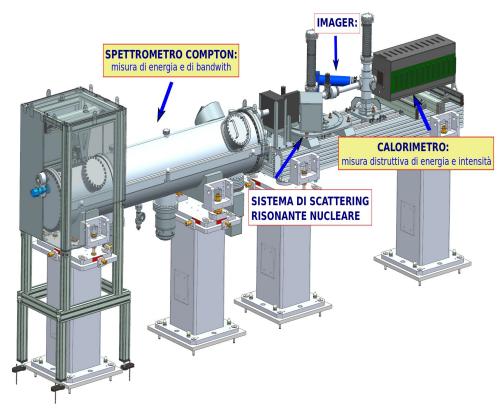
Il fascio γ ad ELI-NP:

• Due linee di fascio:

Low energy: 1-3 MeV


High energy: 3-20 MeV

Monocromatico:


Bandwith 0.5%

Intenso:

10⁵ fotoni per microimpulso;

Sistema di caratterizzazione del fascio γ:

Il gruppo di Firenze, assieme alle sezioni di Ferrara e Catania, fa parte della collaborazione WP09 di FuroGammaS che si occuperà della realizzazione del sistema di caratterizzazione

Personale FI

Oscar Adriani

Michela Lenzi

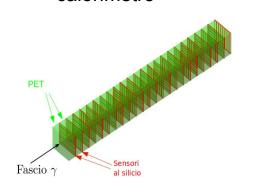
Roberto Ciaranfi

Giovanni Passaleva

Michele Veltri

Giacomo Graziani

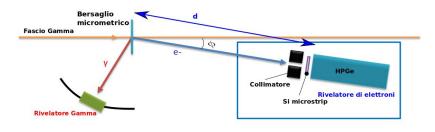
Oleksander Starodubtsev


Alin Serban

Rita Borgheresi

I rivelatori in costruzione a Firenze:

Il calorimetro a campionamento:


- Misura dell'energia e dell'intensità media del fascio realtivi al singolo microimpulso
- La misura dell'energia avviene sfruttando la dipendenza dello sviluppo longitudinale dello sciame dall'energia del fascio
- L'intensità del fascio viene invece ricavata dall'energia totale depositata nel calorimetro

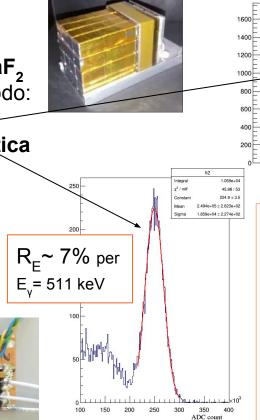
E' costituito da
22 piani di
rivelatori al
silicio alternati
a blocchi di
PET

Lo spettrometro Compton:

- Monitoraggio dell'energia del fascio gamma con una risoluzione attesa dello 0.5%
- Bersaglio micrometrico per minimizzare l' interferenza con il fascio
- HPGe e microstrip di silicio fanno una misura dettagliata dell'energia e della posizione dell'elettrone Compton
- BaF₂ effettua una misura veloce di energia e posizione del fotone diffuso così da ridurre gli eventi di fondo

Attività svolta nel 2016: lo spettrometro Compton

Gamma-detector:


 Caratterizzazione dei rivelatori a BaF₂ accoppiati con gel ottico al multianodo:

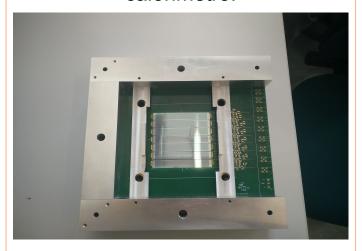
a. misure di risposta temporale

b. misure di risoluzione energețica

misure con le α prodotte dalla radioattività naturale del BaF₂ utilizzabili per **autocalibrare il rivelatore**

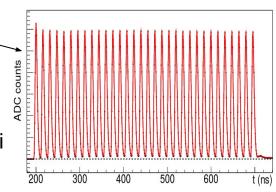
2. Realizzazione e test di un prototipo dell'elettronica di front-end.

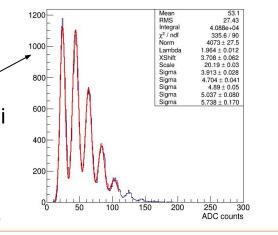
HPGe:


 γ^2 / ndf

 σ_{t} < 1 ns

La CANBERRA sta ultimando la produzione del rivelatore che verrà spedito e testato a Firenze ad agosto


Attività svolta nel 2016: il calorimetro


Realizzazione e test del **prototipo di un piano** del calorimetro.

Le schede di front-end e la meccanica dell'intero calorimetro sono in fase di produzione.

- 1. Con un laser impulsato
 nell'infrarosso è stata
 verificata la capacità, dei
 rivelatori e dell'elettronica
 ad essi associata, di
 lavorare con treni di impulsi
 distanziati di 16 ns.
- Z. Taglio e verifica della risposta I/V e C/V di ~300 rivelatori.
- Test per lo studio della / calibrazione in energia con i protoni del LABEC.
- Upgrade delle simulazioni Monte Carlo con GEANT4.

Attività prevista per il rimanente del 2016:

- Realizzazione e caratterizzazione di tutti i piani del calorimetro
- 2. Caratterizzazione del rivelatore **HPGe**
- Messa in opera dei rivelatori a microstrip del rivelatore di elettroni

Attività prevista per il 2017:

- Installazione e test dell' insieme dei rivelatori del sistema di caratterizzazione a Ferrara
- Spedizione, installazione e inizio della fase di commissioning a Magurele.