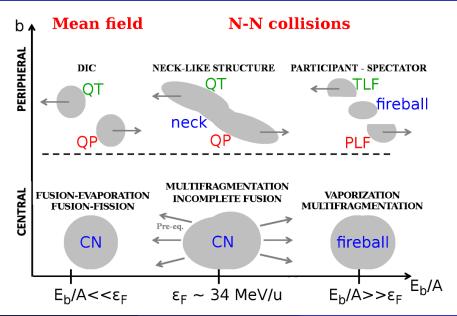


Simone Valdré

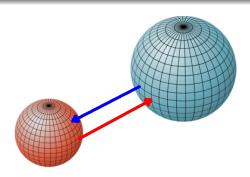
Università degli studi di Firenze e INFN — Sezione di Firenze


Gruppo III — Nucl-ex

Equilibrazione di carica in reazioni 32 S + 40,48 Ca a 17.7 MeV/u rivelate con l'apparato Garfield

Consiglio di Sezione — Preventivi 2017

Sesto Fiorentino, 1 Luglio 2016

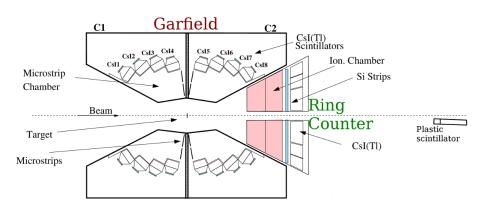

Collisioni tra ioni pesanti

Equilibrazione di carica

Isospin diffusion

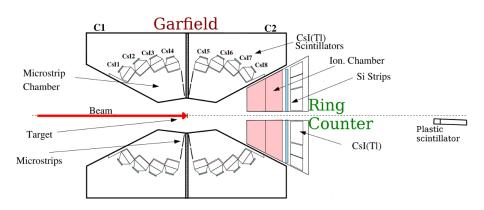
- gli isospin di proiettile e bersaglio tendono ad equilibrarsi durante l'interazione
- atteso nei sistemi analizzati

Isospin e fasci esotici

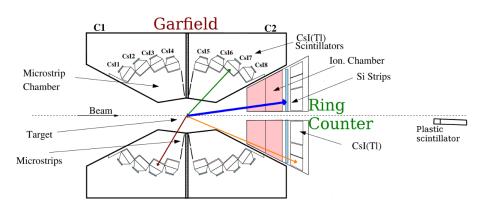


Isospin e fasci esotici

- SPES (LNL) entrerà presto in funzione
- fasci di ioni "n-rich" lontani dalla valle di stabilità
- lo studio dei fenomeni legati all'isospin sarà una tematica centrale nella fisica dei fasci esotici
- caratterizzazione di apparato e modello utile in prospettiva dei primi esperimenti con fasci esotici



Apparato sperimentale


- Vista laterale in sezione
- Simmetria cilindrica

Apparato sperimentale

- Vista laterale in sezione
- Simmetria cilindrica

Apparato sperimentale

- Vista laterale in sezione
- Simmetria cilindrica

Eventi di fusione-evaporazione

Spettri normalizzati al max per mettere in evidenza le differenze di forma

Rapporti isotopici delle particelle evaporate

	32 S $+$ 40 Ca		32 S $+$ 48 Ca	
ratio	exp F-E	exp F-F	exp F-E	exp F-F
d/p	0.15	0.13	0.25	0.23
t/p	0.031	0.024	0.089	0.075
$^{ extsf{3}} ext{He}/lpha$	0.039	0.030	0.025	0.022
⁷ Li/ ⁶ Li	0.69	0.63	1.45	1.33

• La sorgente in comune tra gli eventi F-E e F-F è evidente dalla similitudine dei rapporti

Rapporti isotopici delle particelle evaporate

ratio	32 S $+$ 40 Ca		32 S $+$ 48 Ca	
	exp F-E	exp F-F	exp F-E	exp F-F
d/p	0.15	0.13	0.25	0.23
t/p	0.031	0.024	0.089	0.075
3 He $/lpha$	0.039	0.030	0.025	0.022
⁷ Li/ ⁶ Li	0.69	0.63	1.45	1.33

• La sorgente in comune tra gli eventi F-E e F-F è evidente dalla similitudine dei rapporti

Rapporti isotopici delle particelle evaporate

	32 S $+$ 40 Ca		32 S $+$ 48 Ca	
ratio	exp F-E	exp F-F	exp F-E	exp F-F
d/p	0.15	0.13	0.25	0.23
t/p	0.031	0.024	0.089	0.075
3 He $/lpha$	0.039	0.030	0.025	0.022
⁷ Li/ ⁶ Li	0.69	0.63	1.45	1.33

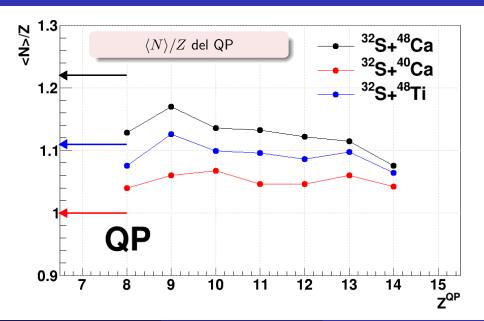
- La sorgente in comune tra gli eventi F-E e F-F è evidente dalla similitudine dei rapporti
- Il diverso isospin della sorgente (CN) appare evidente dalla composizione isotopica

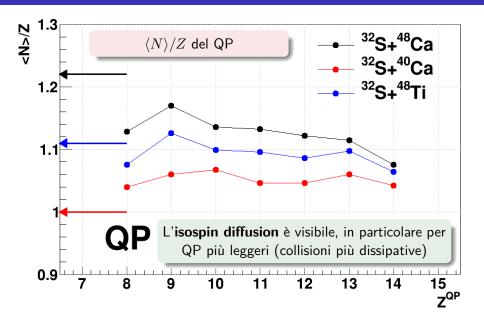
Rapporti isotopici delle particelle evaporate

	32 S $+$ 40 Ca		32 S $+$ 48 Ca	
ratio	exp F-E	exp F-F	exp F-E	exp F-F
d/p	0.15	0.13	0.25	0.23
t/p	0.031	0.024	0.089	0.075
$^3{\rm He}/\alpha$	0.039	0.030	0.025	0.022
⁷ Li/ ⁶ Li	0.69	0.63	1.45	1.33

- La sorgente in comune tra gli eventi F-E e F-F è evidente dalla similitudine dei rapporti
- Il diverso isospin della sorgente (CN) appare evidente dalla composizione isotopica

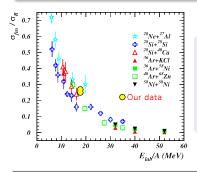
Rapporti isotopici per le particelle con $\vartheta_{\mathrm{QP}} < 90^{\circ}$


	32 S $+$ 40 Ca	32 S $+$ 48 Ti	32 S $+$ 48 Ca
d/p	0.061	0.100	0.187
t/p	0.008	0.021	0.062
$^3{ m He}/lpha$	0.132	0.095	0.105


• L'isospin diffusion si ripercuote sulle particelle emesse dal QP

Rapporti isotopici per le particelle con $\vartheta_{\mathrm{QP}} < 90^\circ$

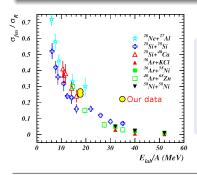
	32 S $+$ 40 Ca	32 S $+$ 48 Ti	32 S $+$ 48 Ca
d/p	0.061	0.100	0.187
t/p	0.008	0.021	0.062
$^3{ m He}/lpha$	0.132	0.095	0.105


- L'isospin diffusion si ripercuote sulle particelle emesse dal QP
- I rapporti sono molto diversi rispetto ai casi F-E / F-F

Sezioni d'urto

	32 S $+$ 40 Ca	32 S $+$ 48 Ca
Fusione	$(0.56 \pm 0.08)\mathrm{b}$	$(0.45 \pm 0.06)\mathrm{b}$
DIC	$(1.52 \pm 0.29)\mathrm{b}$	$(1.36 \pm 0.26)\mathrm{b}$
fus/tot	$(0.27 \pm 0.06) \ b$	$(0.25 \pm 0.06) b$

- Sistematica sul rapporto tra sezione d'urto di fusione e sezione d'urto totale
- I punti riferiti ai sistemi analizzati sono consistenti con la sistematica


1 Luglio 2016

10 / 11

P. Lautesse et al., Eur. Phys. J. A 27, 349 (2006)

Sezioni d'urto

	32 S $+$ 40 Ca	32 S $+$ 48 Ca
Fusione	$(0.56 \pm 0.08)\mathrm{b}$	$(0.45 \pm 0.06)\mathrm{b}$
DIC	$(1.52 \pm 0.29)\mathrm{b}$	$(1.36 \pm 0.26)\mathrm{b}$
fus/tot	$(0.27 \pm 0.06) \mathrm{b}$	$(0.25 \pm 0.06) \mathrm{b}$

- Sistematica sul rapporto tra sezione d'urto di fusione e sezione d'urto totale
- I punti riferiti ai sistemi analizzati sono consistenti con la sistematica

1 Luglio 2016

10 / 11

P. Lautesse et al., Eur. Phys. J. A 27, 349 (2006)

Considerazioni finali

- Si sono identificati e selezionati i **canali di reazione** principali nei sistemi 32 S + 40,48 Ca e 32 S + 48 Ti a 17.7 MeV/u
- Si sono evidenziati scostamenti di forma negli spettri di energia delle LCP che segnalano, d'accordo con la letteratura, la presenza di emissione di pre-equilibrio negli urti centrali
- in relazione ai canali di reazione (fusione, DIC) si sono studiati i contenuti isotopici sia dei frammenti principali (FF e QP) sia delle LCP associate
- Nel caso di reazioni di fusione si sono evidenziate forti differenze di isospin medio delle particelle emesse correlate ai diversi isospin delle sorgenti (CN) nelle varie reazioni
- Si sono evidenziati effetti di **isospin diffusion** nelle DIC dalla variazione di $\langle N \rangle/Z$ del QP in funzione dell'isospin del target