X-ray Polarimetry Explorers (XPE) Status and requests to INFN for 2017

> Luca Latronico INFN-Torino luca.latronico@to.infn.it

Torino, June 30, 2016

NEXT ESA/NASA CANDIDATE MISSIONS

XIPE (ESA M4)

IXPE (NASA SMEX)

- 3 out of 6 missions in phase A study for the last ESA and NASA calls are entirely devoted to X-ray polarimetry.
- 2 of them based on INFN technology

Recap of the science case and pointers

► Significant linear polarization expected in many diverse classes of X-ray sources:

- Emission processes (synchrotron radiation and inverse Compton).
- Geometry (scattering in aspherical geometries, propagation in magnetized plasmas).
- Fundamental physics (strong gravitational and/or magnetic field, propagation over cosmological distances).
- Polarimetry would add two parameters to the phase space:
 - polarization degree;
 - polarization angle.
- ► XIPE/IXPE would effectively open a new observational window:
 - Measure polarization for > 100 sources.
 - Broad and diverse science case.

XPE in CSN2:

- September 23, 2015, Sestri Levante: scientific case, see https://agenda.infn.it/conferenceDisplay.py?confld=11614
- April 4, 2016, Roma: technical aspects, see https://agenda.infn.it/conferenceDisplay.py?confld=11111
- XPE workshop in Torino, May 2016
 - https://agenda.infn.it/conferenceDisplay.py?confld=11412

Efficient photoelectric X-ray polarimetry

- The distribution of the direction of emission of a K-shell photoelectron is 100% modulated (if the incident radiation is 100% linearly polarized).
 - Main difficulty: at keV energies electrons propagate much less than photons in matter (need a gaseous absorption medium).
- The introduction of the Gas Pixel Detector (GPD) has paved the way to efficient X-ray photoelectric polarimetry.
- ▶ Key technology: custom ASIC used as a charge collecting anode.
 - entirely developed at INFN Pisa
 - Fully 2-dimensional, sufficient active area, low-noise.

The Gas Pixel Detector Assembly

- Sealed detector, filled with He 20% + DME 80% at 1 bar, 1 cm absorption gap.
 - Optimized for the 2–10 keV energy range.
- ASIC mounted on a standard package and PCB (miniboard).
 - ▶ 105k hexagonal pixels, 50 μm pitch; self-triggering, automatic ROI selection.
- ► Sealed gas cell assembled at Oxford In. (Finland).
- GEM with 50 μm pitch/50 μm thick produced by SciEnergy (Japan).

PERFORMANCE OF THE GPD AS A FOCAL-PLANE DETECTOR

- Modulation factor: from 0.2 @ 2 keV to 0.7 @ 8 keV
 - Residual modulation for unpolarized radiation $\sim 0.1\%$
 - Performance stable in time over \sim 3 years
 - Fair agreement with the Monte Carlo simulation
- \blacktriangleright ~ 90 μ m spatial resolution at 5.9 keV, measured (\ll track length)
 - ► Good match for a 20 arcsec-type X-ray optics with 3.5 m focal length
- ho ~ 15% energy resolution (FWHM) at 5.9 keV
 - Enough for spectrally-resolved polarimetry (in a few energy bins) when statistics allow it
- μ s-type time resolution
 - More than adequate for the shortest periodicity of interest

INFN RESPONSIBILITIES

- Project Office (design, construction and test) will be INFN responsibility—in synergy with industrial partner(s).
- Detector units: Gas Pixel Detector (GPD), housing and cabling.
 - Note: both XIPE and IXPE have three detector units.
- Back-end electronics: DAQ boards (and low/high voltages).
- Calibration & qualification for space.

1	IXPE - Detector Unit & Control Electronic Unit		*			2016					Т	2017			2018			1	2019				T	2020				1	r												
			S O	N	J	FM	A	N J	JA	S	D N	DJ	FI	I A	MJ	JA	S 0	NE	JF	М	AM	JJ	AS	0	V D	JF	MA	MJ	J,	A S	O N	D.	FI	A	MJ	JA	S	O N	DJ	FM	AN
	Task/Events	П			П		Pha	se A	Т	П	П	Т	Bri	dge	has	•	Phase	B	П	П					Π		Pha	se Cl	0				П	П		Т	П	П	П		П
			Т		П	Т	Π	П	Т	П		Т	П	П	Tz			П		Л		П		ΔT	Π			П	П	Δ		Π.	ΔT	П		Т	П		П		ſΤ
	Mission Milestones				П		П	П		П	Cont 10 (11,99)	2		П	50	101		П	10.00	14				004 /16/00	П			П	Π	(44 1A 1A			214	12				191.90			ſΤ
		П			П		П	П	Т	П	П	Т	П	ТТ	Т	П		П	П	П		П		П	П			П	П	П		П	П		90,20	Т	П	2	П		Æ
					П		ТТ	П	Т	П	П	Т	П	ТТ	Т	П		П	П	П		П			Π			П	П	П			П	П		Т	П	(11,08.7			ſΤ
					П		П	П				Т		Π					П	Π					П				Π						•			10	100.2		ſΤ
	Instrument Milestone	-ture		П		П	П		∇	П	14			1									П	14	1		П	П	12			П	12			П		П		ſΤ	
	instrument milestone				П		ТТ	П	- 7	11117	П	- 620- (CL	20.18	1400		98.17)	130	205	Γ.			П		П	(12,0)	14		П	П	18.9	110	П	П	-	10/20	Т	П	Т	П		ſΤ

IXPE (NASA) has tighter schedule than XIPE (ESA).

- IXPE downselection spring 2017.
- NASA site visit in November 2016 at MSFC
 - Need to provide a fully functional and calibrated GPD.
- no interruption between phase A and phase B.
- Critical Design Review in October 2017 (March 2021 for XIPE).
- Delivery of all flight items by end of 2018
- Launch in December 2020 (December 2025 for XIPE)

► Assume IXPE schedule, full GPD funding and team support for CSN2 requests

- \blacktriangleright ~ 1M in 5 years
- ASI will cover industrial contracts, mirrors, contracts to support staff

PHASE A ACTIVITIES AT INFN (2016–2017)

Definition of the mission concept for Phase A report

- Requirement definition power, thermal, alignment, data handling
- Interface definition mechanical and electrical
- Preliminary thermal and structural studies.
- Production and test schedule definition and documentation.
- Rough Order of Magnitude (ROM) costs (materials, tests, personnel).
- Build 2 lab-grade GPD prototypes in 2016 (for NASA and ESA site visits)
 - Assembly at Oxford In.
 - ASICs already in house for both missions.
 - Only 2 miniboards available, need to build a few more.
 - Only 1 GEM available, a new batch in production.
 - need to revamp GEM test setup
- Perform two test campaigns requested by ESA
 - ASIC irradiation test at LNL (dedicated miniboards needed).
 - Long-duration leakage test for the gas cell (details TBD).

ACTIVITIES IN TORINO (2016–2017)

TESTS AND MECHANICS

Ion	Energy	LET	Flux	Exposure time
	[MeV]	$[MeV cm^2 mg^{-1}]$	$[\mathrm{ions}\mathrm{cm}^{-2}\mathrm{s}^{-1}]$	[hours]
²⁸ Si	157	8.6	10 ⁵	8.0
³⁵ Cl	171	12.5	10 ⁵	6.0
⁴⁸ Ti	196	19.8	10 ⁴	6.0
⁵⁸ Ni	220	28.4	10 ³	3.0
⁷⁹ Br	241	38.6	10 ³	3.5
¹⁰⁷ Ag	266	54.7	10 ³	3.5
^{127}I	276	61.8	10 ²	2.0

- Support ASIC SEE Irradiation test at LNL
 - Build mechanical interface between LNL vacuum chamber and XPE ASIC mininoards
 - Staff SEE tests
 - analyze and document test outcome
- Support procurement and test of GEM and flight grade handling mechanics
 - technical overview plus potential prototyping (TBD)

ACTIVITIES IN TORINO (2016–2017)

Event reconstruction

Improve existing algorithms to determine impact point (imaging) and the emission direction (polarimetry).

ACTIVITIES IN TORINO (2016–2017)

OBSERVATION SIMULATIONS

- Use observation-simulation to estimate XIPE performance for specific targets
 - Gamma-Ray-Bursts (Swift sample)
 - Supernove Remnants

GRUPPO XPE INFN-TORINO

Nome	Affiliazione	%
Alvarez-Crespo N.	Dottoranda Università di Torino	50%
Bonino R.	Università di Torino	50%
Latronico L.*	INFN	30%
Massaro F.	Università di Torino	50%
Negro M.	Dottoranda Università di Torino	50%
	Totale FTE	2.3

- *Responsabile locale
- ► Sigla INFN under discussion in CSN2 starting from July 20th meeting
- ▶ Responsabile locale may change in 2018 in case of selection
- \blacktriangleright Additional \sim 5.2 FTE at INFN-Pisa (lead by Luca Baldini, national leader).

Richieste anno 2017

Capitolo	Voci specifiche	Subtotale [k€]	Totale [k€]
Missioni	2 settimane/uomo a MSFC	4	
	2 settimane/uomo gruppi lavoro Italia	2	
	2 settimane/uomo EU per assemblaggi	2	
			8
Consumo	Piastra supporto test irraggiamento	2	
	Piastra handling flight-grade	20	
			20
Apparati	10 GEM	25	
	sistema test GEM	10	
			35
		Totale	65
Lab. Tecnologico*	Progettazione	0.5 M/U	
	Lavorazioni meccaniche e installazione	1 M/U	

- * possibly at the end of 2016
- expect some fraction of SJ funding pending approval
- ASI currently supporting phase-A
 - \blacktriangleright \sim 60 k€ for the 2 GPDs under construction, 2 TD (tecnologi) at INFN-Pisa