Latest studies of the reaction e⁺ e⁻ \rightarrow K⁺ K⁻ γ

Leonard Leśniak

Institute of Physics, Jagiellonian University, Kraków

KLOE-2 Workshop

October 27. 2016

Motivation

- The K⁺ K⁻ threshold lies close to the DAΦNE accelerator energy, so the low energy K⁺ K⁻ interactions can be studied here.
- 2. Masses of the scalar resonances $f_0(980)$ and $a_0(980)$ are also close to the K⁺ K⁻ threshold.
- 3. The parameters of the scalar resonances are still not well known. According to the **PDG (2016) estimations**: the $f_0(980)$ mass = 990 ± 20 MeV and width= 10 to 100 MeV, and the $a_0(980)$ mass = 980 ± 20 MeV and width= 50 to 100 MeV.
- 4. Parameters of the scalar resonances found in experimental analyses are very much **model dependent**.

5. Example: reaction $e^+ e^- \rightarrow \pi^+ \pi^- \gamma$ studied by KLOE in 2006 using two models: kaon-loop (KL) and no-structure (NS). The results are:

f ₀ (980) mass (MeV)		980-987	973-981
g(f ₀ K ⁺ K ⁻)	(GeV)	5.0 - 6.3	1.6 – 2.3
g(f ₀ π ⁺ π ⁻)	(GeV)	3.0 – 4.2	0.9 - 1.1

Model dependence in experimental analyses

Some specific **problems** frequently encountered in data analyses:

- 1. presence of the thresholds $K^+ K^-$ and $K^0 K^0$ bar,
- 2. application of the Breit-Wigner formula with a constant width,
- 5. reduction of a number of scalar resonances to one (for example, sometimes only $f_0(980)$ state is included),
- 4. simplified treatment of the final-state strong interactions,
- 5. different description of the reaction production mechanism.

Example: the reaction $\mathbf{e}^+ \mathbf{e}^- \rightarrow \pi^+ \pi^- \gamma$ Two factors: $\mathbf{e}^+ \mathbf{e}^- \rightarrow f_0(980) \gamma$ production amplitude $\mathbf{P}(\mathbf{m})$, $f_0(980) \rightarrow \pi^+ \pi^-$ resonant decay amplitude $\mathbf{D}(\mathbf{m})$.

Reaction amplitude: A(m) = P(m) D(m), $m = \pi^+\pi^-$ effective mass. Results:

if $|A(m)|^2$ is fitted to data with two **different** functions **P(m)** then the **parameters** of the **resonant amplitude D(m)** are also **different**.

Further arguments to study $e^+ e^- \rightarrow K^+ K^- \gamma$

1. The $\phi(1020) \rightarrow \pi^+\pi^-\gamma$ branching fraction has been measured but the branching fraction for the $\phi(1020)$ meson decay into the K⁺K⁻\gamma channel is yet unknown.

2. There are data for the radiative decay of the $\phi(1020)$ meson into two scalar resonances:

 $\Gamma(f_0(980) \gamma) / \Gamma_{total} = (3.22 \pm 0.19) 10^{-4},$ $\Gamma(a_0(980) \gamma) / \Gamma_{total} = (7.6 \pm 0.6) 10^{-5}.$

- 3. Both scalar resonances decay to the K⁺ K⁻ pairs, so one should observe the reaction $e^+ e^- \rightarrow K^+ K^- \gamma$. For the decay $\phi \rightarrow K^0 K^0 bar \gamma$ only the upper limit 1.9 10⁻⁸ is known (KLOE 2009).
- 4. Measurement of the $e^+ e^- \rightarrow \phi \rightarrow K^+ K^- \gamma$ transition could provide a new information about the $K^+ K^-$ strong interactions near threshold.

Reaction mechanisms (1)

FSR – final state radiation

Reaction mechanisms (2)

Ref.: G. Isidori, L. Maiani, M. Nicolaci, S. Pacetti, JHEP 0605 (2006) 049.

Reaction mechanisms (3)

Amplitude of the reaction $e^+ e^- \rightarrow K^+ K^- \gamma$

Example of the kaon-loop model:

M = A(ISR) + A(FSR) + A(KL) total amplitude

 $|M|^{2} = |A(ISR)|^{2} + |A(FSR)|^{2} + |A(KL)|^{2} +$

2 Re[A^{*}(ISR) A(FSR)] + 2 Re[A^{*}(ISR) A(KL)] + 2 Re[A^{*}(FSR) A(KL)]

dσ (total)= dσ (ISR)+ dσ (FSR)+ dσ (KL)+ int (ISR-FSR)+ int (ISR-KL)+ int (FSR-KL)

interference terms

If experimental **cuts** are chosen **symmetrical**ly with respect to the interchange of K⁺ and K⁻ then

int (ISR-FSR)= int (ISR-KL) = **0**.

Differential cross-section

Reaction:
$$e^+(p_{e^+}) e^-(p_{e^-}) \to K^+(p_{K^+}) K^-(p_{K^-}) \gamma$$
 (q)

$$d\sigma = \frac{(2\pi)^4}{2\sqrt{s(s - 4m_e^2)}} |\mathsf{M}|^2 d\Phi_3$$

M -amplitude Φ_3 – phase space

5 invariants:2 momentum

transfers:

$$s = (p_{e^{+}} + p_{e^{-}})^{2}$$

$$t = (p_{e^{-}} - q)^{2}$$

$$m^{2} = (p_{K^{+}} + p_{K^{-}})^{2}$$

$$t_{1} = (p_{e^{-}} - p_{K^{-}})^{2}$$

$$m^{2} = (p_{K^{+}} + p_{K^{-}})^{2}$$

$$m^{2} = (p_{K^{+}} + p_{K^{-}})^{2}$$

>2

$$\frac{d\sigma}{dm^2 dm_{K^-\gamma}^2 dt \, dt_1} = \frac{1}{(2\pi)^4} \frac{|\mathsf{M}|^2}{16 \, s \, (s - 4m_e^2)(s - m^2)r}$$

$$r = \sqrt{-(t_1 - t_{1min})(t_1 - t_{1max})}$$

m – K⁺K⁻ effective mass, $m_{K^-\gamma}$ – K⁻ photon effective mass

K⁺K⁻ effective mass distributions

Comparison of three models extended to describe $e^+ e^- \rightarrow K^+ K^- \gamma$

- NS **no-structure** model
- KL kaon-loop model

K+K⁻ effective mass distributions for the **no-structure** model ($45^{\circ} < \theta_{\gamma} < 135^{\circ}$)

K+K⁻ effective mass distributions for the kaon-loop model (45° < θ_{γ} < 135°)

Distributions of the polar angle of K⁻ with respect to the photon axis in the K⁺ K⁻ center of mass frame

no-structure model $(45^{\circ} < \theta_{\gamma} < 135)$

m = 990 MeV

m = 1000 MeV

 $z = \cos \theta_1^*$

K⁻ angular distributions at fixed m in the e⁺ e⁻ c.m. frame ($45^{\circ} < \theta_{\gamma} < 135^{\circ}$)

m=990 MeV m=998 MeV 2.4 6. 2.2 total $d\sigma / [dm \ dcos\theta_1] \ (nb/GeV)$ total $d\sigma / [dm \ dcos \theta_1] \ (nb/GeV)$ FSR 2 1.8 1.6 FSR 1.4 0.8 2. 0.6 NS-FSR 0.4 ISR NS model 0.2 NS-FSR 0.: C NS ISR -0.2<u></u> 80 100 160 180 80 100 20 40 120 140 20 40 60 120 140 60 0 160 180 $\theta_1(deg)$ $\theta_1(\text{deg})$ m = 990 MeV m=998 MeV 0.35 0.5 NS-FSR 0.45 0.3 NS-FSR $d\sigma / [dm \ dcos\theta_1] \ (nb/GeV)$ $d\sigma / [dm \ dcos \theta_1] \ (nb/GeV)$ 0.4 0.25 0.35 0.3 0.2 0.25 0.15 0.2 0.15 0.1 NS model 0.1 NS model 0.05 0.05 NS-ISR **ISR-FSR** 0 0 **ISR-FSR** -0.05 NS-ISR -0.05 20 40 60 80 100 120 140 160 180 80 100 120 140 160 40 60 180 0 20 $\theta_1(deg)$ $\theta_1(deg)$

Photon angular distributions

no-structure model (NS)

Proposed multichannel model of the e⁺ e⁻ \rightarrow M₁ M₂ γ reactions

Features of the proposed model

- a) **Unitary** description of the coupled channels represented by a set of amplitudes T.
- b) **Analiticity** of the amplitudes T in which all the relevant poles corresponding to the scalar resonances are present.
- c) Possible application of the model in the combined analyses of many meson-meson final states like:

1.
$$e^+ e^- \rightarrow \pi^+ \pi^- \gamma$$
,
2. $e^+ e^- \rightarrow \pi^0 \pi^0 \gamma$,
3. $e^+ e^- \rightarrow \pi^0 \eta \gamma$,
4. $e^+ e^- \rightarrow K^0_S K^0_S \gamma$,
5. $e^+ e^- \rightarrow K^+ K^- \gamma$.

Experimental implications

Expected number of events integrated over the K⁺K⁻ effective mass up to 1009 MeV for two photon angle ranges and for the integrated luminosity of 1.7 fb⁻¹:

reaction mechanism 2	$4^{0} < \theta_{\gamma} < 156^{0}$	$45^{0} < \theta_{\gamma} < 135^{0}$
FSR	5.6 10 ⁵	4.0 10 ⁵
NS	3.4 10 ³	2.4 10 ³
Int(NS-FSR)	3.6 10 ⁴	2.5 10 ⁴
ISR	3.1 10 ⁵	1.8 10 ⁵
total	9.1 10 ⁵	6.1 10 ⁵

Summary

- 1. Three models have been extended in order to describe the reaction $e^+ e^- \rightarrow K^+ K^- \gamma$.
- 2. The theoretical results for the effective mass and angular distributions can be used in future experimental data analyses.
- 3. A new model of the multichannel coupled reactions

 $e^+ e^- \rightarrow M_1 M_2 \gamma$ has been outlined.

- 4. The model can be applied in a **combined analysis** of the radiative $\phi(1020)$ meson decays into pairs of pseudoscalar mesons.
- 5. It can also serve in determination of:
- a) the K⁺ K⁻ threshold parameters of the strong interaction amplitudes and
- b) in a better specification of the **properties** of the **scalar meson** resonances $f_0(980)$ and $a_0(980)$.
- 6. Our recent reference: Leonard Lesniak and Michal Silarski, arXiv:1610.01514 [hep-ph].

Kinematical relations (1)

 θ_1 , θ_γ - K⁻ and photon **polar angles** in the **e**⁺**e**⁻ **center-of-mass frame**, z-axis along the e⁻ momentum

Relations:

$$t_1 \approx m_K^2 - \sqrt{s} E_1^l (1 - v_1 \cos \Theta_1)$$
$$t \approx -\sqrt{s} \omega^l (1 - \cos \Theta_\gamma)$$

 E_1^l , ω^l are K⁻ and photon energies, v_1 is K⁻ velocity.

$$E_1^l = \frac{m^2 + m_{K^-\gamma}^2 - m_K^2}{2\sqrt{s}} \qquad \qquad \omega^l = \frac{s - m^2}{2\sqrt{s}}$$

Kinematical relations (2)

Definitions: θ_1^* - polar angle of K⁻ with respect to the photon axis in the K⁺ K⁻ center- of- mass frame,

 $z = \cos \theta_1^*$

Relation to the K⁻ γ effective mass squared $m_{K^-\gamma}^2$:

$$m_{K^-\gamma}^2 = m_K^2 + \frac{1}{2} (s - m^2)(1 - v z)$$

 $\boldsymbol{v} = K^{-}$ velocity in the K⁺ K⁻ center of mass frame, $\boldsymbol{v} = \sqrt{1 - \frac{4m_{K}^{2}}{m^{2}}}$

z=+1 corresponds to minimum of $m_{K^-\gamma}^2$, z= -1 to maximum of $m_{K^-\gamma}^2$.

Integrated cross sections

The **cross sections integrated** over the K⁺K⁻ effective mass up to 1009 MeV for two photon angle ranges (units are nanobarns):

reaction mechanism 2	$24^{\circ} < \theta_{\gamma} < 156^{\circ}$	$45^{\circ} < \theta_{\gamma} < 135^{\circ}$
FSR	0.330 nb	0.238 nb
NS	0.0020 nb	0.0014 nb
Int(NS-FSR)	0.021 nb	0.015 nb
ISR	0.183 nb	0.104 nb
total	0.536 nb	 0.358 nb

Experimental search for the reaction $e^+ e^- \rightarrow K^+ K^- \gamma$

This can be done with the KLOE data (analysis has already started)

* Advantages:

- very good kaon momentum determination
- high statistics

* Problems:

- Iow energy photons (< 32 MeV)</p>
 - \Rightarrow lower efficiency and energy resolution
- slow transverse momentum tracks for low K⁺K⁻ effective masses

24