Search for dark forces with KLOE / KLOE-2

E. Graziani

INFN – Roma 3

on behalf of the KLOE-2 Collaboration

KLOE-2 Workshop on e+e- collision physics at 1 GeV

26-28 October 2016 INFN - Laboratori Nazionali di Frascati, Italy

From the 2009 SLAC Workshop on Dark Forces

There are several different experimental ways (on earth) to take a look at the dark world:

KLOE/KLOE-2 is an a very good position to probe a light dark sector at the GeV scale:

- It operates on DA ϕ NE <u>exactly</u> at that scale: $E_{cm} \sim 1 \text{ GeV}$
- Most of the interesting dark process cross sections at e⁺e⁻ colliders scale with 1/s: a factor ~100 wrt to B factories, which almost compensates the integrated luminosity
- It's a unique place to study some rare meson decays (it's a ϕ factory, folks!)

Dark forces at KLOE: outline

✓ Decay of the ϕ meson into a U boson + pseudoscalar η : $\phi \rightarrow \eta U, U \rightarrow e^+e^-, \eta \rightarrow \pi\pi\pi \rightarrow Phys.Lett. B706 (2012) 251$ Phys.Lett. B720 (2013) 111

✓ Associated U_γ production: $e^+e^- \rightarrow U_{\gamma} \rightarrow \mu^+\mu^-\gamma \rightarrow Phys.Lett. B736$ (2014) 459 $e^+e^- \rightarrow U_{\gamma} \rightarrow e^+e^-\gamma \rightarrow Phys.Lett. B750$ (2015) 633 $e^+e^- \rightarrow U_{\gamma} \rightarrow \pi^+\pi^-\gamma \rightarrow Phys.Lett. B757$ (2016) 356

✓ Higgsstrahlung process, in the $m_{h'} < m_U$ scenario, with an invisible Higgs: e⁺e⁻→ Uh'→µ⁺µ⁻ + missing energy → Phys.Lett. B747 (2015) 365

U boson search in $\phi \rightarrow \eta e^+e^-$ decays

Mesons undergoing radiative decays to photons could also decay to a U boson with branching fraction BR (X \rightarrow YU) ~ $\epsilon^2 \times |FF_{XY\gamma}|^2 \times BR (X\rightarrow Y\gamma)$

U boson search in $\phi \rightarrow \eta e^+e^-$ decays: 90% CL upper limits

Di-electron mass spectrum

E.Graziani – Dark forces in KLOE – KLOE-2 Workshop - Frascati 2016

U boson search in $e^+e^- \rightarrow e^+e^-\gamma$

- detected large angle photon $\theta_{\gamma} < 50^{\circ}, \theta_{\gamma} > 130^{\circ}$
- two opposite sign charged tracks $50^{\circ} < \theta_{e} < 130^{\circ}$
- M_{TRK} to separate from $\mu\mu\gamma$, $\pi\pi\gamma$

✓ allows to explore the 2m_e threshold region
 ✓ great suppression of t-channel Bhabha
 ✓ background contamination ≈1.5%

U boson search in $e^+e^- \rightarrow e^+e^-\gamma$: 90% CL upper limits

U boson search in $e^+e^- \rightarrow \pi^+\pi^-\gamma$

• undetected small angle photon $\theta_{\gamma} < 15^{\circ}, \theta_{\gamma} > 165^{\circ}$

• two opposite sign charged tracks $50^{\circ} < \theta_{\pi} < 130^{\circ}$

U boson search in $e^+e^- \rightarrow \pi^+\pi^-\gamma$: 90% CL upper limits

E.Graziani – Dark forces in KLOE – KLOE-2 Workshop - Frascati 2016

The $e^+e^- \rightarrow h'U$ higgsstrahlung process

We studied only the muon case $m_{h'} < m_U: e + e^- \rightarrow \mu + \mu^- + missing energy$

 $e^+e^- \rightarrow h'U$: results

$e^+e^- \rightarrow h'U$: p₀ values and 90% CL upper limits

Dark forces at KLOE: summary and conclusions

□ KLOE searched for a dark gauge U boson in six different processes:

- ϕ meson decay: $\Phi \rightarrow \eta U$ with $U \rightarrow e^+e^-$, $\eta \rightarrow \pi \pi \pi$
- Uy associate production: $e^+e^- \rightarrow U\gamma \rightarrow \mu^+\mu^-\gamma$
- Uy associate production: $e^+e^- \rightarrow U\gamma \rightarrow e^+e^-\gamma$
- Uy associate production: $e^+e^- \rightarrow U\gamma \rightarrow \pi^+\pi^-\gamma$
- Higgsstrahlung: $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^- + miss.$ energy

Phys.Lett. B720 (2013) 111 Phys.Lett. B736 (2014) 459 Phys.Lett. B750 (2015) 633 Phys.Lett. B757 (2016) 356 Phys.Lett. B747 (2015) 365

 \Box We found no evidence and set upper limits on the mixing parameter $\varepsilon^2 (\alpha_D \varepsilon^2)$, as a function of the U (and h') mass, in the range 10⁻⁵÷10⁻⁷, depending on the process.

□ All these measurements, performed with the KLOE data set, are statistically dominated, so...

 \Box ... the increased DA ϕ NE delivered luminosity and the presence of the new detectors in KLOE-2 are expected to improve these limits by a factor ... (see next slides).

□ New KLOE-2 run is well in progress. Stay tuned!

U boson search in $e^+e^- \rightarrow \mu^+\mu^-\gamma$: **new**

U boson search in $e^+e^- \rightarrow \mu^+\mu^-\gamma$: 90% CL upper limits

U search in $e^+e^- \rightarrow \mu^+\mu^-\gamma + \pi^+\pi^-\gamma$: 90% CL upper limits

black = $\mu\mu\gamma$ + $\pi\pi\gamma$ at full stat

E.Graziani – Dark forces in KLOE – KLOE-2 Workshop - Frascati 2016

Dark forces at KLOE-2

- The \$\operturbeta → \$\overline\$⁺e⁻\$ search is no more competitive with other results in the low mass region and will probably be dropped
- The most important new detector for the dark forces search is the Inner Tracker
- Improvements in both mass resolution measurement and vertex position reconstruction (still to be precisely quantified)

Our projections for KLOE-2 assume:

- L=5 fb⁻¹ fully available for analyses
- 30% improvement in mass resolution (S/N ratio)
- 2÷3 improvement in vertex position (K[±] rejection).

U boson search in $e^+e^- \rightarrow e^+e^-\gamma$, $\mu^+\mu^-\gamma$, $\pi^+\pi^-\gamma$

E.Graziani – Dark forces in KLOE – KLOE-2 Workshop - Frascati 2016

U search in $e^+e^- \rightarrow e^+e^-\gamma$, $\mu^+\mu^-\gamma$, $\pi^+\pi^-\gamma$: KLOE-2 projections

E.Graziani – Dark forces in KLOE – KLOE-2 Workshop - Frascati 2016

U search in $e^+e^- \rightarrow e^+e^-\gamma$, $\mu^+\mu^-\gamma$, $\pi^+\pi^-\gamma$: KLOE-2 projections

X boson at 17 Mev?

E.Graziani – Dark forces in KLOE – KLOE-2 Workshop - Frascati 2016

X boson at 17 Mev?

E.Graziani – Dark forces in KLOE – KLOE-2 Workshop - Frascati 2016

X boson at 17 Mev?

E.Graziani – Dark forces in KLOE – KLOE-2 Workshop - Frascati 2016

E.Graziani – Dark forces in KLOE – KLOE-2 Workshop - Frascati 2016

E.Graziani – Dark forces in KLOE – KLOE-2 Workshop - Frascati 2016

Only on-peak projections (no DA¢NE/KLOE-2 official schedule for an off-peak run)

Possibility to add the **e**⁺**e**⁻ + **missing energy** channel

- increase statistics (combine)
- > gain access to the $m_U < 210$ MeV region

Possibility to study the $m_{h'} > m_U$ scenario

- \blacktriangleright 6 electrons final state, 3 x e⁺e⁻ pairs at the same invariant mass, 2 x e⁺e⁻ pairs at h' mass
- > might give access to the $m_U=17$ MeV region
- feasibility to be demonstrated

Leptophobic B boson search at KLOE / KLOE-2

Decay \rightarrow	$B ightarrow e^+ e^-$	$B ightarrow \pi^0 \gamma$	$B \rightarrow \pi^+ \pi^- \pi^0$	
Production \downarrow	$m_B \sim 1 - 140 { m MeV}$	140-620 MeV	620-1000 MeV	$B \to \eta \gamma$
$\pi^0 o B\gamma$	$\pi^0 ightarrow e^+ e^- \gamma$			
$\eta \rightarrow B\gamma$	$\eta ightarrow e^+ e^- \gamma$	$ \rightarrow \pi^0 \gamma \gamma $		
$\eta' \rightarrow B\gamma$	$\eta' ightarrow e^+ e^- \gamma$	$\eta' ightarrow \pi^0 \gamma \gamma$	$\eta' ightarrow \pi^+ \pi^- \pi^0 \gamma$	$\eta' \rightarrow \eta \gamma \gamma$
$\omega \rightarrow \eta B$	$\omega ightarrow \eta e^+ e^-$	$\omega ightarrow \eta \pi^0 \gamma$		
$\phi \to \eta B$	$\phi ightarrow \eta e^+ e^-$	$ \longrightarrow \phi \rightarrow \eta \pi^0 \gamma $		

5 γ final states. Both processes currently investigated

Dark forces at KLOE-2: invisible U?

 $\chi \equiv$ very light dark matter **NOT** excluded by present limits

could explain $(g-2)_{\mu}$

monochromatic photon $E_{\gamma} = (s - m_U^2)/2\sqrt{s}$

A single photon trigger has been setup and is currently in test phase, with a threshold at ~ 350 MeV.

E.Graziani – Dark forces in KLOE – KLOE-2 Workshop - Frascati 2016

Dark forces at KLOE-2: invisible U? Prospects

preliminary evaluation: sensitivity at the $\varepsilon \sim 10^{-3}$ level with L=2 fb⁻¹

Belle II expectations seems to be MUCH better than simple projections from BaBar limits, even with phase 2 expected luminosity

Time for KLOE-2 is NOW

Dark forces at KLOE-2: summary and conclusions

- □ KLOE-2 sensitivities for $e^+e^- \rightarrow e^+e^-\gamma$, $\mu^+\mu^-\gamma$, $\pi^+\pi^-\gamma$ will benefit of the increased luminosity and of the presence of the IT detector
- □ Expected exclusion limits should remain competitive. In the $e^+e^- \rightarrow \mu^+\mu^-\gamma + \pi^+\pi^-\gamma$ the should stay well below the BaBar ones above 500 MeV
- □ KLOE-2 sensitivities for the dark Higgsstrahlung search will benefit of the increased luminosity and wll greatly benefit of the presence of the IT
- □ The search for the invisible decays of the dark photon is just started and look promising
- □ New ideas are coming (leptophobic dark photons, axions, ...). More new ideas are welcome!

THANK YOU!