KLOE 2 workshop on e+e- physics at 1 GeV, LNF, October 26-28, 2016

Selected topics of e+e- physics outside the phi region (BES III)

Achim Denig
Institute for Nuclear Physics
JGU Mainz

 Hadronic Cross Section Measurements at BES III ISR and R Scan

• Production of $J^{PC} = 1^{++}$ states in e+e- annihilation χ_{c1} and X(3872)

Hadron Production in e⁺e⁻ Annihilation

The Hadronic Contribution to $(g-2)_{\mu}$

*The Hadronic Contribution to (g-2)*_u

BESIII Experiment @ BEPCII

BESIII ISR Analysis: $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$

Initial State Radiation

Event yield after acceptance cuts only

Features:

- $\psi(3770)$ data only (2.9 fb⁻¹)
- no dedicated background subtraction
- tagged ISR photon

Pion Muon Separation needed

→ TMVA methods!

$e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$: π - μ Separation

TMVA method (Neural Network):

- trained using $\mu\mu\gamma$ and $\pi\pi\pi\pi\gamma$ MC events
- information based on track level
- efficiency matrix (p,Θ) for data, MC
- corrected for data MC differences
- cross checked for different TMVA methods

Event yield $\pi\pi\gamma$ after π - μ separation

Measurement of $\mu^+\mu^-\gamma$: Data vs. QED

Event yield $\mu\mu\gamma$ after π - μ separation (ANN)

Features:

- background from $\pi\pi\gamma$ very small
- PHOKHARA accuracy < 0.5%
- luminosity measurement based on Bhabha ev., 0.5% accuracy

Measurement of $\mu^+\mu^-\gamma$: Data vs. QED

Event yield $\mu\mu\gamma$ after π - μ separation (ANN)

Features:

- background from $\pi\pi\gamma$ very small
- PHOKHARA accuracy < 0.5%
- luminosity measurement based on Bhabha ev., 0.5% accuracy
- → excellent agreement with QED

$$\Delta$$
(MC/QED-data) -1 = (0.51 ± 0.28) %

→ accuracy on 1% level as needed to be competitive!

$e^+e^- \rightarrow \mu^+\mu^-\gamma$: Spin-Off Analyses

Comparison with existing Data

normalization to luminosity / radiator function

Impact on Hadronic Vacuum Polarization

Good agreement with KLOE found!

BES III confirms the (g-2)_u deviation at 3 ...4 sigma level!!!

JG

BESIII ISR Analysis: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$

Tagged Analysis: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$

$$\sigma(\sqrt{s'}) = \frac{12\pi}{\sqrt{s'}} F_{\rho\pi}(\sqrt{s'}) \left| \sum_{V=\omega,\phi,\omega',\omega''} \frac{\Gamma_V m_V^{3/2} \sqrt{\mathcal{B}(V \to e^+e^-)\mathcal{B}(V \to 3\pi)}}{D_V(\sqrt{s'})} \frac{e^{i\phi_V}}{\sqrt{F_{\rho\pi(m_V)}}} \right|^2$$

- Toy MC study to check effect of background
- Mass, width of ω and ϕ in agreement with PDG
- Branching ratios of ω and ϕ into 3π in agreement with PDG
- Clear indication for $\omega(1420)$ and $\omega(1650)$

Untagged Analysis: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$

$$\mathcal{B}(J/\psi \to \pi^+\pi^-\pi^0) = \frac{N_{\text{sig}}}{N_{J/\psi} \times \epsilon \times \mathcal{B}(\pi^0 \to \gamma\gamma)}$$

- Extract the J/ψ branching ratio to 3π
- Effect of interference found to be small
- BES III: BR(J/ $\psi \rightarrow 3\pi$) = (2.18 ± 0.03 ± 0.06) %
- PDG: (2.11 ± 0.07)%

Comparison with existing Data (preliminary) [G]

JG|U

New R Scan 2.0 - 4.6 GeV finished

Reducing the uncertainty of $\alpha_{em}(M_Z^2)$ by a factor 2 \rightarrow A new quantity of electroweak precision fits

$R_{incl} = \sigma_{had}/\sigma_{\mu\mu}$ ratio with targeted 3% systematic accuracy (statistical error <<1%)

 World's best measurement so far from BES/BESII with 5 ... 8 % total error (with 3 ... 5% statistical error)

Inclusive R Measurement

Production of Non-Vector-Resonances in e⁺e⁻ Annihilation

$$e^+e^- \rightarrow 1^{++}$$

• χ_{c1} Parameters:

Mass χ_{c1} = 3.5107 GeV Width χ_{c1} = 0.86 MeV Main decay channel (35% BR): $\chi_{c1} \rightarrow \gamma J/\Psi$

 \rightarrow Signal process: $e^+e^- \rightarrow \gamma J/\psi \rightarrow \gamma \mu^+\mu^-$

Irreducible background process: ISR production of J/ψ

Electronic Width of χ_{c1}

Czyz, Kühn, Trasc, arXiv:1605.06803

Interference effects lead to a value for Γ_{ee} for χ_{c1} of 0.41 eV

J. Kaplan, H.Kühn, PLB78 (1978) 252

Vector Meson Dominance (without ψ) predicts Γ_{ee} for χ_{c1} of 0.46 eV

N. Kivel and M. Vanderhaeghen, JHEP 02, 032 (2016)

Soft Collinear Theory Γ_{ee} for χ_{c1} is 0.09 eV

used for our beam time proposal

A.D., F.-K. Guo, C. Hanhart, A. Nefediev, PLB 736, 221 (2016) Vector Meson Dominance (without ψ ') predicts Γ_{ee} for χ_{c1} of 0.1 eV

Effect of the resonance ~ 10%

ISR Background $e^+e^- \rightarrow \mu^+\mu^-\gamma_{ISR}$

31 MeV above signal

$$E_{cms} = 3.542 \text{ GeV}$$

50 MeV above signal

$$E_{cms} = 3.561 \text{ GeV}$$

- excellent agreement, no indication of additional background
- effective cross section background 20.6 pb

Data Taking Plan at BES III $e^+e^- \rightarrow \chi_{c1}$

- Start of data taking campaign 2016/2017 (beginning of 12/16)
 - \rightarrow 2 weeks of data taking (> 300 pb⁻¹)
 - → Additional 10 days of data taking in case of >2 sigma observed
- Potential to observe 5 sigma effect (assuming no phase!)
 Beam energy spread, ISR effects included in calculation
- Beam Energy Measurement System
 Compton Backscattering developed by
 Novosibirsk group will be in place
 <<10⁻⁴ accuracy

Data Taking Plan at BES III e⁺e⁻

- Start of data taking campaign 2016/2017 (beginning of 12/16)
 - → 2 weeks of data ta
 - → Addition
- Bear
- Beam Compt Novosib <<10⁻⁴ ac

Historically first measurement in eteof a production of a non-vector state Test two-photon coupling of mesons, all virtualities

Can be applied to other charmonium and charmonium-like states: X(3872)

Laser beam

Upper Limit of $\Gamma_{ee}(X(3872))$

- Search for X(3872), J^{PC}=1⁺⁺, via
 Initial State Radiation ISR
- Fully available BESIII data set
- Small angle ISR photon
 At large angle production via Y(4260) → X(3872) γ

- Search for X(3872), J^{PC}=1⁺⁺, via
 Initial State Radiation ISR
- Fully available BESIII data set
- Small angle ISR photon
 At large angle production via Y(4260) → X(3872) γ

 Γ_{ee} (X(3872)) < 4.3 eV Factor ~50 improvement

$$\Gamma_{ee}$$
 (ψ (2S)) = (2213 ± 18 ± 99) eV

World's most precise measurement

Conclusions

Topics of e^+e^- physics outside the phi

Break down of top-100 cited papers of BABAR collaboration

Physics topic BABAR	Nr. of publications
B decays and CP violation	51
Heavy quark spectroscopy	25
Hadron form factors	12
Flavour physics and LFV studies	7
Searches for BSM particles + Symmetry tests	5

Topics of e^+e^- physics outside the phi

Break down of top-100 cited papers of BABAR collaboration

Physics topic BABAR	Nr. of publications	
B decays and CP violation	51	
Heavy quark spectroscopy	25	
Hadron form factors	12	> field
Flavour physics and LFV studies	7	
Searches for BSM particles + Symmetry tests	5	

Field of form factor measurements important part of the programme of low-energy particle physics with many implications (from Nucleon Structure, QCD tests to New Physics searches)

International Workshop on e⁺e⁻ collisions from Phi to Psi 2017

The 11th edition of the "International workship

by the Institute for Nuclear Physics of

Schloss Waldthausen, an er

city limits, on June 20

26-29 June 2017 Schloss Waldthausen Europe/Berlin timezone

Overview

Scientific Programme

Timetable

Contribution List

Speaker List

Registration

Registration Form

Registration Fee

Participant List

Advisory Committee

Accommodation.

Venue & Social Events

Travel Information

Previous Editions

PhiP w developments, and discuss the potential

The w Monte (s to bring together theorists and experimentalists in order to discuss the current of this W we corrections and Monte Carlo generators at low energies. status of

BACKUP

BESIII ISR Analysis: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$

- History of σ for $e^+e^- \to \pi^+\pi^-\pi^0$:
 - $\sqrt{s} \lesssim 1$ GeV: $\omega(782)$ and $\phi(1020)$
 - Published results above ϕ :
 - SND : up to 1.4 GeV
 - DM2 : 1.34 ~ 2.40 GeV
 - BaBar : 1.05 ~ 3.00 GeV

BESIII ISR Analysis: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$

Data-driven background estimation: $e^+e^- \rightarrow (\gamma_{\rm ISR})\pi^+\pi^-\pi^0\pi^0$

- Clear ω and ϕ signals
- Huge BG in high mass region

- Limited by acceptance
- Negligible BackGround

JG

BESIII ISR Analysis: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$

BESIII Preliminary					
Parameters	PDG	This result			
χ^2/NDF	-	443/390			
$m_{\omega} \; (\; {\rm MeV}/c^2)$	782.65 ± 0.12	$783.20 \pm 0.07 \pm 0.23$			
m_{ϕ} (MeV/ c^2)	1019.46 ± 0.02	$1020.00 \pm 0.06 \pm 0.30$			
$m_{\omega'}$ (MeV/ c^2)	$1400 \sim 1450$	$1388 \pm 39 \pm 52$			
$m_{\omega''}$ (MeV/ c^2)	1670 ± 30	$1699 \pm 9 \pm 6$			
Γ_{ω} (MeV/ c^2)	8.49 ± 0.08	PDG			
Γ_{ϕ} (MeV)	$\textbf{4.26} \pm \textbf{0.04}$	PDG			
$\Gamma_{\omega'}$ (MeV)	$180\sim250$	$629 \pm 155 \pm 212$			
$\Gamma_{\omega''}$ (MeV)	315 ± 35	$331 \pm 40 \pm 28$			
$(\mathcal{B}_{\omega ightarrow e^+e^-} imes \mathcal{B}_{\omega ightarrow 3\pi}) (10^{-5})$	6.49 ± 0.11	$6.94 \pm 0.08 \pm 0.17$			
$(\mathcal{B}_{\phi ightarrow e^+e^-} imes \mathcal{B}_{\phi ightarrow 3\pi})~(10^{-5})$	4.53 ± 0.10	$4.20 \pm 0.08 \pm 0.17$			
$(\mathcal{B}_{\omega' o e^+e^-} imes\mathcal{B}_{\omega' o 3\pi})(10^{-6})$	0.82 ± 0.08	$0.84 \pm 0.09 \pm 0.09$			
$(\mathcal{B}_{\omega^{\prime\prime} ightarrow e^+e^-} imes \mathcal{B}_{\omega^{\prime\prime} ightarrow 3\pi})$ (10 ⁻⁶)	1.30 ± 0.20	$1.14 \pm 0.15 \pm 0.15$			
$\mathcal{B}_{J/\psi o 3\pi}(\%)$	2.11 ± 0.07	$2.18 \pm 0.03 \pm 0.06$			

Channel $\mu^+\mu^-\gamma$: Dark Photon Search

$$\frac{\sigma_i(e^+e^- \to \gamma'\gamma_{\rm ISR} \to l^+l^-\gamma_{\rm ISR})}{\sigma_i(e^+e^- \to \gamma^*\gamma_{\rm ISR} \to l^+l^-\gamma_{\rm ISR})} = \frac{3\pi}{2N_f^{l^+l^-}} \cdot \frac{\varepsilon^2}{\alpha} \cdot \frac{m_{\gamma'}}{\delta_m^{l^+l^-}}$$

- Include also t-channel Bhabha events
- Data from 2 years of data taking (2.9 fb⁻¹)
- Analysis of full data set will yield world's most precise limits > 1 GeV

Electroweak Precision Physics

$\alpha_{em}(M_Z^2)$ limiting electroweak precision fits

Achim Denig

→ Test overall consistency of the electroweak Standard Model

→ Since the discovery of the Higgs boson more timely than ever

Initial State Radiation

Rev. Mod. Phys. 83, 1545-1588 (2011)

Initial State Radiation (ISR) aka Radiative Return

- Needs no systematic variation of beam energy
- High statistics thanks to high integrated luminosities
- Precise knowledge of radiative corrections mandatory (H_{rad})

PHOKHARA event generator Czyż, Kühn, et al.

Entire E range < E_{CM} accessible

Inclusive R Measurement and $\alpha_{em}(M_Z^2)$

Running of α_{em} (s) with s due to vacuum polarization corrections

- Leptonic Vacuum Polarization calculable within QED
- Hadronic Vacuum Polarization not accessible in pQCD → Dispersion relation

$$\alpha_{\rm em}(s) \ = \ \frac{\alpha(0)}{(1-\Delta\alpha_{\rm em}(s))} \qquad \alpha^{-1}(M_Z^2) = 128.962 \pm 0.014$$
 Davier, et al.(2010)
$$QED \quad \Delta\alpha_{\rm lep}(M_Z^2) \ = \ 314.97686 \, \cdot \, 10^{-4}$$

$$strong \quad \Delta\alpha_{\rm had}(M_Z^2) = (274.2 \pm 1.0) \cdot 10^{-4}$$
 dispersion integral relates $\sigma_{\rm had}$

→ R data up to few GeV essential, above use pQCD!

with $\Delta \alpha_{em}^{had}$

JG

Most relevant Channel: $e^+e^- \rightarrow \pi^+\pi^-$

Systematic Uncertainties

- BABAR 0.5%
- KLOE 0.8%
- CMD2 0.8%*
- SND 1.5%*

^{*} limited in addition by statistics

Hadronic Cross Section Data and (g-2)_u

$$a_{\mu}^{had} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \underbrace{K(s) \, \sigma_{had}}_{}$$

Intrinsic $\sim 1 / s^2$ low energy contributions especially important!

Muon Anomaly $(g-2)_{\mu}$

$$\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} =$$
(28.7 ± 8.0) · 10⁻¹⁰ (3.6 σ)
Error(s) or New Physics ?

New FNAL 989 (g-2)_{μ} measurement (2015):

Factor 4 improvement in experimental error

Prelim. Proton FF from Mini R Scan

Analysis Features:

- Radiative corrections from Phokhara8.0 (scan)
- Normalization to e+e- \rightarrow e+e-, e+e- $\rightarrow \gamma \gamma$ (BABAYAGA 3.5)
- Efficiencies 60% (2.23 GeV) 3% (~4 GeV)
- $|G_E/G_M|$ ratio obtained for 3 cm energies

E _{cm} /GeV	L _{int} / pb ⁻¹
2.23	2.6
2.40	3.4
2.80	3.8
3.05, 3.06, 3.08	60.7
3.40, 3.50, 3.54, 3.56	23.3
3.60, 3.65, 3.67	63.0

Muon Anomaly $(g-2)_{\mu}$

Magnetic Moment: $\overrightarrow{m} = \mu_B g \overrightarrow{S}$ μ_B : Bohr magneton, g: gyromagnetic factor ~ 2

Muon Anomaly: $a_{\mu} = (g-2)_{\mu} / 2 = \alpha_{em} / 2\pi + ... = 0.001161....$

Standard Model (SM) prediction a_μSM:

```
- QED: a_{\mu}^{\text{QED}} = (11\ 658\ 471.809\pm0.015)\cdot10^{-10}

- weak: a_{\mu}^{\text{weak}} = (15.4\pm0.2)\cdot10^{-10}

- hadronic: a_{\mu}^{\text{hadr}} = (693.0\pm4.9)\cdot10^{-10}
```

$$a_u^{SM} = (11659180.2 \pm 4.9) \cdot 10^{-10}$$
 Davier et al., 2010

SM prediction entirely limited by hadronic contribution!

• Direct measurement BNL-E821 a_{μ}^{exp} :

$$a_{\rm u}^{\rm exp} = (11 659 208.9 \pm 6.3) \cdot 10^{-10}$$