KLOE results and perspectives for KLOE-2 on σ_{HAD} , a_{μ}^{HLO} and α (s) measurements

G. Venanzoni

INFN, Laboratori Nazionali di Frascati, Italy

KLOE-2 Workshop on e+e- collision physics at 1 GeV

26-28 October 2016 INFN - Laboratori Nazionali di Frascati, Italy

Outline

- ISR: a successful story
- Measurement of the 2π cross section and evaluation of $a_{\mu}^{\pi\pi}$:
 - Three different measurements (KLOE08, KLOE10, KLOE12) with different systematics confirm 3σ discrepancy on g-2
- Measurement of the running of the e.m. coupling constant α(s)
 below 1 GeV in the e+e-→μμγ process:
 - 6σ evidence of the hadronic contribution to $\Delta \alpha$
 - Extraction of Real and Im $\Delta \alpha$
 - Measurement of BR($\omega \rightarrow \mu \mu$)
- Measuring a_{μ}^{HLO} in the spacelike region
- Prospects for KLOE/KLOE2

ISR: a Successful Story

(see also W. Kluge, Nucl. Phys. Proc. Suppl. 181-182 (2008) 280)

Selected papers (apologizes for the ones missing)

Eur. Phys. J. C 6, 637–645 (1999) DOI $10.1007/\mathrm{s}100529800953$

THE EUROPEAN PHYSICAL JOURNAL C © Springer-Verlag 1999

Photon emission in muon pair production in electronpositron collisions V. N. Baier, V. A. Khoze, ZhETF 48 (1965) 946, Yad. Fiz. 2 (1965) 287

PHYSICAL REVIEW D

VOLUME 12, NUMBER 1

Equivalent-particle approximations in electron and photon processes of higher-order QED*

Min-Shih Chen Stanford Linear Accelerator Center, Stanford, California 94305 and Physics Department, University of Michigan, Ann Arbor, Michigan 48104[†]

> Peter Zerwas[‡] Stanford Linear Accelerator Center, Stanford, California 94305 (Received 6 March 1975)

Measuring $\sigma(e^+e^- \rightarrow \text{hadrons})$ using tagged photons

S. Binner, J.H. Kühn, K. Melnikov¹

Institut für Theoretische Teilchenphysik, Universität Karlsruhe, D-76128 Karlsruhe, Germany

Received 15 April 1999 Editor: P.V. Landshoff

Radiative return at NLO and the measurement of the hadronic cross-section in electron–positron annihilatic

Germán Rodrigo^{1a}, Henryk Czyż^{2,3b}, Johann H. Kühn^{1,4c}, and Marcin Szopa²

¹ TH-Division, CERN, CH-1211 Geneva 23, Switzerland.

- ² Institute of Physics, University of Silesia, PL-40007 Katowice, Poland.
- ³ Institute of Advanced Study, University of Bologna, I-40138 Bologna, Italy

⁴ Institut f
ür Theoretische Teilchenphysik, Universit
ät Karlsruhe, D-76128 Karlsruhe, Germany.

The hadronic contribution to the muon g-2 from hadron production in initial state radiation events at the e^+e^- collider DA Φ NE

1 J S. Spagnolo^a

Dipartimento di Fisica dell'Università di Lecce and INFN, Sezione di Lecce, via Arnesano I-73100 Lecce, Italy

KLOE MEMO nº195 August 13, 1999

$\begin{array}{c} \mbox{Measurement of the hadronic cross section} \\ \sigma(e^+e^- \rightarrow \pi^+\pi^-) \mbox{ from initial state radiative events} \\ \pi^+\pi^-\gamma \mbox{ with the KLOE detector} \end{array}$

Gabriella Cataldi, Achim Denig, Wolfgang Kluge, Graziano Venanzoni Institut für Experimentelle Kernphysik, Universität Karlsruhe

A. $e^+e^- \rightarrow \gamma f$ (hard - photon bremsstrahlung)

This bremsstrahlung process³ is shown in Fig. 6(a). It can serve as an instrument to study the low-energy behavior of the e^+e^- annihilation because the hard photon can carry away a large portion of the initial energy. Denoting by (1 - x) the fraction of energy the photon snatches away from the incident lepton, the invariant mass M of the final state f reads

Chen Zerwas, 1974!

ISR: Initial State Radiation

Neglecting final state radiation (FSR):

Theoretical input: precise calculation of the radiation function H(s, M²_{hadr}) → EVA + PHOKHARA MC Generator

> Binner, Kühn, Melnikov; Phys. Lett. B 459, 1999 H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003 (exact next-to-leading order QED calculation of the radiator function)

IN 2005 KLOE has published the first precision measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with ISR using 2001 data (140pb⁻¹) PLB606(2005)12 $\Rightarrow \sim 3\sigma$ discrepancy btw a_{μ}^{SM} and a_{μ}^{exp}

a_{μ} SM prediction vs experiment (around '04)

Very confused situation!!

Seminar @BNL - 7 July 2004

2005: KLOE: PLB606(2005)12

- 1) confirmed a $\approx 3\sigma$ deviation btw theory and experiment for $(g-2)_{u}!$
- 2) KLOE agrees with e^+e^- (Novosibirsk) data; disagrees with τ

Due to an error on the trigger efficiency (which didn't affect the evaluation of $a_{\mu}^{\pi\pi}$) and superior data quality KLOEo5 was superseded by KLOEo8

Measurements of the pion form factor & $a_{\mu}^{2\pi}$ at KLOE

DAΦNE: A Φ-Factory in Frascati (near Rome)

e^+e^- - collider with $\sqrt{s}=m_{\Phi}\approx 1.0195$ GeV Integrated Luminosity

2006

• Energy scan (4 points around m_{Φ} -peak)

• 240 pb⁻¹ at \sqrt{s} = 1000 MeV (off-peak data)

KLOE05 measurement (PLB606(2005)12) was based on 140pb⁻¹ of 2001 data!

KLOE08 measurement (PLB670(2009)285) was based on 240pb⁻¹ from 2002 data! KLOE10 measurement (PLB700 (2011)102) based on 233 pb⁻¹ of 2006 data (**at 1 GeV, different event selection**)

NEW: KLOE12 measurement (PLB720(2013)303) based on 240 pb⁻¹ of 2002 data **from** ππγ/μμγ **ratio**

Event Selection: Small Angle (SA)

Pion tracks at large angles

 $50^{\circ} \le \theta_{\pi} \le 130^{\circ}$

a) Photons at small angles

 $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

Photon momentum from kinematics:

$$\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced background contamination

Event Selection: Large Angle (LA)

Pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

a) Photons at small angles

 $\theta_{\gamma} < 15^{\circ} \text{ or } \theta_{\gamma} > 165^{\circ}$

Photon momentum from kinematics:

$$\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$$

- High statistics for ISR photons
- Very small contribution from FSR
- Reduced background contamination

b) Photons at large angles

 $50^{\circ} < \theta_{\gamma} < 130^{\circ}$

→Photon is explicitly measured in the detector!

- Threshold region accessible
- Lower signal statistics
- Increased contribution from FSR and

 $\phi \rightarrow \pi^+ \pi^- \pi^0$ (use off peak data)

Systematic errors on $a_{\mu}^{\pi\pi}$:

Reconstruction Filter	negligible
Background	0.3%
Trackmass/Miss. Mass	0.2%
p/e-ID and TCA	negligible
Tracking	0.3%
Trigger	0.1%
Acceptance $(\theta_{\pi\pi})$	0.1%
Acceptance (θ_{π})	negligible
Unfolding	negligible
Software Trigger	0.1%
√s dep. Of H	0.2%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on a_{μ} = 0.6 %

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on $a_{\mu} = 0.6$ %

 $a_{\mu}^{\pi\pi} = \int_{x1}^{x2} \sigma_{ee \to \pi\pi}(s) K(s) ds$

 $\sigma_{\pi\pi},$ undressed from VP, inclusive for FSR as function of $(M^0_{\ \pi\pi})^2$

 $a_{\mu}^{\pi\pi}(0.35-0.95\text{GeV}^2) = (387.2 \pm 0.5_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.3_{\text{theo}}) \cdot 10^{-10}$

KLOE10 result: Pion Form Factor

Table of systematic errors on $a_m^{pp}(0.1-0.85 \text{ GeV}^2)$:

Reconstruction Filter	< 0.1%
Background	0.5%
f ₀ +rp	0.4%
Omega	0.2%
Trackmass	0.5%
p/e-ID and TCA	< 0.1%
Tracking	0.3%
Trigger	0.2%
Acceptance	0.4%
Unfolding	negligible
Software Trigger	0.1%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $a_u = 1.0 \%$

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	< 0.1%

theoretical fractional error on $a_{\mu} = 0.6 \%$

$$a_{\mu}^{\pi\pi} = \int_{x1}^{x2} \sigma_{ee \to \pi\pi}(s) K(s) ds$$

0.6% 0.4% 1.0%

A CONTRACTOR

KLOE08 result compared to KLOE10:

KLOE covers ~70% of total a_{μ}^{HLO} with a fractional error of 1.0%

Comparison of results: KLOE10 vs CMD-2/SND

CMD and SND results compared to KLOE10: Fractional difference

band: KLOE10 error

Below the ρ peak good agreement with CMD-2/SND. Above the ρ peak KLOE10 slightly lower (as KLOE08)

Comparison of results: KLOE10 vs BaBar

BaBar results compared to KLOE10: Fractional difference

KLOE12 measurement from $\pi \pi \gamma / \mu \mu \gamma$

An alternative way to obtain $|F_{\pi}|^2$ is the bin-by-bin ratio of pion over muon yields (instead of using absolute normalization with Bhabhas).

• radiator function

- int. luminosity from Bhabhas
- Vacuum polarization

Separation btw $\pi\pi\gamma$ and $\mu\mu\gamma$ using M_{TRK}

- *muons:* $M_{Trk} < 115 \, MeV$
- pions : $M_{Trk} > 130 MeV$

Very important control of π/μ separation in the ρ region! $(\sigma_{\pi\pi} >> \sigma_{\mu\mu})$

μμγ cross section: data/MC comparison

•18

Comparison of results: KLOE12 vs KLOE10

Phys. Lett. B 720 (2013) 303

Fractional difference:

band: KLOE10 error

Excellent agreement between the two independent measurements!

Analysis	$a^{\pi\pi}_{\mu}(0.35 - 0.85 \text{ GeV}^2) \times 10^{10}$
KLOE12	$377.4 \pm 1.1_{\text{stat}} \pm 2.7_{\text{sys+theo}}$
KLOE10	$376.6 \pm 0.9_{\mathrm{stat}} \pm 3.3_{\mathrm{sys+theo}}$

$a_{\mu} = (g_{\mu} - 2)/2$ at 2013

Theoretical predictions compared to the BNL result

•The latest inclusion of all e⁺e⁻ data gives a discrepancy btw a_{μ}^{SM} and a_{μ}^{EXP} of 3 to 4σ

•Remaining differences on $\sigma_{\pi\pi}$ btw different experiments (mainly KLOE/BaBar) to be clarified [Δa_{μ}^{EXP-SM} =2.4÷3.7 σ]

 (Reduced) discrepancy with τ data (new I. corr.,ee,τ data).
 JS11 claims to have solved it

KLOE12 in agreement with previous KLOE measurements and confirms the 3σ discrepancy!

Very important the new g-2 experiments (at FNAL and JPARC)!

a_{μ}^{SM} : overview, recent analyses T. Teubner TAU2016

→ for more details see M Davier's talk tomorrow

From Fred Jegerlehner's arXiv:1511.04473:

Close Comparison of $\pi^+\pi^-$ Cross Sections

Comparison with BESIII

Preliminary combination of KLOE08,10,12

CON KLOK

by Stefan E. Müller

Combination of KLOE08,KLOE10, and KLOE12 using the Best Linear Unbiased Estimate (BLUE) based on: A. Valassi, NIM A500 (2003) 391 G. D'Agostini, NIM A346 (1994) 306

Measurement of F_{π} **with 2fb⁻¹**

- By using the full KLOE statistics (2 fb⁻¹) ~0.4% can be reached in the region 0.6-1 GeV (small angle region)
- To reach the same accuracy in the wider region 2π-1 GeV, a dedicate high-statistics (2fb⁻¹) run @1 GeV is necessary.
- Such an accuracy together with expected improvements above 1 GeV would allow to halve the error on $a_{\mu}^{\ HLO}$

	$\delta(\sigma)/\sigma$ present	δa_{μ} present	$\delta(\sigma)/\sigma$ prospect	δa_{μ} prospect
$\sqrt{s} < 1 \text{ GeV}$	0.7%	33	0.4%	19
$1 < \sqrt{s} < 2~{\rm GeV}$	6%	39	2%	13
$\sqrt{s} > 2 \text{ GeV}$		12		12
total		53		26

D. Babusci et al. arXiv:1007.5219

Measurements of the running of the e.m. coupling constant α (s) via e⁺e⁻ $\rightarrow \mu^+\mu^-\gamma$

(submitted to PLB)

$\alpha_{_{em}}$ running and the Vacuum Polarization

- Due to Vacuum Polarization effects α_{em}(q²) is a running parameter from its value at vanishing momentum transfer to the effective q².
- The "Vacuum Polarization" function Π(q²) can be "absorbed" in a redefinition of an effective charge:

$$e^{2} \rightarrow e^{2}(q^{2}) = \frac{e^{2}}{1 + (\Pi(q^{2}) - \Pi(0))} \qquad \alpha(q^{2}) = \frac{\alpha(0)}{1 - \Delta\alpha}; \quad \Delta\alpha = -\Re e \left(\Pi(q^{2}) - \Pi(0) \right)$$
$$\Delta\alpha = \Delta\alpha_{1} + \Delta\alpha_{2}(5) \qquad (1 + \Delta\alpha_{1})$$

> Δa takes a contribution by non perturbative hadronic effects ($\Delta a^{(5)}_{had}$) which exibits a different behaviour in time-like and space-like region

Running of α_{em}

Direct measurement of α_{em} running

Previous tests of the hadronic contribution to VP

1) 70's: g-2 experiment at CERN: evidence for hadronic contribution to g-2 at 6σ

2) '73: $\phi(1020)$ contribution to VP at ACO (Orsay e+e-) in the e⁺e⁻ $\rightarrow \mu + \mu$ - process: evidence at 3 σ in the region ±5 MeV around the ϕ peak

3) 2006: OPAL at LEP: evidence for hadronic contributon Δa_{had} (t) (t<0) at 3 σ in Bhabha scattering at small angle

 $\exp_{a_{\mu}} = 1 \ 165 \ 924 \ (8.5) \times 10^{-9} \ (7 \text{ ppm}).$

theo_			
QED terms	Muon	Numerical valu	$es(\times 10^9)$
2nd order: A	0.5	Total QED:	1 165 852 (1.9)
4th order: B	0.765 782 23	Strong interactions:	66.7 (8.1)
6th order: C	24.452 (26)	Weak interactions:	2.1 (0.2)
8th order: D 10th order: E	135 (63) 420 (30)	Total theory:	1 165 921 (8.3)

KLOE measurement of α (s) below 1 GeV with 1.7 fb⁻¹

• Measurement of the running of the fine structure constant α in the time-like region 0.6< $\!\!\!\sqrt{s}$ <0.975 GeV obtained via :

$$|\frac{\alpha(s)}{\alpha(0)}|^{2} = \frac{d\sigma_{data}(e^{+}e^{-} \to \mu^{+}\mu^{-}\gamma(\gamma))|_{ISR}/d\sqrt{s}}{d\sigma_{MC}^{0}(e^{+}e^{-} \to \mu^{+}\mu^{-}\gamma(\gamma))|_{ISR}/d\sqrt{s}} \qquad \vdots \qquad \text{data}$$

$$\text{MC with } \alpha(s) = \alpha(o)$$

- FSR correction done by by using PHOKHARA MC event generator
- Statistical significance of the hadron contribution to the effective $\alpha(s)$ is evaluated
- For the first time in a single experiment the real and Imaginary part of $\Delta \alpha$
- Measurement of BR($\omega \rightarrow \mu^+ \mu^-$)

About 4.5 x 10⁶ $\mu\mu\gamma$ events pass these selection criteria

μμγ cross section measurement

Measurement of the running of $\alpha(s)$

$$|\frac{\alpha(s)}{\alpha(0)}|^{2} = \frac{\frac{d\sigma^{ISR}}{dM_{\mu\mu}}}{\frac{d\sigma^{MC}}{dM_{\mu\mu}}}$$
MC with $\alpha = \alpha(0)$

- $|\frac{\alpha(s)}{\alpha(0)}|^{2} = 1/(1 \Delta\alpha(s))$ $\Delta\alpha(s) = \Delta\alpha_{lep} + \Delta\alpha_{had}$ (we neglect the top contribution)
- Δa_{had} obtained by dispersive approach using data in time-like region provided by F. Jegerlehner - Excellent agreement with other R compilation (Teubner / Ignatov)

$$\Delta \alpha_{had}(s) = -\left(\frac{\alpha(0)s}{3\pi}\right) Re \int_{m_{\pi}^2}^{\infty} ds' \frac{R(s')}{s'(s'-s-i\epsilon)} \qquad R(s) = \frac{\sigma}{2}$$

Systematic error at ~1% level

$$R(s) = \frac{\sigma_{tot}(e^+e^- \to \gamma * \to hadrons)}{\sigma_{tot}(e^+e^- \to \gamma * \to \mu^+\mu^-)}$$

Test of leptonic and hadronic contribution to $\alpha(s)$

 χ^2 -test for two hypotheses: no running and running due to lepton pairs only is performed.

We exclude the onlyleptonic hypothesis at 6σ Our result is consistent with the lepton and hadron hypothesis with a statistical significance of 0.3 $(\chi^2/ndf = 41.2/37)$.

Real and Imaginary part of $\Delta \alpha(s)$

In the contribution to the running of α the imaginary part is usually neglected. This approximation is not sufficient in the presence of resonances like the ρ meson, where the accuracy of the cross section measurements reaches the order of (or even less than) 1%.

In collaboration with F. Jegerlehner

Imaginary part of $\Delta \alpha(s)$

Results obtained for the 2π contribution to $\Delta\alpha$ by using KLOE12 measurement of the pion form factor (red full circles) and the ones obtained by using the $R_{had}(s)$ compilation with the 2π channel only and removing KLOE data (blue solid line).

$$Im\Delta\alpha = -\frac{\alpha}{3}R(s)$$

Real part of $\Delta \alpha(s)$

 $Re\Delta\alpha$ obtained by KLOE $\mu\mu\gamma$ data compared with theoretical prediction with leptonic contribution only and with leptonic and hadronic contributions. Excellent agreement for Re $\Delta \alpha(s)$ has been obtained with the databased compilation

$$Re\,\Delta\alpha = 1 - \sqrt{|\alpha(0)/\alpha(s)|^2 - (Im\,\Delta\alpha)^2}.$$

Fit of Re $\Delta \alpha$ (s)

We fit Re $\Delta \alpha$ by a sum of the leptonic and hadronic contributions, where the hadronic contribution is parametrized as a sum of $\rho(770)$, $\omega(782)$ and $\phi(1020)$ resonances components and a non resonant term (param. with a pol1)

$$Re \,\Delta \alpha_{V=\omega,\phi} = \frac{3\sqrt{BR(V \to e^+e^-) \cdot BR(V \to \mu^+\mu^-)}}{\alpha M_V} \frac{s(s - M_V^2)}{(s - M_V^2)^2 + M^2 \Gamma_V^2} \quad \text{For } \omega, \phi$$

$$F_{\pi}(s) = BW_{\rho(s)}^{GS} = \frac{M_{\rho}^2 (1 + d\Gamma_{\rho}/M_{\rho})}{M_{\rho}^2 - s + f(s) - iM_{\rho}\Gamma_{\rho}(s)}$$

For $\rho,$ neglecting interference with ω and high exc. stat. of ρ

 Γ_{ω} , M_{ϕ} , Γ_{ϕ} , and BR($\phi \rightarrow e^+e^-$)BR($\phi \rightarrow \mu^+\mu^-$) fixed to PDG values [pdg]

[pdg] K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update.

Fit of Re $\Delta \alpha$ (s)

Assuming lepton universality and multiplying for the phase space correction

$$\xi = \left(1 + 2\frac{m_{\mu}^2}{m_{\omega}^2}\right) \left(1 - 4\frac{m_{\mu}^2}{m_{\omega}^2}\right)^{1/2}$$
$$BR(\omega \to \mu^+ \mu^-) = \\= (6.6 \pm 1.4_{stat} \pm 1.7_{syst}) \cdot 10^{-5}$$
$$(9.0 \pm 3.1) \cdot 10^{-5} \text{ from PDG}$$

Parameter	Result from the fit	PDG
$M_{ ho}, { m MeV}$	775 ± 6	775.26 ± 0.25
$\Gamma_{\rho}, \mathrm{MeV}$	146 ± 9	147 ± 0.9
$M_{\omega}, { m MeV}$	782.7 ± 1.0	782.65 ± 0.12
$BR(\omega \to \mu^+ \mu^-) BR(\omega \to e^+ e^-)$	$(4.3\pm1.8)\cdot10^{-9}$	$(6.5\pm2.3)\cdot10^{-9}$
χ^2/ndf	1.19	-

Inclusion of ω - ρ interference don't change the result (within the error)

Proposal: Measuring a_{μ}^{HLO} in the space-like region

[C.M. Carloni Calame, M. Passera, L. Trentadue, G. Venanzoni Phys.Lett. B746 (2015) 325-32]

a_{μ}^{HLO} from space-like region

$$a_{\mu}^{HLO} = -\frac{\alpha}{\pi} \int_{0}^{1} (1-x) \Delta \alpha_{had} \left(-\frac{x^{2}}{1-x} m_{\mu}^{2}\right) dx$$

$$t = \frac{x^2 m_{\mu}^2}{x - 1} \quad 0 \le -t < +\infty$$
$$x = \frac{t}{2m_{\mu}^2} (1 - \sqrt{1 - \frac{4m_{\mu}^2}{t}}); \quad 0 \le x < 1;$$

- a_μ^{HLO} is given by the integral of the curve (smooth behaviour)
- It requires a measurement of the hadronic contribution to the effective electromagnetic coupling in the space-like region Δα_{had}(t) (t=q²<o)
- It enhances the contribution from low q² region (below 0.11 GeV²)
- Its precision is determined by the uncertainty on $\Delta \alpha_{had}$ (t) in this region

Experimental considerations

Using Bhabha at small angle (to emphasize t-channel contribution) to extract $\Delta \alpha :$

$$\left(\frac{\alpha(t)}{\alpha(0)}\right)^2 \sim \frac{d\sigma_{ee \to ee}(t)}{d\sigma_{MC}^0(t)}$$

Where $d\sigma^{o}_{MC}$ is the MC prediction for Bhabha process with $\alpha(t)=\alpha(o)$, and there are corrections due to RC...

$$\Delta \alpha_{had}(t) = 1 - \left(\frac{\alpha(t)}{\alpha(0)}\right)^{-1} - \Delta \alpha_{lept}(t) \qquad \Delta \alpha_{lep}(t) \text{ theoretically well known!}$$

Which experimental accuracy we are aiming at? $\delta\Delta\alpha_{had}$ ~1/2 fractional accuracy on $d\sigma(t)/d\sigma_{MC}^{0}(t)$.

If we assume to measure $\delta\Delta\alpha_{had}$ at 5% at the peak of the integrand ($\Delta\alpha_{had} \sim 10^{-3}$ at x=0.92) \rightarrow fractional accuracy on d $\sigma(t)/d\sigma^0_{MC}(t) \sim 10^{-4}$!

Very challenging measurement (one order of magnitude improvement respect to date) for systematic error

What can be done a KLOE/KLOE₂?

S.C. coil

Barrel EMC

Cryos

We did the following simulation:

- 20 points between 20°< θ <100° (0.03<-t<0.59 GeV²; 0.78<x<0.98) @ \sqrt{s} =1 GeV
- For each point $\delta \sigma_{e+e-} \sigma_{e+e-} \sim 10^{-4}$ (stat and syst)
- We fit $\Delta \alpha_{had}(t)$ using our points+ pQCD for -t>10 GeV² with a polynomial function (like lattice)

What can be done a KLOE/KLOE₂?

S.C. coil

Barrel EMC

Cryost

We did the following simulation:

- 20 points between 20°< θ <100° (0.03<-t<0.59 GeV²; 0.78<x<0.98) @ \sqrt{s} =1 GeV
- For each point $\delta \sigma_{e+e-} \sigma_{e+e-} \sim 10^{-4}$ (stat and syst)
- We fit $\Delta \alpha_{had}(t)$ using our points+ pQCD for -t>10 GeV² with a polynomial function (like lattice)

Considerations

- Results for KLOE/KLOE2 are preliminary and most likely conservative. For example we don't include lattice data which populate the complementary region 1<t<5 GeV² where we could expect a large improvement;
- A (strong) limitation with KLOE data is that we cannot use small angle Bhabha due to the QCAL occupancy, and therefore we should use γγ for the normalization (at 10⁻⁴!)
- This may be overcome at KLOE-2 where small angle detector exist or by a **dedicated** detector with an ultimate goal of ~10⁻⁵ uncertainty (10 ppm).
- In this case a goal of ~% on a_{μ}^{HLO} can be expected. Very challenging to keep under control systematic errors at 10^{-4+5} level!

Conclusions

- KLOE has pioneered the ISR method, performing in the last 15 years factor a series of precision measurements with ISR which confirmed a 3σ discrepancy between a_{μ}^{SM} and the BNL measured value
- The running of the e.m. coupling constant α has been measured in the process $e^+e^- \rightarrow \mu^+\mu^-\gamma$ in the o.6 - o.98 GeV $M_{\mu\mu}$ invariant mass range at 1.7 fb⁻¹.
- Clear contribution of the $\rho-\omega$ interference to the photon propagator with 6σ statistical significance.
- Imaginary and Real part of Δa extracted.
- By a fit of the real part of $\Delta a(s)$ and assuming lepton universality the branching ratio of $\omega \rightarrow \mu^+ \mu^-$ has been extracted.

Prospects

- Finish the combination of KLOE08,10,12 (cov matrix still missing)
- F_{π} from ratio with full KLOE statistics (1.7 fb^-1); analysis of $\pi\pi\gamma$ missing
- With KLOE and KLOE2 possibility to perform ISR studies also with other hadronic final states (3π , 4π , ϕ -> 2π , etc..)
- Proposal to measure a_{μ}^{HLO} in the space-like region: accuracy at few % at KLOE/KLOE-2 using Bhabha process depending on the control of the systematic errors (10⁻⁴÷ 10⁻⁵):

→Even few points of $\Delta a^{had}(t)$ at t=q²<0 (for example at q²=-0.1 GeV²→x=0.9) would be useful (never measured!)

SPARES

60'-70'(PRE)History of ISR (Apologize for missing articles)

- Photon emission in muon pair production in electron-positron collisions (e+ e- $\rightarrow \mu$ + μ - γ , otot, ISR, FSR, interference)V. N. Baier, V. A. Khoze, ZhETF 48 (1965) 946, Yad. Fiz. 2 (1965) 287
- Radiation accompanying two particle annihilation of an electron positron pair (scalar final states e+ e- → π+ π- γ, σtot, ISR, FSR, interference, formfactors) V. N. Baier, V. A. Khoze, Sov. Phys. JETP 21 (1965) 629, 1145 [Zh. Eksp. Theor. Fiz. 48 (1965) 946]
- Infra-red radiative corrections for resonant processes (ϱ, ω, φ intermediate states) G. Pancheri, Nuovo Cim. A 60 (1969) 321
- Radiative Corrections for Colliding Beam Resonances (application to $\psi(3.1), \psi'(3.7)$ intermediate states) M. Greco, G. Pancheri, Y. N. Srivastava, Nucl. Phys. B 101 (1975) 234
- Secondary Reactions in electron positron (electron) Collisions (pion form factor) M. S. Chen, P. M. Zerwas, Phys. Rev. D 11 (1975) 58

End of the 1990s: ISR at DAFNE and KLOE

- Hadronic Cross Sections in Electron-Positron Annihilation with Tagged Photon A. B. Arbuzov, E. A. Kuraev, N. P. Merenkov, L. Trentadue, JHEP 9812:009, 1998
- The hadronic contribution to the muon g-2 from hadronic production in ISR events at e+e- collider DAFNE, S. Spagnolo, Eur. Phys. J. C6 (1999) 637
- Measuring σ (e+ e- → hadrons) using tagged photon S. Binner, H. Kühn, K. Melnikov, Phys. Lett. B 459 (1999) 279
- Measurement of σ (e+ e- $\rightarrow \pi^+\pi^-$) from ISR with KLOE (first realistic study) G. Cataldi, A. Denig, W. K., G. Venanzoni, KLOE memo #195, August 1999,
- Bottomonium Υ(ns) spectroscopy at B- Factories via hard photon emission M. Benayoun, S. I. Eidelman, V. N. Ivanchenko, Z. K. Silagadze Mod. Phys. Lett. A 14 (1999) 2605

Years 2000s : ISR at the per mill precision: PHOKHARA enters the game (selected entries)

- NLO QED corrections to ISR in e+ e- annihilation and the measurement of sigma(e+ e- → hadrons) using tagged photons, G. Rodrigo, A. Gehrmann-De Ridder, M. Guilleaume and J. H. Kühn, Eur. Phys. J. C 22 (2001) 81
- The radiative return at small angles: Virtual corrections, J. H. Kühn and G. Rodrigo, Eur. Phys. J. C 25 (2002) 215
- Radiative return at NLO and the measurement of the hadronic cross-section in electron positron annihilation, G. Rodrigo, H. Czyż, , J. H. Kühn and M. Szopa, Eur. Phys. J. C 24 (2002) 71
- The radiative return at Phi- and B-factories: Small-angle photon emission at next to leading order, H. Czyż, A. Grzelińska, J. H. Kühn and G. Rodrigo, Eur. Phys. J. C 27 (2003) 563
- The radiative return at Phi and B-factories: FSR at next-to-leading order, H. Czyż, A. Grzelińska, J. H. Kühn and G. Rodrigo, Eur. Phys. J. C 33 (2004) 333
- The radiative return at Phi- and B-factories: FSR for muon % pair production at next-to-leading order, H. Czyż, A. Grzelińska, J. H. Kühn and G. Rodrigo, Eur. Phys. J. C 39 (2005) 411
- Complete QED NLO contributions to the reaction e+e-→μ⁺μ⁻γ and their implementation in the event generator PHOKHARA, F. Campanario, H. Czyż, J. Gluza, M. Gunia, T. Riemann, G. Rodrigo and V. Yundin, JHEP 1402 (2014) 114

HVP: HLMNT -> HKMNT in preparation

 $\pi^+\pi^-$ channel: + KLOE12, + BES III from Rad. Ret.:

Prel. HKMNT combination w. full cov.-matrices:

$$\chi^{2}_{min}$$
/d.o.f. = 1.4

- further improvements expected from CMD-3, more also from BaBar?
- ➔ see Simon Eidelman's talk on CMD-3
- Yaquian Wang's talk on BES III π FF & ISR

Measuring $\alpha(t)$ at 10ppm with a dedicated detector

- A dedicated detector with a coverage at small angle (< 5°) would allow to use small angle Bhabha for the normalization (N₀).
- The running of α can be obtained as "simple" ratio Ni/N₀ where Ni is the Bhabha[•] events in the $\Delta \theta_{i}$ bin.
- One can achieve an error $\sim 10^{-5}$ (stat+syst) on this ratio

Same simulation as in KLOE with 20 points and 10⁻⁵ (stat and syst) error for each point

Measuring $\alpha(t)$ at 10ppm with a dedicated detector

- A dedicated detector with a coverage at small angle (< 5°) would allow to use small angle Bhabha for the normalization (N₀).
- The running of α can be obtained as "simple" ratio Ni/N₀ where Ni is the Bhabha[•] events in the $\Delta \theta_{L}$ bin.
- One can achieve an error $\sim 10^{-5}$ (stat+syst) on this ratio

Experimental considerations - II

Most of the region (up to $x\sim0.98$) can be covered with a low energy machine (like Dafne/VEPP-2000 or tau/charm-B-factories)

Example: Covering up to 60° at $\sqrt{s=1}$ GeV can arrive at x= 0.95(!)

A different situation can be obtained at tau/charm/ B-factories (and at future ILC/FCCee machines) where smaller angles (below 20°) are needed $t = -s \sin^2(\frac{\vartheta}{2})$

Statistical consideration

10⁻⁴ accuracy on Bhabha cross section requires at least 10⁸ events which at 20° mean at least:

- O(1) fb⁻¹ @ 1 GeV
- O(10) fb⁻¹ @ 3 GeV
- O(100) fb⁻¹ @ 10 GeV

These luminosities are within reach at flavour factories!

Additional considerations: s-channel

At low energy (<10 GeV) above 10⁰ there is still a sizeable contribution from s-channel.

At LO no difficulty to deconvolute the cross section for the schannel

However this picture changes with Rad. Corr.

Additional considerations: Rad. Corr.

A Monte Carlo procedure has been developed to check if $\Delta \alpha_{had}(t)$ can be obtained by a minimization procedure with a different $\Delta \alpha_{had}(t)$ ' inside

Systematics

Syst. errors	$\sigma_{\mu\mu\gamma}$	$ \alpha(s)/\alpha(0) ^2$	
Trigger	< 0.1%		
Tracking	s dep. (0.5% at $\rho\text{-peak})$		
Particle ID	< 0.1%		
Background subtraction	s dep. (0.1% at ρ -peak)		
M_{TRK}	0.4%		
σ_{MTRK}	s dep. (0.05% at $\rho\text{-peak})$		
Acceptance	s dep. (0.3% at $\rho\text{-peak})$		
Software Trigger	0.1%		
Luminosity	0.3%		
$\Delta \alpha_{had}$ dep. (Normalization)	-	0.2%	
FSR treatment	0.2%		
Rad. function H	- 0.5%		
Total systematic error	s dep. (0.7% at $\rho{\rm -peak})$	(0.9% at $\rho{\rm -peak})$	

ISR: Initial State Radiation

61

Particle factories (DAFNE, PEP-II, KEK-B) can measure hadronic cross sections as a function of the hadronic c.m. energy using initial state radiation (radiative return to energies below the collider energy \sqrt{s}).

The emission of a hard γ in the bremsstrahlung process in the initial state reduces the energy available to produce the hadronic system in the e⁺e⁻ collision.

KLOE Detector

Drift chamber

 $\sigma_p/p = 0.4\%$ (for 90^o tracks) $\sigma_{xy} \approx 150 \text{ mm}, \sigma_z \approx 2 \text{ mm}$ *Excellent momentum resolution*

Full stereo geometry, 4m diameter, 52.140 wires 90% Helium, 10% iC₄H₁₀

бm

KLOE Detector

Electromagnetic Calorimeter

 $\sigma_{\rm E}/{\rm E} = 5.7\% / \sqrt{{\rm E}({\rm GeV})}$ $\sigma_{\rm T}$ = 54 ps / $\sqrt{E(GeV)}$ \oplus 100 ps (Bunch length contribution subtracted from constant term) **Excellent timing resolution**

Additional consideration: Normalization

To compare Bhabha absolute cross section from data with MC we need Luminosity of the machine. Two possibilities:

- 1) Use Bhabha at very small angle where the uncertainty on $\Delta \alpha_{had}$ can be neglected (for example at E_{beam} =1 GeV and θ =5°, $\Delta \alpha_{had}$ ~10⁻⁵).
- 2) Use a process with $\Delta \alpha_{had} = 0$, like $e^+e^- \rightarrow \gamma \gamma$. However very difficult to determine it at 10⁻⁴ accuracy.

Option 1) looks better to us as some of the common systematics cancel in the measurement !