Servizi Base per Bellell

<u>Umberto Tamponi</u>

tamponi@to.infn.it

Roberto Mussa

mussa@to.infn.it

The TOP on Bellell

Good news first: the TOP installation is done

Four months-long effort by 20+ people shifting at KEK (~10 people constantly on the field)

Now the effort is on debugging and calibration of the front end electronics, and integration in the global DAQ

Fiber bundle preparation

Bundles are protected by 6.2mm diameter miniflex tubing. Bundles were assembled in Fuji Hall, exploiting the large space to avoid entanglement of fibers.

Fiber test on detector

The laser is directly connected to each fiber (no PLC) to check the integrity after the installation

- \rightarrow No damaged fibers
- \rightarrow fluctuations in light yield are due to the SM-SM connection

Laser: TOP tomography with time

TOP tomography: real data

Family picture

Hitmaps. All asics and fibers are OK!

H. Atmacan

24th B2GM, June 22 2016

8 8

To be done: FEE calibration

Lots of features are still missing

- \rightarrow fast feature extraction
- → time alignment
- \rightarrow data corruption
- \rightarrow time sampling calibration

IRS3X is basically an 8-ch, miniaturized scope controlled by a FPGA

- Full waveform mode: acquire a fixed number of samples after the trigger
 → For debugging. Insane data packet size
- 2) Feature-extraction mode: analyze the traces on the FPGA and same only the hit informations → target operation mode, still under development

Debugging setup in Torino

One full boardstack, 2 MCP-PMT

Similar (but not identical) setups only in Hawaii and Pacific northwest national laboratories (PNNL)

Goal: deconvolve laser effects form electronics ones

Requirements to complete the setup

Electronics: F. Rotondo, 3 months

<u>Mechanics:</u> O. Brunasso, 2 months

Backup

Schedule

Belle II construction schedule reconsideration : 2016 May 31

		2016		2017			2018	
	1 2 3	4 5 6 7 8 9 10	11 12 1 2 3	4 5 6 7	8 9 10 11	12 1 2 3 4	5 6 7 8	
Global Operation	Phase 1	Summer I (5mo) Shutdown		Sun Shu	nmer tdown	Phase 2 (5mo)	Sumn Shutc	
machine time per JFY	2		3			5		
Belle roll-out/in								
		phase 1 to 2					phase 2 to 3	
Global Position	pit		On Beam L	ine		On Beam Lin	e	
ТОР								
Solenoid field measurement			GCR -VF (c	letails to be				
CDC		CDC	worked out)				
ECL ARICH Ecap		ent to Tsi	BW I	enc to Tsu ARIC cor	GCR -V (details to be worked •worked			
VXD				BE.	000	CR	VXD	
Cryogenics (for Solenoid)		Me	-VF/Measur	rement	-V/Measu	r Beam		
			CO2					
	pipe for							
	Disco	BEASI from						
	for		manifold					
IBBelle CO2	IBBelle		to dock IBBelle					
ready on site		◆ CDC	◆ BP2					
		• TOP		ARICH	PXD	◆ SVD		
		● ECL	BEAST V	XD		• VXD		
COMP								

Testing workflow

Pre-installation test

Run coordinator: B. Fulsom (PNNL)

Fuji staging area

- \rightarrow First power-up
- \rightarrow electronics and data fibers tests
- \rightarrow light tightening
- \rightarrow 24+ hrs of cosmics

Tsukuba Staging area

 \rightarrow 20 hrs of cosmics \rightarrow 4+ hrs of laser

In situ test

Run coordinator: U.T. (Torino)

\rightarrow Detector commissioning

- \rightarrow Cabling test
- \rightarrow 24+ hrs of laser
- → 3+ days Cosmic with custom scintillator trigger
- \rightarrow laser system commissioning

Developments

- \rightarrow FW upgrade tests
- \rightarrow simultaneous readout
- \rightarrow real-life operations

Commissioning status

Many items: this talk will be Italy-biased...

CRT commissioning

In the staging areas

7

T pulse - T hit [tdc bin]

CRT commissioning

On the detector

KLM trigger was asked long ago, but it is not ready yet
→ home-made scintillator trigger (Nagoya)
→ this is a very serious issue for us

Two modules (back-to-back) at once \rightarrow 0.15 – 0.05 Hz, $\beta \sim 1$

Timing

IRS3X is basically an 8-ch, miniaturized scope controlled by a FPGA

- 1) Full waveform mode: acquire a fixed number of samples after the trigger \rightarrow For debugging. Insane data packet size
- 2) Feature-extraction mode: analyze the traces on the FPGA and same only the hit informations → target operation mode, still under development

How to make timing

- 1) Final operation mode: RF clock
- 2) Commissioning:
 - → When a trigger comes, inject a pulse on one asic channel
 - \rightarrow record both the PMT signal and the pulse
 - \rightarrow use the pulse timing as reference

Commissioning with laser

Reminder:

- \rightarrow one bundle (9 light sources) per module
- \rightarrow flashing in front of the PMTs

Occupancy from MC simulation....

Reality of the very first laser run...

Very first laser run

 \rightarrow why such large inhomogeneities?

Origin of the inhomogeneities

The light is flashed over the final MM bundle form few mm distance in a cilindrical connector

distribution!

connector axis \rightarrow Not homogeneous light SM fiber axis

SM fiber not aligned with the

High-tech beam profiler in Torino

Light modulation on a MM bundle

Flat-fielders

Flat fielder from Padova

A quite dramatic example (and proof of Ezio's alignment skills)

Residual inhomogeneities reduced by a factor of 10

Data-MC comparison

We have a set of single-spot laser data taken on module 07 to make data-MC comparison

hitmap of the direct laser light

Pixel hit distribution from fiber No.4

Quite different light spot Shape

→ no Q.E. correction → no gain correction

Ring-like structures

MC: Gaussian spot Data: Not gaussian at all!

time of flight hspot h_TOF hspot 300 7825 Entries 7825 500 Entries 0.9281 3.395 Mean x Mean Mean y 0.6252 Std Dev 0.06631 ana ba Cuidia. 200 Std Dev x 119.4 Std Dev y 118.4 400 100 300 0 12 200 -100 100 -200 -300 ᅆ _200 100 200 10 Graph2D Light trajectory inside the fiber 100 mm 0.06 mm

Simulation (UT's private code, to be released)

The light is entering the MM fiber from a narrow, non-zero angle

- \rightarrow helicoidal propagation
- \rightarrow ring-like spot

Still to be included in the simulation

TOP readout: Time base calibration

- Inverter chain has transistor variations
 - $\rightarrow \Delta t_i$ between samples differ
 - \rightarrow "Fixed pattern aperture jitter"
- "Differential temporal nonlinearity" $TD_i = \Delta t_i - \Delta t_{nominal}$
- "Integral temporal nonlinearity" $TI_i = \Sigma \Delta t_i - i \cdot \Delta t_{nominal}$
- "Random aperture jitter" = variation of Δt_i between measurements

Time base calibration from laser

After the channel-by-channel time bin correction:

- \rightarrow channel intercalibration (time alignment)
- \rightarrow module intercalibration (time alignment)

Time base calibration from laser

The laser is the primary system for the time-base calibration

Minimization is not trivial

- \rightarrow clean hit selection
- \rightarrow fast hit finding
- \rightarrow iterative method: must converge in the right place

Hawaii – Torino – Wayne State joined effort

$$I \text{ ns} \rightarrow 250 \text{ ps} \text{ (goal: < 80 ps)}$$

18

TOP DAQ

6 November 2015

2015 IEEE NSS -- Varner

8

Firmware development

Main issues

→ Manpower

1 (2) person is working on this from PNNL (Hawaii)

→ Feature extraction (Hawaii - PNNL)

Full waveform \rightarrow hits 64x15x 512 words / event $\rightarrow \ \sim 8x50$ words / event 10 Hz $\rightarrow \ 10$ kHz

→ Soft reboot (Hawaii - PNNL)

A large fraction of problems is now solved with hard reboot

- \rightarrow long operation time
- \rightarrow not really a solution

→ DAQ integration (Hawaii – PNNL - KEK)

- \rightarrow We cannot run the copper at its full speed
- \rightarrow We experience tranfser rate slowing down during data taking

What can be done in Italy

\rightarrow A full FE boardstack is in Torino

- \rightarrow no way to get a copper / FTSW
- \rightarrow FW development is still possible

Software development

Two different frameworks, sometimes overlapping

- top (M. Staric)
- \rightarrow Intended for final data analysis
- \rightarrow MC simulation is analyzed with it
- \rightarrow Coherent, simple, but unsuitable for debugging

topcaf (M. Barret, J Strube, U.T.)

- \rightarrow Intended for full waveform analysis
- \rightarrow Developed at PNNL, changed at least 3 generations of mantainers
- \rightarrow Large overlappings with top
- → Needs to be improved!

Some examples:

- \rightarrow New dT calibrator (Hawaii Torino Wayne state) : **1 hr/run \rightarrow 5 mins / run**
- \rightarrow New hit finder (Torino) : **3 hrs/run** \rightarrow **10 mins** / **run**
- \rightarrow Improved calibration pulse selection (Torino PNNL): efficiency +100%

Conclusions

TOP commissioning is going well

- \rightarrow No dead channels
- \rightarrow all modules have comparable performances

Some items are on the critical path

- \rightarrow feature extraction
- \rightarrow time calibration
- \rightarrow KLM cosmic trigger
- \rightarrow Software

B-field test form June 15th

 \rightarrow No access to the detector

CDC goes in in August

→ No more room for HW replacing and Recabling

HW must be commissioned within the next 2 weeks

Testing schedule won't fit any slide...

https://belle2.cc.kek.jp/~twiki/bin/view/Detector/TOP/WebHome

Tracking down the reflected spot

MC with one single source out of nine

Channel-by-channel ratio may not be the best observable

 \rightarrow can we build a look-up table to predict the reflected pattern based on the direct one?

Origin of the inhomogeneities: toy MC

Alignment survey

We compare the gaussian fit of the x and y projections of the hit maps

- \rightarrow Maximum position
- \rightarrow spot size (x only)

Timing

Timing (II)

Zoom in the laser light region

Timing (III)

Even finer zoom: direct laser light only

time vs pixel

Timing: all channels

Integrating over all the channels (assuming 1 time bin = 0.357 ns, which is not correct probably)

Direct light resolution: ~350 ps (360 assuming time bin = 0.370 ns)

Timing: single channel

Some single channel time distributions

1. Ped subtract & 50% CFD

Example laser timing Residual

PLC splitter

Planar lightwave circuit

- \rightarrow tree of Y shaped, micrometric light guides
- \rightarrow Construction technology similar to electronic semiconductors
- \rightarrow Splitting efficiency ~ 1-2% per channel (only ~50% light loss due to splitter!)

Good uniformity of the light output from each channel from tests both in Padova (with CCD) and in Torino (single photon counting on PMT)

24 (16 + 8 spares), 27-m long single mode fibers prepared By O. Brunasso in Torino

FC connector to the PLC via an SC-FC adapter

SMA connector to the Multi-mode bundle in the calibration connector boxes fixed on the detector

Connector polishing

A bad polishing of the fiber connector was observed in Torino using the SEM → A diffraction pattern is produced in the beam spot profile seen on a commercial CCD

GOOD

All the 24 fibers are tested on each size using 401nm light in Fuji F1

No bad polishing on any connector was found

M3000 0116 2015/06/17

12:53 NLSD9.8 x800

Coating integrity

Dark count rates are taken connecting to the PMT eah SM fiber, leaving it exposed to white light

Dark count rate [Hz]

Delay

24 fibers connected to the PLC to have 4 similar fibers in each bundle

- \rightarrow test of the system AS IT IS ON THE DETECTOR
- \rightarrow outlier are left as spare fibers

Single Photon time resolution

Time resolution is slightly worst than the one obtained in Torino

- \rightarrow Different DAQ
- \rightarrow Lower PMT gain

Transmission efficiency

Comparison between single photon counting on each fiber, normalized to the countings from the laser only

