New dark forces hidden in low-energy QCD

Sean Tulin York University

References:

ST. PRD [arXiv:1404.4370]

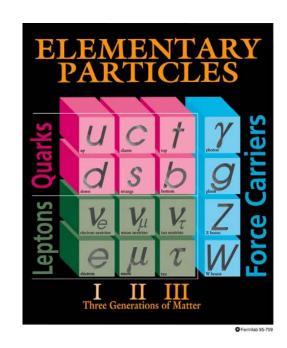
Kaplinghat, ST, Yu. PRL [arXiv:1508.03339]

Outline

Motivations from the dark sector
 Astrophysical hints from small scale structure
 Self-interacting dark matter

• Blind spot for new force searches: Leptophobic gauge bosons

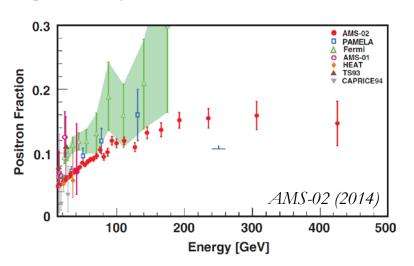
Searching for new forces

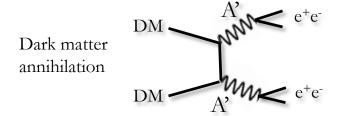

SM based on $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge symmetry.

Are there any additional gauge symmetries? Look for new gauge bosons.

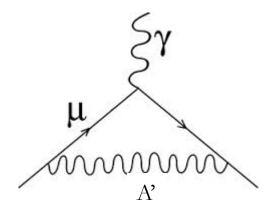
Motivations:

- 1. Grand unified theories: Generically have additional gauge bosons, but typically very heavy (10¹⁶ GeV).
- 2. Dark matter: Stability of dark matter related to new gauge symmetry?


 Can also give the right relic density.



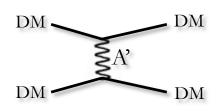
Motivations for new GeV-scale forces

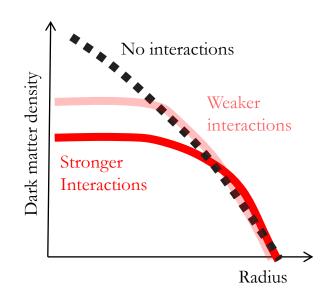

Dark matter indirect detection anomalies e.g. Pamela/AMS-02 positron excess

Pospelov & Ritz (2008); Arkani-Hamed et al (2008)

 $(g-2)_{\mu}$ anomaly Pospelov (2008)

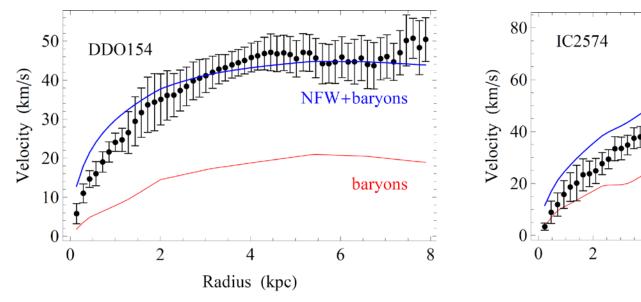
Dark matter and structure of galaxies

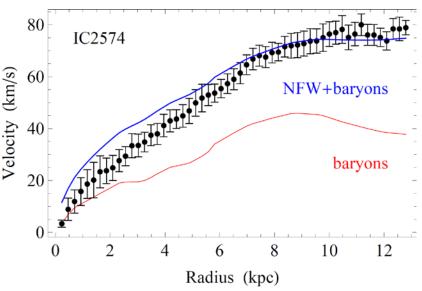

Core/cusp problem: Galaxies and clusters are less dense than cold dark matter (WIMPs) predictions


Moore (1994), Flores & Primack (1994)

Self-interacting dark matter

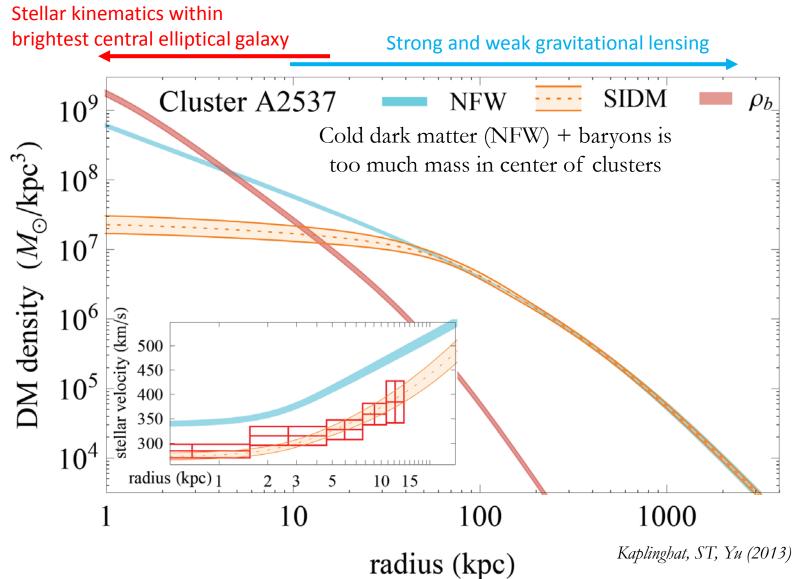
Spergel & Steinhardt (2000)


MeV–GeV scale dark force ST, Yu, Zurek (2013)



Cores in field galaxies

THINGS (dwarf galaxy survey) - Oh et al. (2011)



Core/cusp problem:

Cold dark matter halo (NFW profile) + baryons predict too much mass in centers of galaxies

Cores in galaxy clusters

Self-interacting Dark Matter

Unknown if core/cusp is solved by DM physics or baryonic astrophysics If DM is responsible, what are the particle physics implications?

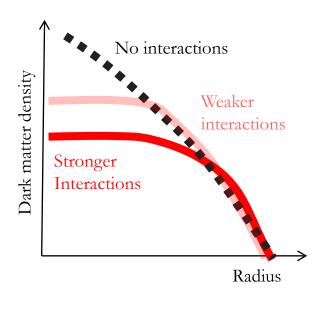
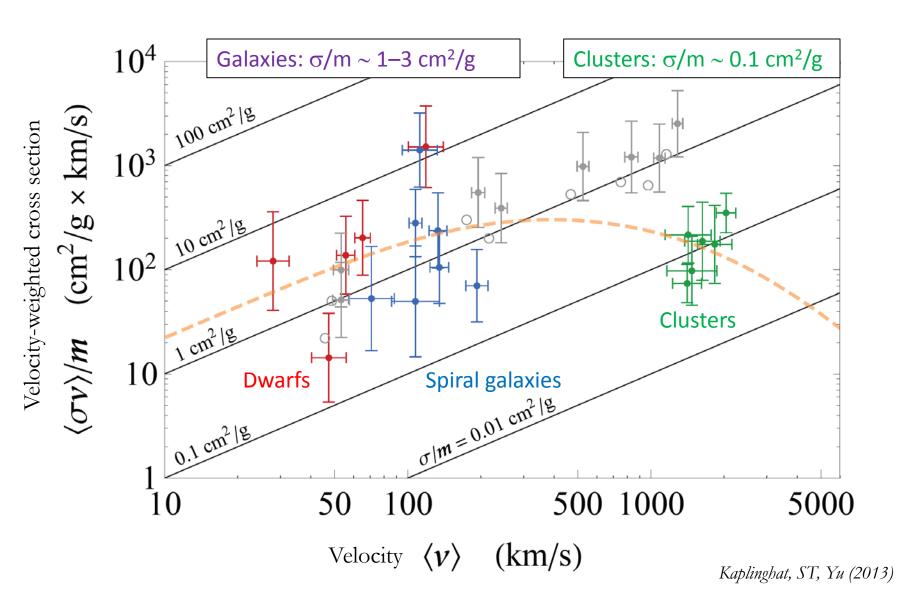
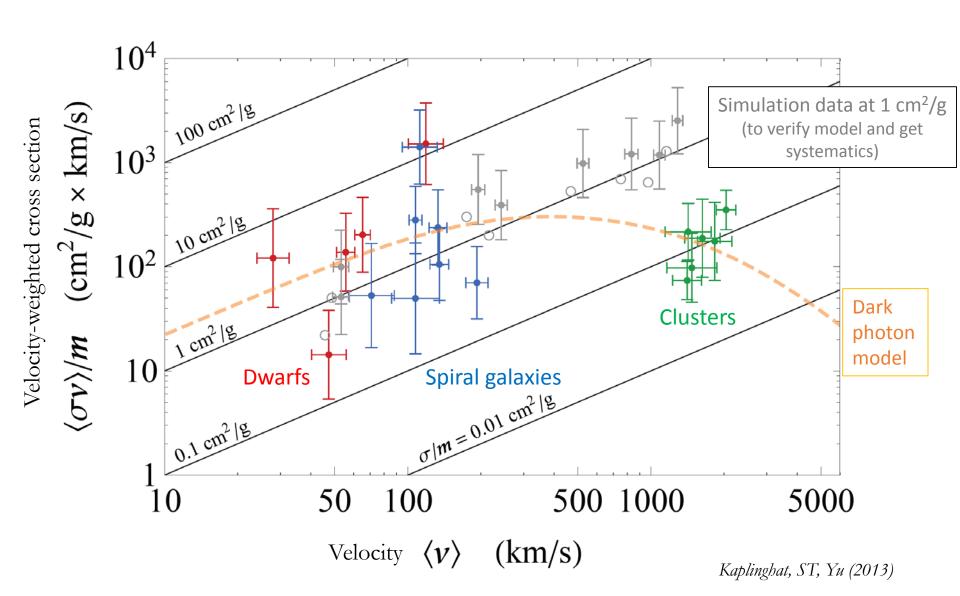


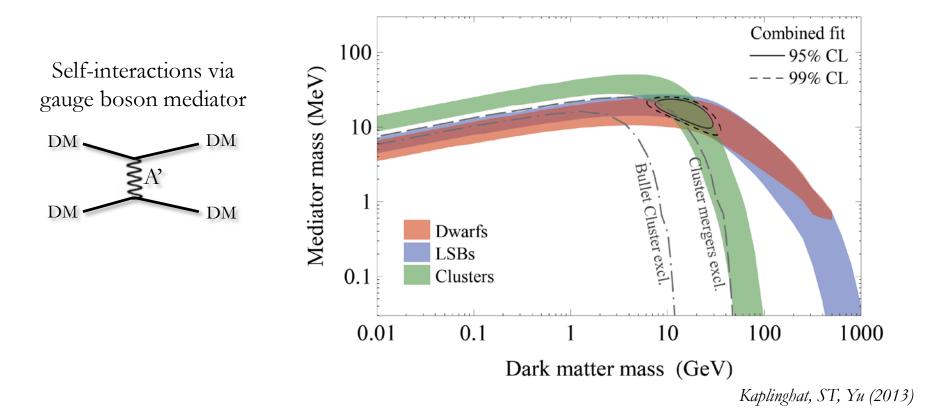
Figure of merit:
Velocity-weighted cross
section per DM mass


$$rate = \frac{\langle \sigma v \rangle}{m} \, \rho_{\rm dm}$$

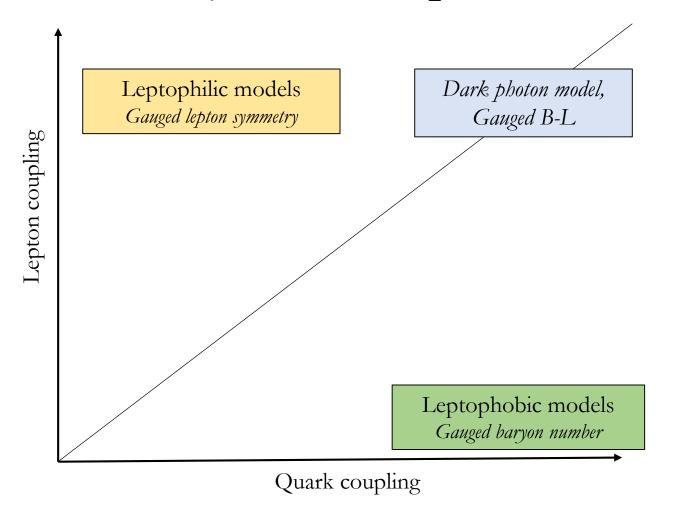
Dwarf and spiral galaxies: velocity ~ 30-200 km/s


Clusters: velocity $\sim 1500 \text{ km/s}$

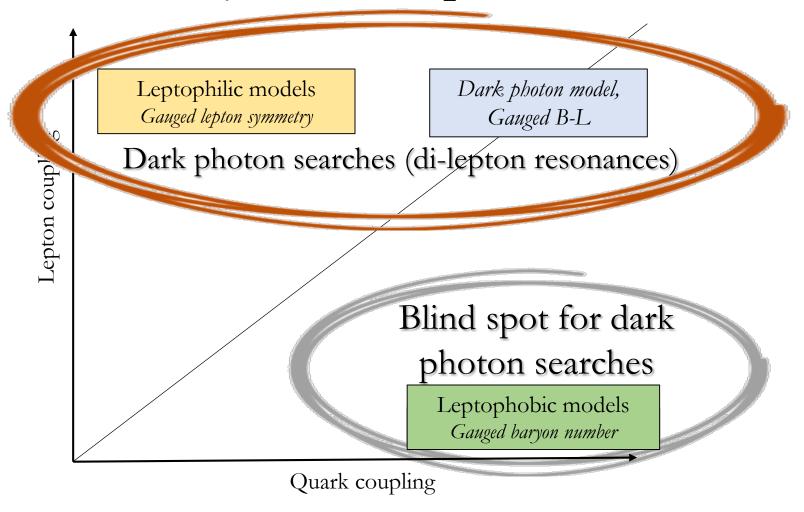
Can all observations be fit by a simple particle physics model?


Fits to dwarfs, LSBs, and clusters

Fits to dwarfs, LSBs, and clusters


Dark matter with dark photon

Model-dependent: Dark sector parameters can be fit from astrophysical data. Not fixed how dark photon couples to Standard Model (kinetic mixing unknown)


Model-independent: Dark sector particles below GeV scale to get large enough cross section

Beyond dark photons

Also a third axis: decays to invisible states (neutrinos, light dark matter) Davoudiasl et al (2012), Batell et al (2009), deNiverville et al (2011,2012)

Beyond dark photons

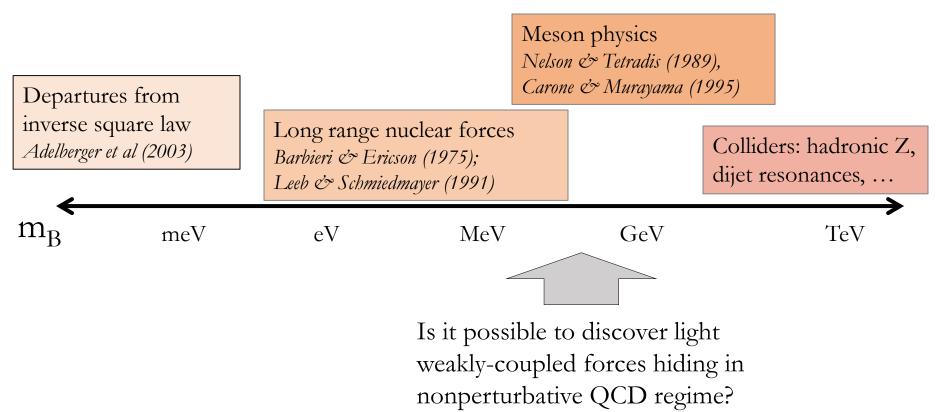
Also a third axis: decays to invisible states (neutrinos, light dark matter) Davoudiasl et al (2012), Batell et al (2009), deNiverville et al (2011,2012)

New force coupling to quarks

Most dark photon searches are for A' coupling to leptons (or invisible states)

What if a new force couples mainly to quarks?

Old idea: Radjoot (1989), Foot et al (1989), Nelson & Tetradis (1989), He & Rajpoot (1990), Carone & Murayama (1995), Bailey & Davidson (1995), Aranda & Carone (1998), Fileviez Perez & Wise (2010), Graesser et al (2011), Dobrescu & Frugiule (2014), Batell et al (2014), ...


Simplest model: U(1)_B gauge boson coupled to baryon number

$$\mathscr{L} = \frac{g_B}{3} \, \bar{q} \gamma^\mu q B_\mu$$
 Flavor-universal charge g_B coupling to all quarks

Also known as: "leptophobic Z" or "baryonic photon γ_B " or " Z_B " or "B boson"

New force coupling to quarks

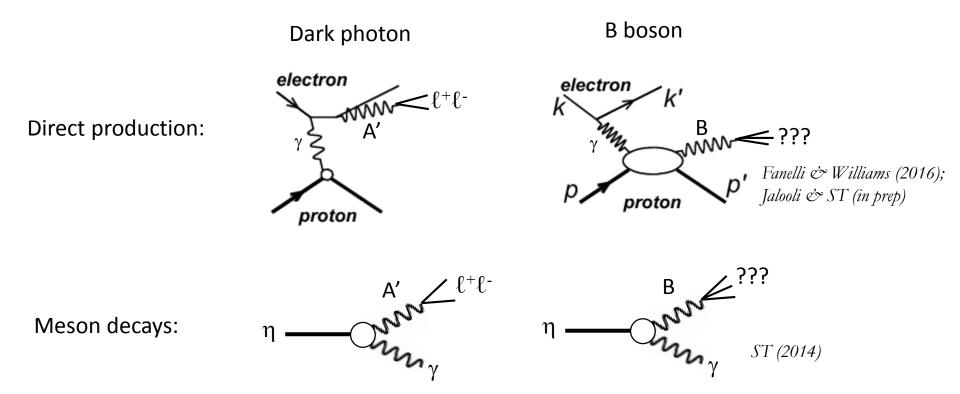
B boson = gauge boson coupled to baryon number Discovery signals depend on the B mass

Theoretical constraints from anomalies

• U(1)_B gauge symmetry is anomalous. Requires new fermions with electroweak quantum numbers.

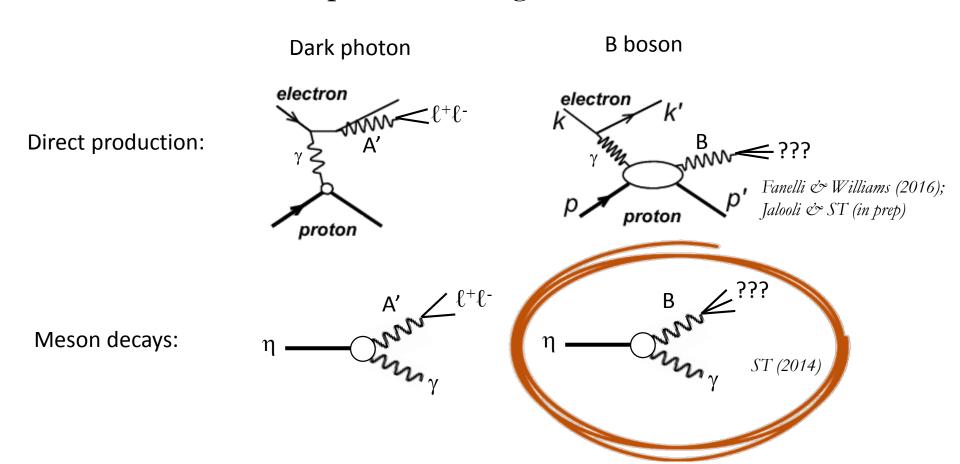
• Absence of new fermions at colliders (mass > 100 GeV) implies new baryonic force must have very small coupling

$$g_B \lesssim 10^{-2} \times (m_B/100 \text{ MeV})$$

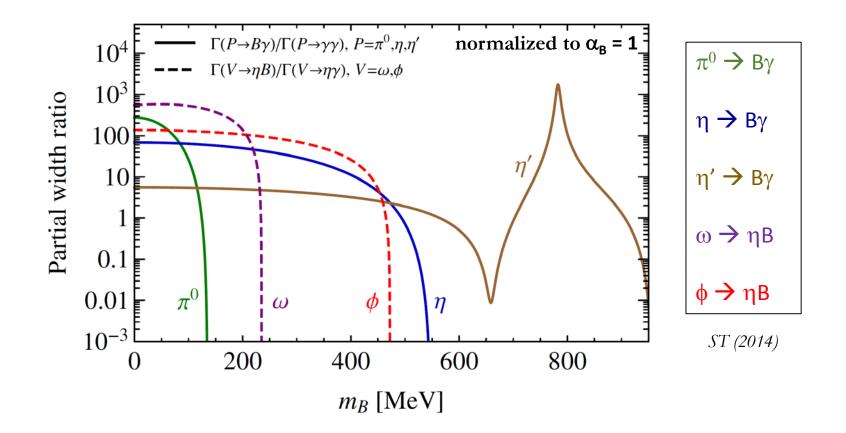

$$\alpha_B = \frac{g_B^2}{4\pi} \lesssim 10^{-5} \times (m_B/100 \,\text{MeV})^2$$

Detecting the B boson

- Can a weakly-coupling force ($g_B << 1$) be detected in the nonperturbative regime of QCD?
- B boson preserves the symmetries of QCD
 - Charge conjugation, parity, and isospin or SU(3)_{flavor}
- Previous lore: Nelson & Tetradis (1989)
 - Above $2m_{\pi}$, decay dominated by B $\rightarrow \pi\pi$
 - B boson buried under huge $\rho \rightarrow \pi\pi$ background


Baryonic force at the QCD scale

- How are the gauge bosons produced?
- What are the experimental signatures?


Baryonic force at the QCD scale

- How are the gauge bosons produced?
- What are the experimental signatures?

B bosons production

Meson decays: $\pi^0 \to B\gamma$, $\eta \to B\gamma$, $\eta' \to B\gamma$, $\omega \to \eta B$, $\phi \to \eta B$ Like SM decays: $\pi^0 \to \gamma\gamma$, $\eta \to \gamma\gamma$, $\eta' \to \gamma\gamma$, $\omega \to \eta\gamma$, $\phi \to \eta\gamma$

B boson decay

How does B decay? Worry: B $\rightarrow \pi\pi$ is hopeless.

Recall the original Lagrangian:
$$\mathscr{L} = \frac{g_B}{3} \bar{q} \gamma^{\mu} q B_{\mu}$$

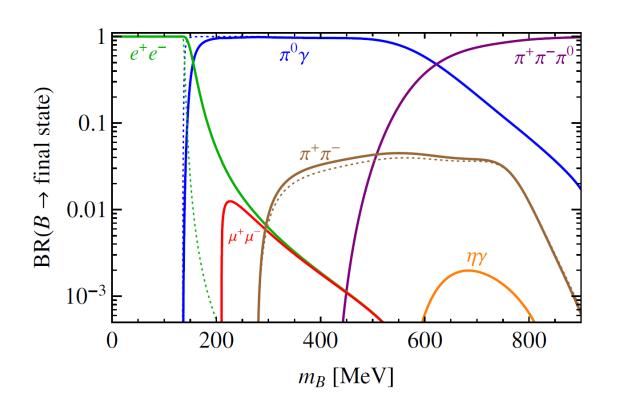
The quantum numbers for B:

- J = 1
- *P* = *C* = –
- I = 0
- G = -

B boson decay

B has same quantum numbers as the ω meson

Particle Data Book


Scale factor/

$$I^G(J^{PC}) = 0^-(1^{-})$$

ω (782) DECAY MODES

	Mode		Fraction (Γ_i/Γ)	Confidence level
_	$\pi^+\pi^-\pi^-\pi^0\gamma$	0	(89.2 ±0.7) % (8.28±0.28) %	S=2.1
Γ ₃	$\pi^+\pi^-$	$\omega \rightarrow \pi\pi$ forbidden by G-parity (Isospin-violating ρ – ω mixing)	$(1.53^{+0.11}_{-0.13})\%$	S=1.2
Γ_9	e^+e^-		$(7.28\pm0.14)\times10$	o ⁻⁵ S=1.3
Γ ₁₅ Γ ₁₆	$\mu^+\mu^ 3\gamma$		$(9.0 \pm 3.1) \times 10$ $< 1.9 \times 10$	

B boson decay branching ratios

Computed using vector meson dominance

Subleading lepton couplings arise by $B-\gamma$ mixing

Solid: $\varepsilon = eg_B/16\pi^2$ Dotted: $\varepsilon = 0.1 eg_B/16\pi^2$

New signatures not covered in dark photon searches: $B \rightarrow \pi^0 \gamma$, $\pi^+ \pi^- \pi^0$

B boson signal channels

Decay →	$B \rightarrow e^+e^-$	$B \to \pi^0 \gamma$	$B \to \pi^+\pi^-\pi^0$	
Production ↓	$m_B \sim 1 - 140 \text{ MeV}$	140–620 MeV	620-1000 MeV	$B \to \eta \gamma$
$\pi^0 \to B\gamma$	$\pi^0 ightarrow e^+ e^- \gamma$			
$\eta \to B\gamma$	$\eta ightarrow e^+ e^- \gamma$	$\eta o\pi^0\gamma\gamma$	• • •	
$\eta' \to B\gamma$	$\eta' ightarrow e^+ e^- \gamma$	$\eta' o \pi^0 \gamma \gamma$	$\eta^\prime o \pi^+\pi^-\pi^0\gamma$	$\eta' o \eta \gamma \gamma$
$\omega \to \eta B$	$\omega ightarrow \eta e^+ e^-$	$\omega o \eta \pi^0 \gamma$	• • •	• • •
$\phi \to \eta B$	$\phi \to \eta e^+ e^-$	$\phi o \eta \pi^0 \gamma$		

Covered by dark photon searches Limits are more model dependent New signals not being covered in dark photon searches

A new type of signature for meson factories:

 $\pi^0 \gamma$ resonances in rare decays

B boson signal channels

Decay →	$B \rightarrow e^+ e^-$	$B o \pi^0 \gamma$	$B o \pi^+\pi^-\pi^0$	
Production ↓	$m_B \sim 1 - 140 \text{ MeV}$	140-620 MeV	620-1000 MeV	$B \to \eta \gamma$
$\pi^0 \to B\gamma$	$\pi^0 o e^+ e^- \gamma$			
$\eta \to B\gamma$	$\eta ightarrow e^+e^-\gamma$	$\eta \to \pi^0 \gamma \gamma$		
$\eta' \to B\gamma$	$\eta' ightarrow e^+ e^- \gamma$	$\eta' o \pi^0 \gamma \gamma$	$\eta^\prime o \pi^+\pi^-\pi^0\gamma$	$\eta' o \eta \gamma \gamma$
$\omega \to \eta B$	$\omega ightarrow \eta e^+ e^-$	$\omega o \eta \pi^0 \gamma$	• • •	• • •
$\phi \to \eta B$	$\phi ightarrow \eta e^+ e^-$	$\phi \to \eta \pi^0 \gamma$	• • •	
	<u> </u>	<u> </u>	A	<u> </u>

Covered by dark photon searches Limits are more model dependent New signals not being covered in dark photon searches

A new type of signature for meson factories:

 $\pi^0 \gamma$ resonances in rare decays

$\eta \rightarrow \pi^0 \gamma \gamma$

Particle Data Book

η		$I^{G}(J^{PC}) = 0^{+}(0^{-}$	+)			
η DECAY MODES						
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level			
		Neutral modes	_			
Γ_1	neutral modes	(72.12±0.34) %	S=1.2			
Γ_2	$\frac{2\gamma}{3\pi^0}$	(39.41 ± 0.20) %	S=1.1			
Γ ₃	$3\pi^0$	(32.68 ± 0.23) %	S=1.1			
Γ ₄	$\pi^0 2\gamma$	(2.7 ± 0.5) \times 10	o ⁻⁴ S=1.1			

B boson signature: $\eta \rightarrow B\gamma \rightarrow \pi^0\gamma\gamma$

Mimics the rare SM decay $\eta \rightarrow \pi^0 \gamma \gamma$

Nelson & Tetradis (1989)

Total rate constraint:
$$\frac{\Gamma(\eta \to B\gamma)}{\Gamma(\eta \to \gamma\gamma)} = 2\frac{\alpha_B}{\alpha_{\rm em}} \left(1 - \frac{m_B^2}{m_\eta^2}\right)^3 \times O(1) < \frac{\Gamma(\eta \to \pi^0 \gamma\gamma)}{\Gamma(\eta \to \gamma\gamma)} \sim 10^{-3}$$

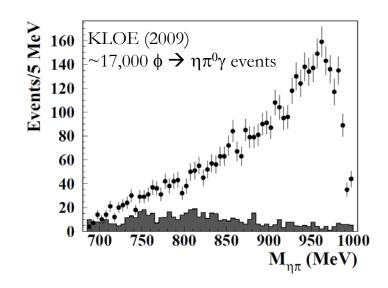
Requires $\alpha_{\rm B} < 10^{-5} << \alpha_{\rm em}$

Boost sensitivity by searching for $\pi^0 \gamma$ resonance in $\eta \rightarrow \pi^0 \gamma \gamma$ Proposal by Jefferson Eta Factory (JLab)

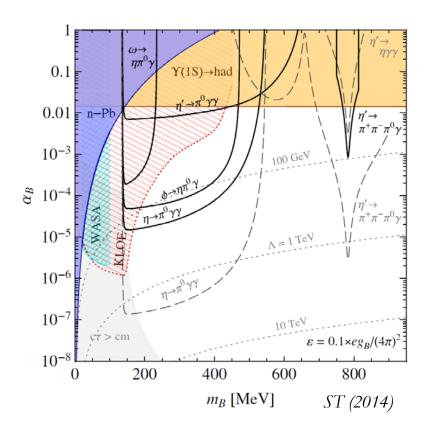
$\phi \rightarrow \eta \pi^0 \gamma$

B boson signature: $\phi \rightarrow \eta B \rightarrow \eta \pi^0 \gamma$

Mimics the rare SM decay $\phi \rightarrow \eta \pi^0 \gamma$


SM decay target for understanding scalar resonance in QCD

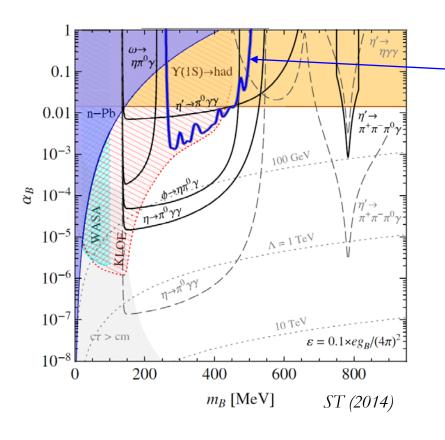
$$\phi \rightarrow a_0(980) * \gamma \rightarrow \eta \pi^0 \gamma$$


Achasov & Ivanchenko (1989)

B boson signature: $\pi^0 \gamma$ invariant mass peak

Total rate constraint: $\alpha_{\rm B} < 5 {\rm x} 10^{-5} << \alpha_{\rm em}$

Constraints on B boson


Black lines = rare meson decays (based on total rate)

Blue = low-energy neutron scattering

Orange = $U \rightarrow$ hadrons

Red/Blue hatched = Dark photon searches (model-dependent)

Constraints on B boson

First official B boson search Won et al |Belle| (2016)

Search for $\pi^+\pi^-$ resonance in $\eta \rightarrow B\gamma \rightarrow \pi^+\pi^-\gamma$

Conclusions

- New forces beyond the Standard Model:
 - Motivated by dark matter
 - Would be a game-changing particle physics discovery
- GeV-scale leptophobic forces
 - Blind spot to dark photon searches
 - Even very small couplings can be discovered (10⁵x smaller than EM)
 - Smoking gun signature: a $\pi^0 \gamma$ resonance in rare meson decays.
 - No bump hunt done (with potential for discovery)