Phase I commissioning of the SuperKEKB rings

Demin Zhou

Accelerator theory group, Accelerator laboratory, KEK, Japan

On behalf of SuperKEKB Commissioning Group

General seminar, LNF INFN, Frascati, Italy Oct. 3, 2016

Outline

- Introduction
- Phase I commissioning
 - Vacuum scrubbing
 - Low emittance tuning
 - Beam background
 - Electron cloud
 - Impedance
- Plan for Phase II and III commissioning
- > Summary

Outline

> Introduction

- Phase I commissioning
 - Vacuum scrubbing
 - Low emittance tuning
 - Beam background
 - Electron cloud effects
 - Impedance
- Plan for Phase II and III commissioning
- > Summary

1. Introduction

Nano-beam scheme

- E (LER/HER): 3.5/8 🛥 4/7 GeV
- βy^{*} (LER/HER): 5.9/5.9 → 0.27/0.3 mm
- I_{beam} (LER/HER): 1.7/1.4 → 3.6/2.6 A
- ξ_y: 0.09 → 0.09
- Crab waist: optional
- £: 2.1 → 80 x10³⁴cm⁻²s⁻¹

Phase I

- w/o QCS and Belle-II
- Feb. Jun., 2016

Phase II

- w/ QCS and Belle-II
- w/o Vertex detector
- Around Nov. 2017 (~5 months)

Phase III

- w/ Full Belle-II including VXD
- After summer of 2018

1. Introduction

► Machine parameters

Phase III (w/ IBS)

	LER	HER	Unit
E	4.000	7.007	GeV
Ι	3.6	2.6	А
n_b	25	00	
С	3016	5.315	m
ε_{χ}	3.2	4.6	nm
ε_y	8.64	12.9	pm
β_x^*	32	25	mm
β_y^*	270	300	$\mu \mathrm{m}$
$2\phi_x$	8	3	mrad
α_p	3.19×10^{-4}	4.53×10^{-4}	
σ_{δ}	7.92×10^{-4}	6.37×10^{-4}	
V_{RF}	9.4	15.0	MV
σ_z	6	5	mm
ν_s	-0.0245	-0.0280	
v_x	44.53	45.53	
ν_y	46.57	43.57	
U_0	1.76	2.43	MeV
$ au_x$	45.6	58.0	msec
ξ_x	0.0028	0.0012	
ξ_y	0.0881	0.0807	
Ĺ	8×1	10^{35}	$cm^{-2}s^{-1}$

Phase I (w/o IBS)									
	LER	HER	Unit						
E	4.000	7.007	GeV						
Ι	1.01	А							
n_b	15	76							
ε_{x}	1.8	4.6	nm						
α_p	2.45×10^{-4}	4.44×10^{-4}							
σ_{δ}	7.52×10^{-4}	6.30×10^{-4}							
V_{RF}	7.56	12.61	MV						
σ_z	4.6	5.3	mm						
v_s	-0.0192	-0.0253							
v_x	44.53	45.53							
v_y	46.57	43.57							
U_0	1.76	2.43	MeV						
$ au_x$	46	58	msec						

Courtesy of Y. Ohnishi, NAPAC16

1. Introduction

Tasks for Phase I commissioning

- Preparations
 - > Hardware tunings with beam
 - > Operation software tests with beam
- Vacuum scrubbing
- Low emittance tuning
 - > Machine imperfections and countermeasures
 - > Target: vertical emittance <10 pm
- Studies on intensity-dependent phenomena
 - >> Beam background measurement with Beast detector
 - >> Electron cloud effects
 - > Impedance measurements
 - ≻....

Experiences of KEKB benefit SuperKEKB

- Reuse/upgrade of KEKB hardwares and softwares
- Well developed commissioning strategy

Outline

> Introduction

Phase I commissioning

- Vacuum scrubbing
- Low emittance tuning
- Beam background
- Electron cloud
- Impedance
- Plan for Phase II and III commissioning
- > Summary

► Early milestones

- Feb.1: Beam transport to BT => BT tuning
- Feb.8: Beam delivered to LER
- Feb.10: Beam stored in LER => LER tuning
- Feb.22: Beam delivered to HER
- Feb.26: Beam stored in HER => HER tuning

8

Courtesy of Y. Ohnishi, NAPAC16

> After 3 months from start

- KEKB (LER/HER): ~300/~200 mA
- SuperKEKB (LER/HER): ~650/~590 mA
- KEKB experiences => Efficient commissioning, less hardware failures, ...

► Vacuum chambers

- LER: ~93% renewed
- HER: ~82% reused

Achieved

- LER
 - ➤ Base pressure: ~5x10⁻⁸ Pa
 - > Ave. pressure: ~1x10⁻⁶ Pa
 - > I_{beam}: ~1.01 A
 - > τ_{beam}: ~70 min
- HER
 - ➤ Base pressure: ~3x10⁻⁸ Pa
 - > Ave. pressure: ~1x10⁻⁷ Pa
 - ≻ I_{beam}: ~0.87 A
 - **>** τ_{beam}: ~400 min

Pressure rise and expected photon stimulated gas desorption rate

Outline

> Introduction

Phase I commissioning

- Vacuum scrubbing
- Low emittance tuning
- Beam background
- Electron cloud
- Impedance
- Plan for Phase II and III commissioning
- > Summary

> Tools for optics correction

- Optics and orbit servers
- Continuous Closed orbit Correction (CCC)
- Tune changer
- Optics measurement and correction
- Local bump control

•

> Preparations before fine low emittance tuning

- Check polarity of magnets with beam
- Check BPM system (cabling, resolution, stability, ...)
- Beam Based Alignment (BBA)

•

> Optics measurements based on orbit response

- X-Y coupling: Measure leakages in vert. orbits by hor. kicks
- Dispersion: Measure response by changing RF frequency
- Beta function: Measure orbit response by steering kicks

Strategy for optics tuning

► Fine low emittance tuning

• Use iteration instead of full response matrix method

 The 3 corrections are correlated with each other, but interference assumed to be small since the diagonal parts of transfer matrix dominate
For one ring, the iteration (loop of corrections in X-Y coupling, dispersion and beta function) converges typically in 30-60 min

Beta function correction: LER

Before correction

17

Beta function correction: LER

• After correction

Courtesy of H. Sugimoto

> Tune chromaticity measurement: **HER**

Good agreement with optics model

Courtesy of H. Sugimoto

> Tune chromaticity measurement: LER

• Remarkable discrepancy against optics model

Courtesy of H. Sugimoto

> X-Y coupling correction: LER

• Leakages in vert. orbits induced by 6 kinds of horizontal dipole correctors

► X-Y coupling correction: LER

> X-Y coupling correction: LER

Courtesy of Y. Ohnishi

► X-Y coupling correction: LER

• History of global X-Y coupling

► X-Y coupling correction: HER

X-Y coupling correction: **HER**

Courtesy of Y. Ohnishi

► X-Y coupling correction: HER

• History of global X-Y coupling

Performance of optics correction

• Achieved in the end of Phase I

Items	Symbol	LER	HER		
Global coupling	$ C^{-} (\times 10^{-3})$	1.2	2.0		
X-Y coupling*	$rms(\Delta y)/rms(\Delta x)$	0.9 %	0.6 %		
Hor. dispersion	$\operatorname{rms}(\Delta \eta_x)$	8 mm	11 mm		
Ver. dispersion	$rms(\Delta \eta_y)$	2 mm	2 mm		
Hor. beta func.	$\operatorname{rms}(\Delta\beta_x/\beta_x)$	3 %	3 %		
Ver. beta func.	$rms(\Delta\beta_y/\beta_y)$	3 %	3 %		
Hor. tune	$\Delta v_x (\times 10^{-4})$	2	5		
Ver. tune	$\Delta v_y (\times 10^{-4})$	5	1		

Estimate of vert. emittance

Courtesy of Y. Ohnishi

Estimate of vert. emittance: LER

3. Low emittance tuning

Estimate of vert. emittance: HER

Compare with estimate from X-ray beam size monitor

- LER: Almost agree
- HER: Huge discrepancy (to be understood)

Courtesy of Y. Ohnishi

Outline

> Introduction

Phase I commissioning

- Vacuum scrubbing
- Low emittance tuning
- Beam background
- Electron cloud
- Impedance
- Plan for Phase II and III commissioning
- > Summary

4. Beam background

Items to be studied

- Touschek, vacuum and injection backgrounds
- Collimators for reducing background

Various measurements (fast charged particle, high-energy photons, thermal/ MeV neutron, dosimetry, etc..) to validate beam loss simulation

Courtesy of H. Nakayama

4. Beam background

Beam gas backgrounds reduce with vacuum scrubbing

BEAST background in the LER vs time

BEAST data shows the LER backgrounds decreasing as vacuum scrubbing proceeds.

Courtesy of H. Nakayama

4. Beam background

Measured Touschek lifetime

	Measured Touschek life	Measured Touschek rate	Simulation (scaled to study condition)				
LER (I _b =0.34mA, I=540mA, σ _y =56um)	~100 min	5.9GHz (ring total)	3.6~5.0 GHz				
HER(I _b =0.41mA,I=640mA, σ_y =62um)	~400 min	1.7GHz (ring total)	0.6~0.9 GHz				

LER loss rate seems consistent. HER might be also consistent if HER X-ray monitor overestimates beam size by factor of 2~3.

Courtesy of H. Nakayama

Outline

> Introduction

Phase I commissioning

- Vacuum scrubbing
- Low emittance tuning
- Beam background

• Electron cloud

• Impedance

Plan for Phase II and III commissioning

> Summary

Effect of antechamber and TiN coating in LER

- Use electron current monitor to detect e-cloud
- Compared with KEKB
- When I_{beam}<400mA, e-cloud well suppressed
- When I_{beam}>500mA, e-clould build up w/o TiN coating

Effect of clearing electrodes in LER

- Clearing electrodes installed in the wiggler sections
- Use electron current monitor to detect e-cloud
- Fixed beam current: Electron current saturates at ~100 V
- Fixed DC 300 V: Electron current independent of filling pattern => Likely

evidence of secondary photoelectron

> Nonlinear pressure rise caused by aluminium bellows

- Bellows fabricated w/o TiN coating
- Non-linear pressure rise against the beam current in LER
- The behavior is quite similar to that of electron currents measured at aluminum parts without TiN coating.
- Actually, we have aluminum bellows chambers without TiN coating along the ring. The bellows chamber has a length of 0.2 m and located every 3 m on average. ~5 % in the ring.

> Nonlinear pressure rise caused by aluminium bellows

- Countermeasures: permanent magnets or solenoid windings
- Non-linear pressure rise against the beam current in LER
- As a test, we applied a magnetic field of axial direction by solenoids or permanent magnets at nine aluminum bellows chambers (~30 m section). The strength is 40 ~ 100 G near the inner wall at the center of bellows.
- As a result, the rate of pressure rise at this section relaxed!

► Vert. beam-size blowup (from XRM) in LER

• Threshold: depend on filling pattern and increase with vacuum scrubbing

• Varied conditions: # of trains, # of bunches in each train, # of buckets for bunch spacing

Electron cloud density at the blowup threshold

• Before installation of permanent solenoid at bellows

• Varied conditions: # of trains, # of bunches in each train, # of buckets for bunch spacing

Electron cloud density at the blowup threshold

• After installation of permanent solenoid at bellows

• Varied conditions: # of trains, # of bunches in each train, # of buckets for bunch spacing

Simulated electron density at the threshold current

Courtesy of K. Ohmi

Outline

> Introduction

Phase I commissioning

- Vacuum scrubbing
- Low emittance tuning
- Beam background
- Electron cloud

• Impedance

Plan for Phase II and III commissioning

Summary

► Transverse impedance

• Tune shift as function of bunch current

Courtesy of K. Ohmi

► Collimator

- Two PEP-II type collimators fabricated and installed to LER
- Tested with beam => Worked well and no excess heating at bellows behind
- Transverse impedance simulated and compared with measurement in tune

shift => Good agreement

Schematic of a horizontal-type collimator

Collimator installed in the tunnel

Longitudinal impedance

- Measure bunch lengthening using streak camera
- Asymmetric Gauss fitting (Mathematica)
- Compare with MWI simulations

$$\psi(z) = I_0 * e^{-\frac{(z-\bar{z})^2}{2[1+\operatorname{sign}(z-\bar{z})A]^2\sigma^2}} + I_1$$

► RF tuning

• RF voltages are measured via power meter. The uncertainty of RF voltage for each cavity is ~±5%

• The RF phase for each cavity is tuned to maximise the measured synchrotron tune

• The RF phase is automatically determined by the balance between RF acceleration and SR+HOM loss.

• After RF phase optimization, measured synch. tune is compared with analytic formula => Good agreement at low bunch current

48

Longitudinal impedance: LER

- Fitting model: f(I_b)=a*I_b+b
- σ_z from SAD simulation: 4.6, 5.3, 6.8mm at zero current
- Large discrepancy in zero-current bunch length between SAD simulation

and measurements

 $f_1(I_b) = 5.41 + 2.17I_b$ f₂(I_b)=5.95+2.35I_b $f_3(I_b)=7.58+2.21I_b$ $f_4(I_b) = 4.58 + 0.59I_b$

Longitudinal impedance: LER

- Bunch length as function of RF voltage
- Bunch current 0.25->0.11mA (V_{rf}=3.8->7.7MV)
- Measured bunch length ~20% larger than model => Systematic error in

stream camera system?

Longitudinal impedance: HER

- Fitting model: f(I_b)=a*I_b+b
- σ_z from SAD simulation: 5.3, 6.2, 7.8mm at zero current
- Large discrepancy in zero-current bunch length between SAD simulation

and measurements

Longitudinal impedance: HER

- Bunch length as function of RF voltage
- Bunch current 0.11->0.1mA (V_{rf}=6.2->12.48MV)
- Measured bunch length ~10% larger than model => Systematic error in

stream camera system?

Outline

> Introduction

- Phase I commissioning
 - Vacuum scrubbing
 - Low emittance tuning
 - Beam background
 - Electron cloud
 - Impedance

Plan for Phase II and III commissioning

> Summary

From Phase I to Phase II

- After phase 1 operation ends, renovation of MR from phase 1 to phase 2 will be conducted, which starts in July 2016.
 - QCS and Belle II installation and related works
 - Installation of QCS, cabling, piping, cool down, refrigerator test, and field measurements
 - Belle II roll-in
 - Related work to change IR configuration
 - Floor leveling, change concrete shields, remove/set normal-conducting magnets, etc.
 - More collimators
 - Two collimators are used in LER for phase 1. Six collimators will be added for phase 2.
 - Furthermore, after phase 2, more collimators are planned to be added.
 - Change injection part of LER
 - Septums and some vacuum components need to be changed to adopt low-emittance beam from DR and to match to smaller aperture at the IR.
 - Other improvements in LER and HER.
 - More turn-by-turn BPM detectors
 - Solenoid windings for electron-cloud, etc.
- Installation and startup of accelerator components for DR continues to start DR commissioning prior to (or during) phase 2.

54 Courtesy of K. Akai, KEKB MAC 2016

Operation schedule

55 Courtesy of K. Akai, KEKB MAC 2016

Schedule for IR construction

Calendar Year				20	016				2017											
Calendar Month	3	6	7	8	9	1 0	1 1	1 2	1	2	3	4	3	6	7	8	9	1 0	1 1	1 2
Tests and measurements of QCSL Magnet-Cryostat																				
Installing QCSL into IR																				
Construction of QCSL cryogenic system																				
Examination of high pressure gas regulation																				
Cooling the QCSL cryogenic system and excitation tests																				
Cooling the system and field measurements of QCSL with Belle																				
						-		-												
QCSR Magnet-Cryostat to KEK							\sim													
Installing QCSR into IR																				
Construction of QCSR cryogenic system																				
Examination of high pressure gas regulation																				
Cooling the QCSR cryogenic system and excitation tests																				
Field measurement of QCSR with Belle																				
Warm up of QCSL and QCSR, and																				
Cooling QCSL and QCSR for Phase-2 operation																				
Phase-1 commissioning																				
Phase-2 commissioning																				
2016/06/20		820	NA /-	0.1.0		-1													10	

2016/06/20

B2GM (2016-June)

18

56 Courtesy of N. Ohuchi, 24th B2GM, Jun. 2016

► Machine parameters

• Phase II target: 1x10³⁴ cm⁻²s⁻¹

D		Phas	e 2.x	Phas	•,	
Parameters	symbol	LER	HER	LER	HER	unit
Energy	Е	4	7.007	4	7.007	GeV
#Bunches	nb	15	76	25		
Emittance	ε _x	2.0	4.6	3.2	nm	
Coupling	ϵ_y/ϵ_x	5	5	0.27	%	
Hor. beta at IP	β_x *	128	128	32 25		mm
Ver. beta at IP	β_y^*	2.2	2.2	0.27 0.30		mm
Beam current	$I_{\rm b}$	1.0	0.8	3.6 2.6		А
Beam-beam	ξ_{y}	0.0228	0.0246	0.088	0.081	
Hor. beam size	$\sigma_{\rm x}$ *	16	24	10	11	μm
Ver. beam size	σ_{y}^{*}	470	711	48 62		nm
Luminosity	L	lxl	0 ³⁴	8x1	$cm^{-2}s^{-1}$	

57 Courtesy of Y. Ohnishi, 24th B2GM, Jun. 2016

Optics tuning strategy for Phase II

• Step-by-step squeezing $\beta_{x,y}^*$

58 Courtesy of Y. Ohnishi, 24th B2GM, Jun. 2016

Very optimistic from beam-beam simulations

- Assume emittance coupling = 2%
- Space-charge effect is not important
- Lattice nonlinearity is not very important
- L=1x10³⁴ cm⁻²s⁻¹ is promising
- Even L=10x10³⁴ cm⁻²s⁻¹ is possible

Outline

> Introduction

- Phase I commissioning
 - Vacuum scrubbing
 - Low emittance tuning
 - Beam background
 - Electron cloud
 - Impedance

Plan for Phase II and III commissioning

> Summary

8. Summary

➤ With KEKB experiences, the Phase I commissioning of SuperKEKB went smoothly

- Hardware tuning
- Vacuum scrubbing
- Beam background
- Low emittance tuning
 - Optics correction well done
- Leakage fields of Lambtrson magnet set an obstacle but not serious
 - Vert. emittance <10pm almost achieved
 - E-cloud effects unexpected but well understood from simulations
- Some issues to be understood
 - Tune chromaticity in LER
 - X-ray monitor measurement in HER
 - Streak camera measurement and bunch lengthening

9. Acknowledgements and References

Acknowledgements

- The SuperKEKB commissioning team
- The Belle-II team
- INFN: M. Biagini, S. Guiducci, M. Boscolo, M. Zobov, et al.
- > For more details, refer to:
 - Talks given by K. Akai, Y. Funakoshi, H. Nakayama, K. Ohmi, N.

Ohuchi, H. Sugimoto, Y. Suetsugu, et al. at the 21st KEKB Accelerator Review Committee meeting:

- http://www-kekb.kek.jp/MAC/2016/
- The 24th B2GM meeting for Belle-II: <u>https://kds.kek.jp/indico/event/21740/</u>
- Y. Ohnishi, paper and talk at NAPAC 2016

Thanks for your attention!