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Abstract— We present an innovative and high performance 

embedded system for real-time pattern matching. The design 

uses Field Programmable Gate Arrays (FPGAs) and the powerful 

Associative Memory chip (an ASIC) to achieve real-time 

performance. The system works as a contour identifier able to 

extract the salient features of an image. It is based on the 

principles of cognitive image processing, which means that it 

executes fast pattern matching and data reduction mimicking the 

operation of the human brain. 
P. Luciano is with the University of Cassino and Southern Lazio (email: 

pierluigiluciano@pi.infn.it). 

C.-L. Sotiropoulou, S. Citraro and M. Dell’ Orso are with the University of 

Pisa and INFN Pisa Section (email: c.sotiropoulou@cern.ch, 
saverio.citraro@pi.infn.it, mauro.dellorso@pi.infn.it) 

S. Gkaitatzis is with the Department of Physics of the Aristotle University 

of Thessaloniki (email: stamatios.gkaitatzis@cern.ch) 
M. Viti is with the Department of Informatics of the University of Pisa, 

(email: vitimario2@gmail.com) 

A. Retico and P. Giannetti are with INFN Pisa Section (email: 
alessandra.retico@pi.infn.it, paola.giannetti@pi.infn.it). 

I. INTRODUCTION  

We have built an Associative Memory (AM) system for the 
Fast Tracker (FTK) processor [1], a recently approved upgrade 
for the ATLAS trigger [2]. FTK is a high-performance 
embedded system based on the combination of two innovative 
technologies: powerful and flexible FPGAs working with 
standard-cell ASICs, the Associative Memory (AM) chips [3], 
for utmost gate integration density and maximum performance 
to execute the pattern matching algorithm. The most interesting 
processes generated at LHC are very rare and hidden in an 
extremely high level of background. Implementing the most 
powerful selections in real-time (trigger) is therefore essential 
to fully exploit the physics potential of experiments where only 
a very limited fraction of the produced data can be recorded. 
This is a specific case of “Big Data” problem whose solution is 
based on the organization of the trigger in different levels of 
selections [4]. At low level we exploit parallelized, dedicated 
hardware for an extremely efficient preprocessing step. 

This trigger organization is similar to models of the vision 
processing task performed by the brain. Our embedded system 
can accelerate neurophysiologic studies of the brain. The most 
convincing models about brain functioning hypotheses are 
extremely similar to the real time architectures developed for 
high energy physics. A multilevel model seems appropriate to 
describe the brain image processing [5]: “the brain works by 
dramatically reducing input information by selecting for 
higher-level processing and long-term storage only those input 
data that match a particular set of memorized patterns. The 
double constraint of finite computing power and finite output 
bandwidth determines to a large extent what type of 
information is found to be meaningful or relevant and becomes 

part of higher level processing and longer-term memory”. The 
AM pattern matching process has demonstrated to be able to 
play a key role in high rate filtering/data-reduction tasks. 
Simulations [5] have shown the potential of the pattern 
matching algorithm on static 2-D images. Since the needed 
computational time causes serious limits to the capability to 
extend these studies to 3-D images and movies, we are 
developing an implementation that will use the AM system [6] 
based on the AM chip [7] for a real-time pattern 
selection/filtering of the same type studied in these models of 
human vision. These studies could have an impact in the area 
of medical imaging for real-time diagnosis or any area where 
pattern matching is relevant and computing is a limiting factor.  

II. THE FILTERING ALGORITHM 

Fig. 1 shows the results of the simulations of the model 
described in [5] where pattern matching with relevant patterns 
is used to filter the main features of the image. 

 

Fig. 1: natural image (a) and corresponding filtered images(b,c) 

 

The pictures on the right (b,c) show the quality of the 
filtered images. The butterfly can be clearly recognized even if 
the image information is reduced at the level of 10% or less of 
the original content. The associative memory works as an edge 
detector implementation able to extract the salient features.  
 The pattern is defined as the collection of pixels contained 
in a 3×3 pixel square, as shown above the butterfly image (a) in 
Fig. 1. Each square is converted in a 9 bit sequence (each bit is 
1 for a black pixel and zero for a white one for B/W) or an 18 
bit sequence in case of 4 levels of grey (2 bits/pixel). The bit 
sequence is used to identify the pattern. Starting from the left 
top corner the image is scanned by the 3×3 square moved in 
steps of one pixel toward the right. When the row is finished, 
the square is moved one pixel down to scan again the raw from 
the left to the right. Each pattern detected in the figure during 
the scan is compared to the set of “relevant patterns” 
predefined by a training phase. It is rejected if it does not match 
any of them; it goes back in its position in the picture if it is 
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accepted. Fig. 1 shows two collections of relevant patterns for 
two different selections. The 16 patterns in the blue box 
produce a larger image compression than the 50 patterns in the 
green box. The smaller is the set of chosen patterns the stronger 
the information reduction that is achieved in the end. 

Analyzing images with 4 or 8 levels of grey or using 3-D 
images increases the number of possible and relevant patterns. 
The pattern in the 3-D case is not a square, but a cube of pixels: 
a set of three 3×3 squares taken from 3 subsequent frames. 
Each pattern for B/W is made of 27 bits corresponding to 227 
possible patterns. If 4 levels of grey are used the total number 
of patterns becomes 254.  

A. Implementation 

The algorithm is divided in two main parts: “training” 

phase and the “Real-Time patterns recognition” phase, what 

we call the “data taking” phase. Most of the functions are 

executed by the FPGA with the only exception of the data 

taking, that is executed by the AM under the FPGA control. 

We have estimated the processing latency for the data taking 

exploiting the long AM experience accumulated in FTK [6]. 

For the training, instead, we implemented the logic on a Xilinx 

Kintex Ultrascale XCKU040 of a KCU105 evaluation board, 

easily connectable to an external PC (or a video camera) and 

to a set of AM chips [7]. We evaluate the training timing 

performance directly on the new hardware.  

The Training Phase is subdivided in the following steps: 

1. Calculation of the pattern appearance frequencies: The 

embedded system receives the image bit-streams (e.g., 

data from a PC or a video camera). The FPGA 

partitions/reorganizes the input data into the small 3×3 

pixel patterns. Then, for each possible pattern, the FPGA 

calculates the occurrence frequency in the processed 

images/frames, using a large set of training images, to 

measure the frequencies with precision. When the 

environment and the lighting conditions change, the 

training has to be repeated in order to identify the relative 

patterns set suitable for the new environment. Therefore  a 

continous real-time training execution is required to allow 

the device adapt itself autonomously to the different 

conditions of the images that it observes. 

2. Pattern selection: the system must decide which set of 

patterns is “relevant”, to be selected for memory storage 

and later use. We adopt the hypothesis described in [5] to 

maximize the capability to recognize shapes, i.e., 

maximum entropy is a measure of optimization. The set 

of patterns that produces the largest amount of entropy 

allowed by system limitations (size of the memory to 

store patterns and output bandwidth) is the best set of 

relevant patterns. In [5] are described the details of the 

selection. The selected patterns have to be written inside 

the AM bank for the following data taking phase. 

We implemented the training for 2D B/W images (Fig. 2).  

The FPGA needs to perform training in real-time for 

demanding streaming video applications. Several optimization 

techniques are used to achieve the best performance possible 

in the hardware implementation. The video frames are stored 

in the external memory before being transferred in an internal 

frame buffer. As soon as enough data has been transferred for 

the 3x3 patterns to be formed, a pattern identification matrix 

begins to be loaded. It identifies and propagates two patterns 

per clock cycle to the pattern accumulators. The accumulators 

are specifically designed to facilitate successive accumulation 

in the same memory location (“fall through” data logic). As 

soon as the whole image sample has been read, the pattern 

frequency is calculated by taking advantage the FPGA DSP 

slices. The architecture is generic and parametric to allow 

easier adaptation for the implementations of the more complex 

3-D and 4 levels of grey cases. 

 

 
 

Fig. 2: Training Phase Block Diagram 
 

III. PRESENTED DEMO 

We will present the hardware infrastructure of the system 

and the simulation framework. We will demonstrate by the 

simulation framework of the system the potential of the brain 

emulation algorithm for use in generic image processing as 

well as biomedical applications (e.g. MRI image processing). 

The demo will present the impact of the design parameters on 

the system output (number of selected patterns, selection of 

B/W or grey scale images etc.). 
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