Decoherence and discrete symmetries in deformed relativistic kinematics

Michele Arzano

Dipartimento di Fisica "Sapienza" University of Rome

October 26, 2016 KLOE-2 Workshop - LNF

Is purity eternal?

Fundamental decoherence in quantum gravity?

Breakdown of predictability in gravitational collapse*

S. W. Hawking ${ }^{\dagger}$

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125

Is purity eternal?

Fundamental decoherence in quantum gravity?

Breakdown of predictability in gravitational collapse*
S. W. Hawking ${ }^{\dagger}$

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125
(Received 25 August 1975)

- Ordinary quantum evolution is unitary: $\rho_{\text {fin }}=S \rho_{i n} S^{\dagger}$ with $S S^{\dagger}=1$

Fundamental decoherence in quantum gravity?

Breakdown of predictability in gravitational collapse*
S. W. Hawking ${ }^{\dagger}$

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125

- Ordinary quantum evolution is unitary: $\rho_{\text {fin }}=S \rho_{i n} S^{\dagger}$ with $S S^{\dagger}=1$
- Unitary $S \Longrightarrow$ if $\operatorname{Tr} \rho_{\text {in }}^{2}=1$ then $\operatorname{Tr} \rho_{\text {fin }}^{2}=1$ i.e. purity is eternal

Fundamental decoherence in quantum gravity?

Breakdown of predictability in gravitational collapse*
S. W. Hawking ${ }^{\dagger}$

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125

- Ordinary quantum evolution is unitary: $\rho_{\text {fin }}=S \rho_{i n} S^{\dagger}$ with $S S^{\dagger}=1$
- Unitary $S \Longrightarrow$ if $\operatorname{Tr} \rho_{\text {in }}^{2}=1$ then $\operatorname{Tr} \rho_{\text {fin }}^{2}=1$ i.e. purity is eternal
- BH quantum radiance suggests $\rho_{i n}($ pure $) \rightarrow \rho_{\text {fin }}($ mixed $)$ should be possible

Fundamental decoherence in quantum gravity?

Breakdown of predictability in gravitational collapse*
S. W. Hawking ${ }^{\dagger}$

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125

- Ordinary quantum evolution is unitary: $\rho_{\text {fin }}=S \rho_{i n} S^{\dagger}$ with $S S^{\dagger}=1$
- Unitary $S \Longrightarrow$ if $\operatorname{Tr} \rho_{i n}^{2}=1$ then $\operatorname{Tr} \rho_{\text {fin }}^{2}=1$ i.e. purity is eternal
- BH quantum radiance suggests $\rho_{i n}($ pure $) \rightarrow \rho_{\text {fin }}($ mixed $)$ should be possible
- Hawking suggested to replace S with a "superscattering" operator \$: $\rho_{\text {fin }}=\$ \rho_{\text {in }} \neq S \rho_{\text {in }} S^{\dagger}$ then $\operatorname{Tr} \rho_{\text {fin }}^{2} \leq 1$

Fundamental decoherence in quantum gravity?

Breakdown of predictability in gravitational collapse*
S. W. Hawking ${ }^{\dagger}$

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125

- Ordinary quantum evolution is unitary: $\rho_{\text {fin }}=S \rho_{i n} S^{\dagger}$ with $S S^{\dagger}=1$
- Unitary $S \Longrightarrow$ if $\operatorname{Tr} \rho_{i n}^{2}=1$ then $\operatorname{Tr} \rho_{\text {fin }}^{2}=1$ i.e. purity is eternal
- BH quantum radiance suggests $\rho_{i n}($ pure $) \rightarrow \rho_{\text {fin }}($ mixed $)$ should be possible
- Hawking suggested to replace S with a "superscattering" operator \$: $\rho_{\text {fin }}=\$ \rho_{\text {in }} \neq S \rho_{\text {in }} S^{\dagger}$ then $\operatorname{Tr} \rho_{\text {fin }}^{2} \leq 1$

Is purity eternal? (continued)

Is purity eternal? (continued)

- Ellis, Hagelin, Nanopoulos and Srednicki (Nucl. Phys. B 241, 381 (1984)) studied dynamics associated to $\$$ represented by a differential equation for ρ

$$
\dot{\rho}=\not H \rho \neq-i[H, \rho]
$$

(EHNS focused on phenomenology for neutral kaon systems and neutron interferometry)

- Ellis, Hagelin, Nanopoulos and Srednicki (Nucl. Phys. B 241, 381 (1984)) studied dynamics associated to $\$$ represented by a differential equation for ρ

$$
\dot{\rho}=\not H \rho \neq-i[H, \rho]
$$

(EHNS focused on phenomenology for neutral kaon systems and neutron interferometry)

- Banks, Peskin and Susskind (Nucl. Phys. B 244, 125 (1984)) looked for a general form for $H \rho$.
- Ellis, Hagelin, Nanopoulos and Srednicki (Nucl. Phys. B 241, 381 (1984)) studied dynamics associated to $\$$ represented by a differential equation for ρ

$$
\dot{\rho}=\not H \rho \neq-i[H, \rho]
$$

(EHNS focused on phenomenology for neutral kaon systems and neutron interferometry)

- Banks, Peskin and Susskind (Nucl. Phys. B 244, 125 (1984)) looked for a general form for Ho. Assuming that
- $\rho=\rho^{\dagger}$
- $\operatorname{Tr} \rho=1$
are preserved by time evolution
- Ellis, Hagelin, Nanopoulos and Srednicki (Nucl. Phys. B 241, 381 (1984)) studied dynamics associated to $\$$ represented by a differential equation for ρ

$$
\dot{\rho}=\not H \rho \neq-i[H, \rho]
$$

(EHNS focused on phenomenology for neutral kaon systems and neutron interferometry)

- Banks, Peskin and Susskind (Nucl. Phys. B 244, 125 (1984)) looked for a general form for H ρ. Assuming that
- $\rho=\rho^{\dagger}$
- $\operatorname{Tr} \rho=1$
are preserved by time evolution they (re)-discovered the Lindblad equation

$$
\dot{\rho}=-i[H, \rho]-\frac{1}{2} h_{\alpha \beta}\left(Q^{\alpha} Q^{\beta} \rho+\rho Q^{\beta} Q^{\alpha}-2 Q^{\alpha} \rho Q^{\beta}\right)
$$

$h_{\alpha \beta}$ is a hermitian matrix of constants and Q^{α} form a basis of hermitian matrices

THIS TALK: show how generalized quantum evolution of Lindblad type emerges naturally when four-momentum space is a non-abelian Lie group (MA: 1403.6457; Phys. Rev. D 90, 024016 (2014))

THIS TALK: show how generalized quantum evolution of Lindblad type emerges naturally when four-momentum space is a non-abelian Lie group (MA: 1403.6457; Phys. Rev. D 90, 024016 (2014))

Lie group-valued momenta are associated to deformations of relativistic symmetries and make their appearance when one couples point particles to gravity in $2+1$ dimensions

Point particles in 3d gravity

General relativity in $2+1$ dimensions admits no local d.o.f.

Point particles in 3d gravity

General relativity in $2+1$ dimensions admits no local d.o.f.

- Particles: point-like defects \rightarrow conical space

$$
d s^{2}=-d t^{2}+d r^{2}+(1-4 G m)^{2} r^{2} d \varphi^{2}(\text { Deser, Jackiv, 't Hooft, 1984) }
$$

Point particles in 3d gravity

General relativity in $2+1$ dimensions admits no local d.o.f.

- Particles: point-like defects \rightarrow conical space

$$
d s^{2}=-d t^{2}+d r^{2}+(1-4 G m)^{2} r^{2} d \varphi^{2}(\text { Deser, Jackiv, 't Hooft, 1984) }
$$

- Euclidean plane with a wedge "cut-out", with deficit angle $\alpha=8 \pi \mathrm{Gm}$ proportional to the particle's mass m
(3d Newton's constat G $\sim 1 / M_{\text {Planck }}$)

Point particles in 3d gravity

General relativity in $2+1$ dimensions admits no local d.o.f.

- Particles: point-like defects \rightarrow conical space

$$
d s^{2}=-d t^{2}+d r^{2}+(1-4 G m)^{2} r^{2} d \varphi^{2}(\text { Deser, Jackiw, 't Hooft, 1984) }
$$

- Euclidean plane with a wedge "cut-out", with deficit angle $\alpha=8 \pi G m$ proportional to the particle's mass m
(3d Newton's constat G $\sim 1 / M_{\text {Planck }}$)

In such topological theory the particle's mass (rest energy) is described by a rotation $h_{\alpha} \in S L(2, \mathbb{R})$

$S L(2, \mathbb{R})$ momentum space: embedding coordinates

Matschull and Welling (Class. Quant. Grav. 15, 2981 (1998)) showed that such "conical" particle's phase space is embedded in $\mathbb{R}^{2,1} \times S L(2, \mathbb{R})$

$S L(2, \mathbb{R})$ momentum space: embedding coordinates

Matschull and Welling (Class. Quant. Grav. 15, 2981 (1998)) showed that such "conical" particle's phase space is embedded in $\mathbb{R}^{2,1} \times S L(2, \mathbb{R})$

Physical momentum of a moving particle: $h=g h_{\alpha} g^{-1} ; \quad g \in S L(2, \mathbb{R})$

What are the corresponding three-momenta??

$S L(2, \mathbb{R})$ momentum space: embedding coordinates

Matschull and Welling (Class. Quant. Grav. 15, 2981 (1998)) showed that such "conical" particle's phase space is embedded in $\mathbb{R}^{2,1} \times S L(2, \mathbb{R})$

Physical momentum of a moving particle: $h=g h_{\alpha} g^{-1} ; \quad g \in S L(2, \mathbb{R})$

What are the corresponding three-momenta??
Parametrize group: $h=u \mathbb{1}+\frac{p^{\mu}}{\kappa} \gamma_{\mu}$ with $\kappa=(4 \pi G)^{-1}$ and γ_{μ} traceless matrices

$S L(2, \mathbb{R})$ momentum space: embedding coordinates

Matschull and Welling (Class. Quant. Grav. 15, 2981 (1998)) showed that such "conical" particle's phase space is embedded in $\mathbb{R}^{2,1} \times S L(2, \mathbb{R})$

Physical momentum of a moving particle: $h=g h_{\alpha} g^{-1} ; \quad g \in S L(2, \mathbb{R})$

What are the corresponding three-momenta??
Parametrize group: $h=u \mathbb{1}+\frac{p^{\mu}}{\kappa} \gamma_{\mu}$ with $\kappa=(4 \pi G)^{-1}$ and γ_{μ} traceless matrices The unit determinant condition $u^{2}+p^{2} / \kappa^{2}=1 \Longrightarrow$

$S L(2, \mathbb{R})$ momentum space: embedding coordinates

Matschull and Welling (Class. Quant. Grav. 15, 2981 (1998)) showed that such "conical" particle's phase space is embedded in $\mathbb{R}^{2,1} \times S L(2, \mathbb{R})$

Physical momentum of a moving particle: $h=g h_{\alpha} g^{-1} ; \quad g \in S L(2, \mathbb{R})$

What are the corresponding three-momenta??

Parametrize group: $h=u \mathbb{1}+\frac{p^{\mu}}{\kappa} \gamma_{\mu}$ with $\kappa=(4 \pi G)^{-1}$ and γ_{μ} traceless matrices The unit determinant condition $u^{2}+p^{2} / \kappa^{2}=1 \Longrightarrow$

p^{μ} are embedding coordinates on AdS space

Basic quantum theory

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

Basic quantum theory

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by eigenstates of the translation generators

$$
P_{\mu}|k\rangle=k_{\mu}|k\rangle
$$

Basic quantum theory

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by eigenstates of the translation generators

$$
P_{\mu}|k\rangle=k_{\mu}|k\rangle
$$

- action on $\langle k| \in \mathcal{H}^{*}$, dual space: $\quad P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right)$

Basic quantum theory

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by eigenstates of the translation generators

$$
P_{\mu}|k\rangle=k_{\mu}|k\rangle
$$

- action on $\langle k| \in \mathcal{H}^{*}$, dual space: $\quad P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)$

Basic quantum theory

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by eigenstates of the translation generators

$$
P_{\mu}|k\rangle=k_{\mu}|k\rangle
$$

- action on $\langle k| \in \mathcal{H}^{*}$, dual space: $\quad P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)$
- action on composite system $\mathcal{H} \otimes \mathcal{H}$:

$$
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle
$$

Basic quantum theory

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by eigenstates of the translation generators

$$
P_{\mu}|k\rangle=k_{\mu}|k\rangle
$$

- action on $\langle k| \in \mathcal{H}^{*}$, dual space: $\quad P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)$
- action on composite system $\mathcal{H} \otimes \mathcal{H}$:

$$
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
$$

Basic quantum theory

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by eigenstates of the translation generators

$$
P_{\mu}|k\rangle=k_{\mu}|k\rangle
$$

- action on $\langle k| \in \mathcal{H}^{*}$, dual space: $\quad P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)$
- action on composite system $\mathcal{H} \otimes \mathcal{H}$:

$$
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
$$

"Antipode": $S\left(P_{\mu}\right)=-P_{\mu}$, "Co-product": $\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}$

Basic quantum theory

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by eigenstates of the translation generators

$$
P_{\mu}|k\rangle=k_{\mu}|k\rangle
$$

- action on $\langle k| \in \mathcal{H}^{*}$, dual space: $\quad P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)$
- action on composite system $\mathcal{H} \otimes \mathcal{H}$:

$$
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
$$

"Antipode": $S\left(P_{\mu}\right)=-P_{\mu}$, "Co-product": $\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}$
Hopf algebra notions "built in" in everyday quantum theory..

Basic quantum theory

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by eigenstates of the translation generators

$$
P_{\mu}|k\rangle=k_{\mu}|k\rangle
$$

- action on $\langle k| \in \mathcal{H}^{*}$, dual space: $\quad P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)$
- action on composite system $\mathcal{H} \otimes \mathcal{H}$:

$$
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
$$

"Antipode": $S\left(P_{\mu}\right)=-P_{\mu}$, "Co-product": $\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}$
Hopf algebra notions "built in" in everyday quantum theory..

- these notions suffice to derive action of P_{μ} on operators...take e.g. $\pi_{k}=|k\rangle\langle k|$

Basic quantum theory

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by eigenstates of the translation generators

$$
P_{\mu}|k\rangle=k_{\mu}|k\rangle
$$

- action on $\langle k| \in \mathcal{H}^{*}$, dual space: $\quad P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)$
- action on composite system $\mathcal{H} \otimes \mathcal{H}$:

$$
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
$$

"Antipode": $S\left(P_{\mu}\right)=-P_{\mu}$, "Co-product": $\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}$
Hopf algebra notions "built in" in everyday quantum theory..

- these notions suffice to derive action of P_{μ} on operators...take e.g. $\pi_{k}=|k\rangle\langle k|$

$$
\begin{aligned}
& P_{\mu}\left(\pi_{k}\right)=P_{\mu}(|k\rangle\langle k|)= \\
& \quad=P_{\mu}(|k\rangle)\langle k|+|k\rangle P_{\mu}(\langle k|)=P_{\mu}|k\rangle\langle k|-|k\rangle\langle k| P_{\mu}=\left[P_{\mu}, \pi_{k}\right]
\end{aligned}
$$

Basic quantum theory

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

- basis of \mathcal{H} given by eigenstates of the translation generators

$$
P_{\mu}|k\rangle=k_{\mu}|k\rangle
$$

- action on $\langle k| \in \mathcal{H}^{*}$, dual space: $\quad P_{\mu}\langle k|=-k_{\mu}\langle k|=\langle k|\left(-k_{\mu}\right) \equiv\langle k| S\left(P_{\mu}\right)$
- action on composite system $\mathcal{H} \otimes \mathcal{H}$:

$$
P_{\mu}\left(\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle\right)=P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle+\left|k_{1}\right\rangle \otimes P_{\mu}\left|k_{2}\right\rangle \equiv \Delta P_{\mu}\left|k_{1}\right\rangle \otimes\left|k_{2}\right\rangle
$$

"Antipode": $S\left(P_{\mu}\right)=-P_{\mu}$, "Co-product" : $\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}$
Hopf algebra notions "built in" in everyday quantum theory..

- these notions suffice to derive action of P_{μ} on operators...take e.g. $\pi_{k}=|k\rangle\langle k|$

$$
\begin{aligned}
& \quad P_{\mu}\left(\pi_{k}\right)=P_{\mu}(|k\rangle\langle k|)= \\
& \quad=P_{\mu}(|k\rangle)\langle k|+|k\rangle P_{\mu}(\langle k|)=P_{\mu}|k\rangle\langle k|-|k\rangle\langle k| P_{\mu}=\left[P_{\mu}, \pi_{k}\right]
\end{aligned}
$$

i.e. just the familiar adjoint action... Note: Using the spectral theorem any operator can be written in terms of a combination of projectors $|k\rangle\langle k|$

Deformed quantum theory

Deformation of symmetry generators provide a generalization of these basic notions

Deformed quantum theory

Deformation of symmetry generators provide a generalization of these basic notions

- $|\pi\rangle$ labelled by coordinates on a non-abelian Lie group

$$
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle=\pi_{\mu}|\pi\rangle
$$

Deformed quantum theory

Deformation of symmetry generators provide a generalization of these basic notions

- $|\pi\rangle$ labelled by coordinates on a non-abelian Lie group

$$
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle=\pi_{\mu}|\pi\rangle
$$

- for action on bras the non-trivial structure of momentum space comes into play

$$
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
$$

Deformed quantum theory

Deformation of symmetry generators provide a generalization of these basic notions

- $|\pi\rangle$ labelled by coordinates on a non-abelian Lie group

$$
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle=\pi_{\mu}|\pi\rangle
$$

- for action on bras the non-trivial structure of momentum space comes into play

$$
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
$$

- action on multi-particle states also non-trivial

$$
P_{\mu}\left(\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle\right)=\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right)\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle \equiv \Delta P_{\mu}\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle
$$

Deformed quantum theory

Deformation of symmetry generators provide a generalization of these basic notions

- $|\pi\rangle$ labelled by coordinates on a non-abelian Lie group

$$
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle=\pi_{\mu}|\pi\rangle
$$

- for action on bras the non-trivial structure of momentum space comes into play

$$
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
$$

- action on multi-particle states also non-trivial

$$
P_{\mu}\left(\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle\right)=\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right)\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle \equiv \Delta P_{\mu}\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle
$$

- composition rule of momentum eigenvalues is deformed

$$
\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right) \equiv \mathcal{P}_{\mu}\left(\pi_{1}\right) \oplus \mathcal{P}_{\mu}\left(\pi_{2}\right) \neq \mathcal{P}_{\mu}\left(\pi_{2} \cdot \pi_{1}\right),
$$

Deformed quantum theory

Deformation of symmetry generators provide a generalization of these basic notions

- $|\pi\rangle$ labelled by coordinates on a non-abelian Lie group

$$
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle=\pi_{\mu}|\pi\rangle
$$

- for action on bras the non-trivial structure of momentum space comes into play

$$
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
$$

- action on multi-particle states also non-trivial

$$
P_{\mu}\left(\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle\right)=\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right)\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle \equiv \Delta P_{\mu}\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle
$$

- composition rule of momentum eigenvalues is deformed

$$
\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right) \equiv \mathcal{P}_{\mu}\left(\pi_{1}\right) \oplus \mathcal{P}_{\mu}\left(\pi_{2}\right) \neq \mathcal{P}_{\mu}\left(\pi_{2} \cdot \pi_{1}\right), \quad \mathcal{P}_{\mu}(\pi) \oplus \mathcal{P}_{\mu}\left(\pi^{-1}\right)=\mathcal{P}_{\mu}(\mathbb{1})=0
$$

Deformed quantum theory

Deformation of symmetry generators provide a generalization of these basic notions

- $|\pi\rangle$ labelled by coordinates on a non-abelian Lie group

$$
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle=\pi_{\mu}|\pi\rangle
$$

- for action on bras the non-trivial structure of momentum space comes into play

$$
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
$$

- action on multi-particle states also non-trivial

$$
P_{\mu}\left(\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle\right)=\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right)\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle \equiv \Delta P_{\mu}\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle
$$

- composition rule of momentum eigenvalues is deformed

$$
\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right) \equiv \mathcal{P}_{\mu}\left(\pi_{1}\right) \oplus \mathcal{P}_{\mu}\left(\pi_{2}\right) \neq \mathcal{P}_{\mu}\left(\pi_{2} \cdot \pi_{1}\right), \quad \mathcal{P}_{\mu}(\pi) \oplus \mathcal{P}_{\mu}\left(\pi^{-1}\right)=\mathcal{P}_{\mu}(\mathbb{1})=0
$$

In Hopf algebraic lingo: co-product ΔP_{μ} and antipode of $S\left(P_{\mu}\right)$ non-trivial

Deformed quantum theory

Deformation of symmetry generators provide a generalization of these basic notions

- $|\pi\rangle$ labelled by coordinates on a non-abelian Lie group

$$
P_{\mu}|\pi\rangle=\mathcal{P}_{\mu}(\pi)|\pi\rangle=\pi_{\mu}|\pi\rangle
$$

- for action on bras the non-trivial structure of momentum space comes into play

$$
P_{\mu}\langle\pi|=\mathcal{P}_{\mu}\left(\pi^{-1}\right)\langle\pi| \equiv\langle\pi| S\left(P_{\mu}\right)
$$

- action on multi-particle states also non-trivial

$$
P_{\mu}\left(\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle\right)=\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right)\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle \equiv \Delta P_{\mu}\left|\pi_{1}\right\rangle \otimes\left|\pi_{2}\right\rangle
$$

- composition rule of momentum eigenvalues is deformed

$$
\mathcal{P}_{\mu}\left(\pi_{1} \cdot \pi_{2}\right) \equiv \mathcal{P}_{\mu}\left(\pi_{1}\right) \oplus \mathcal{P}_{\mu}\left(\pi_{2}\right) \neq \mathcal{P}_{\mu}\left(\pi_{2} \cdot \pi_{1}\right), \quad \mathcal{P}_{\mu}(\pi) \oplus \mathcal{P}_{\mu}\left(\pi^{-1}\right)=\mathcal{P}_{\mu}(\mathbb{1})=0
$$

In Hopf algebraic lingo: co-product ΔP_{μ} and antipode of $S\left(P_{\mu}\right)$ non-trivial
Key point: the action on operators will be deformed accordingly

Deformed translations and Lindblad evolution in three dimensions

For the deformed translation generators associated to $S L(2, \mathbb{R})$ momentum space:

$$
\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}+\frac{1}{\kappa} \epsilon_{\mu \nu \sigma} P^{\nu} \otimes P^{\sigma}+\mathcal{O}\left(\frac{1}{\kappa^{2}}\right), \quad S\left(P_{\mu}\right)=-P_{\mu}
$$

Deformed translations and Lindblad evolution in three dimensions

For the deformed translation generators associated to $S L(2, \mathbb{R})$ momentum space:

$$
\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}+\frac{1}{\kappa} \epsilon_{\mu \nu \sigma} P^{\nu} \otimes P^{\sigma}+\mathcal{O}\left(\frac{1}{\kappa^{2}}\right), \quad S\left(P_{\mu}\right)=-P_{\mu}
$$

ΔP_{0} and $S\left(P_{0}\right)$ determine the action of time transl. generator P_{0} on an operator ρ

$$
\operatorname{ad}_{P_{0}}(\rho)=\left[P_{0}, \rho\right]-\frac{1}{\kappa} \epsilon_{0 i j} P^{i} \rho P^{j}
$$

Deformed translations and Lindblad evolution in three dimensions

For the deformed translation generators associated to $S L(2, \mathbb{R})$ momentum space:

$$
\Delta P_{\mu}=P_{\mu} \otimes \mathbb{1}+\mathbb{1} \otimes P_{\mu}+\frac{1}{\kappa} \epsilon_{\mu \nu \sigma} P^{\nu} \otimes P^{\sigma}+\mathcal{O}\left(\frac{1}{\kappa^{2}}\right), \quad S\left(P_{\mu}\right)=-P_{\mu}
$$

ΔP_{0} and $S\left(P_{0}\right)$ determine the action of time transl. generator P_{0} on an operator ρ

$$
\operatorname{ad}_{P_{0}}(\rho)=\left[P_{0}, \rho\right]-\frac{1}{\kappa} \epsilon_{0 i j} P^{i} \rho P^{j}
$$

which leads to a Lindlblad equation

$$
\dot{\rho}=-i\left[P_{0}, \rho\right]-\frac{1}{2} h_{i j}\left(P^{i} P^{j} \rho+\rho P^{j} P^{i}-2 P^{j} \rho P^{i}\right)
$$

with "decoherence" matrix given by

$$
h=\frac{i}{\kappa}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

Deformed translation in four dimensions

Can the picture be generalized to the four-dimensional case?
Yes

Deformed translation in four dimensions

Can the picture be generalized to the four-dimensional case?
Yes

- κ-Poincaré: deformation of relativistic symmetries governed by UV-scale κ (Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))

Deformed translation in four dimensions

Can the picture be generalized to the four-dimensional case?
Yes

- κ-Poincaré: deformation of relativistic symmetries governed by UV-scale κ (Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))
- Structural analogies of momentum sector with 3d case only recently appreciated...

Deformed translation in four dimensions

Can the picture be generalized to the four-dimensional case?

> Yes

- κ-Poincaré: deformation of relativistic symmetries governed by UV-scale κ (Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))
- Structural analogies of momentum sector with 3d case only recently appreciated...
κ-momenta: coordinates on Lie group $A N(3)$ obtained form the Iwasawa decomposition of $S O(4,1) \simeq S O(3,1) A N(3)$, sub-manifold of $d S_{4}$

$$
-p_{0}^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2}=\kappa^{2} ; \quad p_{0}+p_{4}>0
$$

with $\kappa \sim E_{\text {Planck }}$

These structures have been advocated as encoding the kinematics of a "Minkowskilimit" of quantum gravity...deformed relativistic kinematics at the Planck scale (see Amelino-Camelia's talk)

dS momentum space without DSR

In parallel with 3d case we consider translation generators P_{μ} associated to embedding coordinates p_{μ} on $d S_{4}$

dS momentum space without DSR

In parallel with 3d case we consider translation generators P_{μ} associated to embedding coordinates p_{μ} on $d S_{4}$

Their co-products and antipodes at leading order in κ

$$
\begin{aligned}
\Delta\left(P_{0}\right) & =P_{0} \otimes \mathbb{1}+\mathbb{1} \otimes P_{0}+\frac{1}{\kappa} P_{m} \otimes P_{m} \\
\Delta\left(P_{i}\right) & =P_{i} \otimes \mathbb{1}+\mathbb{1} \otimes P_{i}+\frac{1}{\kappa} P_{i} \otimes P_{0} \\
S\left(P_{0}\right) & =-P_{0}+\frac{1}{\kappa} \vec{P}^{2} \\
S\left(P_{i}\right) & =-P_{i}+\frac{1}{\kappa} P_{i} P_{0}
\end{aligned}
$$

dS momentum space without DSR

In parallel with 3d case we consider translation generators P_{μ} associated to embedding coordinates p_{μ} on $d S_{4}$

Their co-products and antipodes at leading order in κ

$$
\begin{aligned}
\Delta\left(P_{0}\right) & =P_{0} \otimes \mathbb{1}+\mathbb{1} \otimes P_{0}+\frac{1}{\kappa} P_{m} \otimes P_{m} \\
\Delta\left(P_{i}\right) & =P_{i} \otimes \mathbb{1}+\mathbb{1} \otimes P_{i}+\frac{1}{\kappa} P_{i} \otimes P_{0} \\
S\left(P_{0}\right) & =-P_{0}+\frac{1}{\kappa} \vec{P}^{2} \\
S\left(P_{i}\right) & =-P_{i}+\frac{1}{\kappa} P_{i} P_{0}
\end{aligned}
$$

this basis of κ-Poincaré is called "classical" because

- action of Lorentz sector on P_{μ} in undeformed;

dS momentum space without DSR

In parallel with 3d case we consider translation generators P_{μ} associated to embedding coordinates p_{μ} on $d S_{4}$

Their co-products and antipodes at leading order in κ

$$
\begin{aligned}
\Delta\left(P_{0}\right) & =P_{0} \otimes \mathbb{1}+\mathbb{1} \otimes P_{0}+\frac{1}{\kappa} P_{m} \otimes P_{m}, \\
\Delta\left(P_{i}\right) & =P_{i} \otimes \mathbb{1}+\mathbb{1} \otimes P_{i}+\frac{1}{\kappa} P_{i} \otimes P_{0}, \\
S\left(P_{0}\right) & =-P_{0}+\frac{1}{\kappa} \vec{P}^{2}, \\
S\left(P_{i}\right) & =-P_{i}+\frac{1}{\kappa} P_{i} P_{0},
\end{aligned}
$$

this basis of κ-Poincaré is called "classical" because

- action of Lorentz sector on P_{μ} in undeformed;
- mass-shell condition undeformed $P_{0}^{2}-\vec{P}^{2}=$ const

dS momentum space without DSR

In parallel with 3d case we consider translation generators P_{μ} associated to embedding coordinates p_{μ} on $d S_{4}$

Their co-products and antipodes at leading order in κ

$$
\begin{aligned}
\Delta\left(P_{0}\right) & =P_{0} \otimes \mathbb{1}+\mathbb{1} \otimes P_{0}+\frac{1}{\kappa} P_{m} \otimes P_{m}, \\
\Delta\left(P_{i}\right) & =P_{i} \otimes \mathbb{1}+\mathbb{1} \otimes P_{i}+\frac{1}{\kappa} P_{i} \otimes P_{0}, \\
S\left(P_{0}\right) & =-P_{0}+\frac{1}{\kappa} \vec{P}^{2}, \\
S\left(P_{i}\right) & =-P_{i}+\frac{1}{\kappa} P_{i} P_{0},
\end{aligned}
$$

this basis of κ-Poincaré is called "classical" because

- action of Lorentz sector on P_{μ} in undeformed;
- mass-shell condition undeformed $P_{0}^{2}-\vec{P}^{2}=$ const

In embedding coordinates we have ordinary relativistic kinematics at the one-particle level...all non-trivial structures confined to "co-algebra" sector

Deformed Lindblad evolution from κ-translations

A straightforward calculation of $\operatorname{ad} p_{0}(\rho)$ leads to a non-symmetric Lindblad equation

$$
\dot{\rho}=-i\left[P_{0}, \rho\right]+\frac{i}{\kappa} P_{m} \rho P_{m}-\frac{i}{\kappa} \rho \vec{P}^{2}
$$

From a comparison with 3d case we would expect an extra $\vec{P}^{2} \rho$ term...

Deformed Lindblad evolution from κ-translations

A straightforward calculation of $\operatorname{ad} p_{0}(\rho)$ leads to a non-symmetric Lindblad equation

$$
\dot{\rho}=-i\left[P_{0}, \rho\right]+\frac{i}{\kappa} P_{m} \rho P_{m}-\frac{i}{\kappa} \rho \vec{P}^{2}
$$

From a comparison with 3d case we would expect an extra $\vec{P}^{2} \rho$ term...
...non-trivial antipode $S\left(P_{0}\right)$ leads to deformed notion of hermitian adjoint:

$$
\left(\operatorname{ad}_{P_{0}}(\cdot)\right)^{\dagger} \equiv \operatorname{ad}_{S\left(P_{0}\right)}(\cdot)
$$

Deformed Lindblad evolution from κ-translations

A straightforward calculation of $\operatorname{ad}_{P_{0}}(\rho)$ leads to a non-symmetric Lindblad equation

$$
\dot{\rho}=-i\left[P_{0}, \rho\right]+\frac{i}{\kappa} P_{m} \rho P_{m}-\frac{i}{\kappa} \rho \vec{P}^{2}
$$

From a comparison with 3 d case we would expect an extra $\vec{P}^{2} \rho$ term...
...non-trivial antipode $S\left(P_{0}\right)$ leads to deformed notion of hermitian adjoint:

$$
\left(\operatorname{ad}_{P_{0}}(\cdot)\right)^{\dagger} \equiv \operatorname{ad}_{S\left(P_{0}\right)}(\cdot)
$$

While in 3d the Lindblad equation was covariant in "ordinary" sense, here:

- momenta p_{μ} transform as ordinary Lorentz four-vectors and the translation generators P_{μ} close undeformed algebra

Deformed Lindblad evolution from κ-translations

A straightforward calculation of $\operatorname{ad} p_{0}(\rho)$ leads to a non-symmetric Lindblad equation

$$
\dot{\rho}=-i\left[P_{0}, \rho\right]+\frac{i}{\kappa} P_{m} \rho P_{m}-\frac{i}{\kappa} \rho \vec{P}^{2}
$$

From a comparison with 3d case we would expect an extra $\vec{P}^{2} \rho$ term...
...non-trivial antipode $S\left(P_{0}\right)$ leads to deformed notion of hermitian adjoint:

$$
\left(\operatorname{ad}_{P_{0}}(\cdot)\right)^{\dagger} \equiv \operatorname{ad}_{S\left(P_{0}\right)}(\cdot)
$$

While in 3d the Lindblad equation was covariant in "ordinary" sense, here:

- momenta p_{μ} transform as ordinary Lorentz four-vectors and the translation generators P_{μ} close undeformed algebra
- the adjoint action of boosts on an operator is deformed:

$$
\operatorname{ad}_{N_{i}}(\rho)=\left[N_{i}, \rho\right]+\frac{1}{\kappa}\left[P_{0}, \rho\right] N_{i}+\frac{1}{\kappa} \epsilon^{i j m}\left[P_{j}, \rho\right] M_{m}
$$

Deformed Lindblad evolution from κ-translations

A straightforward calculation of $\operatorname{ad} p_{0}(\rho)$ leads to a non-symmetric Lindblad equation

$$
\dot{\rho}=-i\left[P_{0}, \rho\right]+\frac{i}{\kappa} P_{m} \rho P_{m}-\frac{i}{\kappa} \rho \vec{P}^{2}
$$

From a comparison with 3d case we would expect an extra $\vec{P}^{2} \rho$ term...
...non-trivial antipode $S\left(P_{0}\right)$ leads to deformed notion of hermitian adjoint:

$$
\left(\operatorname{ad}_{P_{0}}(\cdot)\right)^{\dagger} \equiv \operatorname{ad}_{\left(P_{0}\right)}(\cdot)
$$

While in 3d the Lindblad equation was covariant in "ordinary" sense, here:

- momenta p_{μ} transform as ordinary Lorentz four-vectors and the translation generators P_{μ} close undeformed algebra
- the adjoint action of boosts on an operator is deformed:

$$
\operatorname{ad}_{N_{i}}(\rho)=\left[N_{i}, \rho\right]+\frac{1}{\kappa}\left[P_{0}, \rho\right] N_{i}+\frac{1}{\kappa} \epsilon^{i j m}\left[P_{j}, \rho\right] M_{m}
$$

- the adjoint actions of N_{i} and P_{0} satisfy

$$
\operatorname{ad}_{\mathrm{ad} N_{i}\left(P_{0}\right)}(\cdot)=\operatorname{ad}_{N_{i}}\left(\operatorname{ad}_{P_{0}}\right)(\cdot)-\operatorname{ad}_{P_{0}}\left(\operatorname{ad}_{N_{i}}\right)(\cdot)
$$

in this sense the κ-Lindblad equation follows a deformed notion of covariance

Testing deformations via precision measurements of neutral kaons

Phenomenology of κ-Lindblad evolution? (Ellis et al. "Search for Violations of Quantum Mechanics," Nucl. Phys. B 241, 381 (1984)); bounds on κ using precision measurements of neutral kaon systems (KLOE and KLOE-2 experiment)?

Testing deformations via precision measurements of neutral kaons

Phenomenology of κ-Lindblad evolution? (Ellis et al. "Search for Violations of Quantum Mechanics," Nucl. Phys. B 241, 381 (1984)); bounds on κ using precision measurements of neutral kaon systems (KLOE and KLOE-2 experiment)?

- Work in progress: input from κ-Lindblad to derive deformed evolution based on effective Hamiltonia for $K^{0}-\bar{K}^{0}$ (with PhD student D. Perricone)

Testing deformations via precision measurements of neutral kaons

Phenomenology of κ-Lindblad evolution? (Ellis et al. "Search for Violations of Quantum Mechanics," Nucl. Phys. B 241, 381 (1984)); bounds on κ using precision measurements of neutral kaon systems (KLOE and KLOE-2 experiment)?

- Work in progress: input from κ-Lindblad to derive deformed evolution based on effective Hamiltonia for $K^{0}-\bar{K}^{0}$ (with PhD student D. Perricone)
- Besides fundamental decoherence another important test carried out at KLOE is for violations of CPT...

Testing deformations via precision measurements of neutral kaons

Phenomenology of κ-Lindblad evolution? (Ellis et al. "Search for Violations of Quantum Mechanics," Nucl. Phys. B 241, 381 (1984)); bounds on κ using precision measurements of neutral kaon systems (KLOE and KLOE-2 experiment)?

- Work in progress: input from κ-Lindblad to derive deformed evolution based on effective Hamiltonia for $K^{0}-\bar{K}^{0}$ (with PhD student D. Perricone)
- Besides fundamental decoherence another important test carried out at KLOE is for violations of CPT...
- Natural question: do the new structures introduced so far affect discrete symmetries ??

Testing deformations via precision measurements of neutral kaons

Phenomenology of κ-Lindblad evolution? (Ellis et al. "Search for Violations of Quantum Mechanics," Nucl. Phys. B 241, 381 (1984)); bounds on κ using precision measurements of neutral kaon systems (KLOE and KLOE-2 experiment)?

- Work in progress: input from κ-Lindblad to derive deformed evolution based on effective Hamiltonia for $K^{0}-\bar{K}^{0}$ (with PhD student D. Perricone)
- Besides fundamental decoherence another important test carried out at KLOE is for violations of CPT...
- Natural question: do the new structures introduced so far affect discrete symmetries ??
- A first step: use basic physical requirements and algebraic consistency to define the action of P, T and C on the generators of the κ-Poincaré group. (MA and J Kowalski-Glikman, Phys. Lett. B 760, 69 (2016))

κ-deformation of discrete symmetries

- PARITY

κ-deformation of discrete symmetries

- PARITY
- "physical" requirement: total linear momentum of particle + parity image system must vanish $\Rightarrow \mathbb{P}: P_{i} \rightarrow S(P)_{i}$

κ-deformation of discrete symmetries

- PARITY
- "physical" requirement: total linear momentum of particle + parity image system must vanish $\Rightarrow \mathbb{P}: P_{i} \rightarrow S(P)_{i}$
- algebraic consistency:
(1) if use antipode for P_{i} must use it for all symmetry generators;

κ-deformation of discrete symmetries

- PARITY
- "physical" requirement: total linear momentum of particle + parity image system must vanish $\Rightarrow \mathbb{P}: P_{i} \rightarrow S(P)_{i}$
- algebraic consistency:
(1) if use antipode for P_{i} must use it for all symmetry generators;
(2) "correspondence principle": in the limit $\kappa \rightarrow \infty$ recover ordinary \mathbb{P}.

κ-deformation of discrete symmetries

- PARITY
- "physical" requirement: total linear momentum of particle + parity image system must vanish $\Rightarrow \mathbb{P}: P_{i} \rightarrow S(P)_{i}$
- algebraic consistency:
(1) if use antipode for P_{i} must use it for all symmetry generators;
(2) "correspondence principle": in the limit $\kappa \rightarrow \infty$ recover ordinary \mathbb{P}.

$$
\begin{array}{r}
\mathbb{P}\left(P_{i}\right)=S(P)_{i}=-P_{i}+\frac{P_{0} P_{i}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) ; \quad \mathbb{P}\left(P_{0}\right)=-S(P)_{0}=P_{0}-\frac{\mathbf{P}^{2}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) \\
\mathbb{P}\left(M_{i}\right)=-S(M)_{i}=M_{i} ; \quad \mathbb{P}\left(N_{i}\right)=S(N)_{i}=-N_{i}+\frac{1}{\kappa}\left(-P_{0} N_{i}+\epsilon_{i j k} P_{j} M_{k}\right)+O\left(\frac{1}{\kappa^{2}}\right)
\end{array}
$$

κ-deformation of discrete symmetries

- PARITY
- "physical" requirement: total linear momentum of particle + parity image system must vanish $\Rightarrow \mathbb{P}: P_{i} \rightarrow S(P)_{i}$
- algebraic consistency:
(1) if use antipode for P_{i} must use it for all symmetry generators;
(2) "correspondence principle" : in the limit $\kappa \rightarrow \infty$ recover ordinary \mathbb{P}.

$$
\begin{aligned}
& \mathbb{P}\left(P_{i}\right)=S(P)_{i}=-P_{i}+\frac{P_{0} P_{i}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) ; \quad \mathbb{P}\left(P_{0}\right)=-S(P)_{0}=P_{0}-\frac{\mathbf{P}^{2}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) \\
& \mathbb{P}\left(M_{i}\right)=-S(M)_{i}=M_{i} ; \quad \mathbb{P}\left(N_{i}\right)=S(N)_{i}=-N_{i}+\frac{1}{\kappa}\left(-P_{0} N_{i}+\epsilon_{i j k} P_{j} M_{k}\right)+O\left(\frac{1}{\kappa^{2}}\right)
\end{aligned}
$$

- TIME REVERSAL: require that in the limit $\kappa \rightarrow \infty, \mathbb{T}$ flips sign of M_{i}

$$
\begin{aligned}
\mathbb{T}\left(P_{i}\right)=S(P)_{i}, & \mathbb{T}\left(P_{0}\right)=-S(P)_{0} \\
\mathbb{T}\left(M_{i}\right)=S(M)_{i}, & \mathbb{T}\left(N_{i}\right)=-S(N)_{i}
\end{aligned}
$$

κ-deformation of discrete symmetries II

- CHARGE CONJUGATION (a bit more subtle than \mathbb{P} and \mathbb{T})

κ-deformation of discrete symmetries II

- CHARGE CONJUGATION (a bit more subtle than \mathbb{P} and \mathbb{T})
- For a complex scalar field: \mathcal{H} one-particle Hilbert space;

κ-deformation of discrete symmetries II

- CHARGE CONJUGATION (a bit more subtle than \mathbb{P} and \mathbb{T})
- For a complex scalar field: \mathcal{H} one-particle Hilbert space;
- The complex conjugate space $\overline{\mathcal{H}} \equiv$ one-antiparticle space: ordinary charge conjugation: $\mathbb{C}: \phi(k) \in \mathcal{H} \rightarrow \bar{\phi}(-k) \in \overline{\mathcal{H}}$

κ-deformation of discrete symmetries II

- CHARGE CONJUGATION (a bit more subtle than \mathbb{P} and \mathbb{T})
- For a complex scalar field: \mathcal{H} one-particle Hilbert space;
- The complex conjugate space $\overline{\mathcal{H}} \equiv$ one-antiparticle space: ordinary charge conjugation: $\mathbb{C}: \phi(k) \in \mathcal{H} \rightarrow \bar{\phi}(-k) \in \overline{\mathcal{H}}$
- $\overline{\mathcal{H}}$ is isomorphic to the dual Hilbert space \mathcal{H}^{*} : symmetry generators act via antipode

κ-deformation of discrete symmetries II

- CHARGE CONJUGATION (a bit more subtle than \mathbb{P} and \mathbb{T})
- For a complex scalar field: \mathcal{H} one-particle Hilbert space;
- The complex conjugate space $\overline{\mathcal{H}} \equiv$ one-antiparticle space: ordinary charge conjugation: $\mathbb{C}: \phi(k) \in \mathcal{H} \rightarrow \bar{\phi}(-k) \in \overline{\mathcal{H}}$
- $\overline{\mathcal{H}}$ is isomorphic to the dual Hilbert space \mathcal{H}^{*} : symmetry generators act via antipode
- imposing that in the $\kappa \rightarrow \infty$ one recovers usual ordinary \mathbb{C} we obtain

$$
\begin{aligned}
\mathbb{C}\left(P_{i}\right)=-S(P)_{i}, & \mathbb{C}\left(P_{0}\right)=-S(P)_{0} \\
\mathbb{C}\left(M_{i}\right)=-S(M)_{i}, & \mathbb{C}\left(N_{i}\right)=-S(N)_{i} .
\end{aligned}
$$

κ-deformed $\mathbb{C P T}$

Putting all together we obtain the action of the κ-deformed $\mathbb{C P T}$ operator

κ-deformed $\mathbb{C P T}$

Putting all together we obtain the action of the κ-deformed $\mathbb{C P T}$ operator

$$
\begin{aligned}
& \mathbb{C P T}\left(P_{i}\right)=P_{i}-\frac{P_{0} P_{i}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right), \quad \mathbb{C P T}\left(P_{0}\right)=-S(P)_{0}=P_{0}-\frac{\mathbf{P}^{2}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) \\
& \mathbb{C P T}\left(M_{i}\right)=-M_{i}, \quad \mathbb{C P T}\left(N_{i}\right)=-N_{i}+\frac{1}{\kappa}\left(-P_{0} N_{i}+3 P_{i}+\epsilon_{i j k} P_{j} M_{k}\right)+O\left(\frac{1}{\kappa^{2}}\right) .
\end{aligned}
$$

κ-deformed $\mathbb{C P T}$

Putting all together we obtain the action of the κ-deformed $\mathbb{C P T}$ operator

$$
\begin{aligned}
& \mathbb{C P T}\left(P_{i}\right)=P_{i}-\frac{P_{0} P_{i}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right), \quad \mathbb{C P T}\left(P_{0}\right)=-S(P)_{0}=P_{0}-\frac{\mathbf{P}^{2}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) \\
& \mathbb{C P T}\left(M_{i}\right)=-M_{i}, \quad \mathbb{C P T}\left(N_{i}\right)=-N_{i}+\frac{1}{\kappa}\left(-P_{0} N_{i}+3 P_{i}+\epsilon_{i j k} P_{j} M_{k}\right)+O\left(\frac{1}{\kappa^{2}}\right) .
\end{aligned}
$$

MAIN MESSAGE: non-trivial antipode \Rightarrow the action of the $\mathbb{C P T}$ operator is deformed (NOTE: this differs from the usual violation of $\mathbb{C P T}$ expected in presence of decoherence (Wald, 1980))

κ-deformed $\mathbb{C P T}$

Putting all together we obtain the action of the κ-deformed $\mathbb{C P T}$ operator

$$
\begin{aligned}
& \mathbb{C P T}\left(P_{i}\right)=P_{i}-\frac{P_{0} P_{i}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right), \quad \mathbb{C P T}\left(P_{0}\right)=-S(P)_{0}=P_{0}-\frac{\mathbf{P}^{2}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) \\
& \mathbb{C P T}\left(M_{i}\right)=-M_{i}, \quad \mathbb{C P T}\left(N_{i}\right)=-N_{i}+\frac{1}{\kappa}\left(-P_{0} N_{i}+3 P_{i}+\epsilon_{i j k} P_{j} M_{k}\right)+O\left(\frac{1}{\kappa^{2}}\right) .
\end{aligned}
$$

MAIN MESSAGE: non-trivial antipode \Rightarrow the action of the $\mathbb{C P T}$ operator is deformed (NOTE: this differs from the usual violation of $\mathbb{C P T}$ expected in presence of decoherence (Wald, 1980))

- OPEN QUESTIONS
- We just defined the action of $\mathbb{C P T}$ on symmetry generators, action on general quantum fields and states? a "deformed" $\mathbb{C P T}$-theorem?

κ-deformed $\mathbb{C P T}$

Putting all together we obtain the action of the κ-deformed $\mathbb{C P T}$ operator

$$
\begin{aligned}
& \mathbb{C P T}\left(P_{i}\right)=P_{i}-\frac{P_{0} P_{i}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right), \quad \mathbb{C P T}\left(P_{0}\right)=-S(P)_{0}=P_{0}-\frac{\mathbf{P}^{2}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) \\
& \mathbb{C P T}\left(M_{i}\right)=-M_{i}, \quad \mathbb{C P T}\left(N_{i}\right)=-N_{i}+\frac{1}{\kappa}\left(-P_{0} N_{i}+3 P_{i}+\epsilon_{i j k} P_{j} M_{k}\right)+O\left(\frac{1}{\kappa^{2}}\right) .
\end{aligned}
$$

MAIN MESSAGE: non-trivial antipode \Rightarrow the action of the $\mathbb{C P T}$ operator is deformed (NOTE: this differs from the usual violation of $\mathbb{C P T}$ expected in presence of decoherence (Wald, 1980))

- OPEN QUESTIONS
- We just defined the action of $\mathbb{C P T}$ on symmetry generators, action on general quantum fields and states? a "deformed" $\mathbb{C P T}$-theorem?
- Can we extract sensible phenomenology (possibly involving $K^{0}-\bar{K}^{0}$ precision measurements) to place bounds on κ ?

κ-deformed $\mathbb{C P T}$

Putting all together we obtain the action of the κ-deformed $\mathbb{C P T}$ operator

$$
\begin{aligned}
& \mathbb{C P T}\left(P_{i}\right)=P_{i}-\frac{P_{0} P_{i}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right), \quad \mathbb{C P T}\left(P_{0}\right)=-S(P)_{0}=P_{0}-\frac{\mathbf{P}^{2}}{\kappa}+O\left(\frac{1}{\kappa^{2}}\right) \\
& \mathbb{C P T}\left(M_{i}\right)=-M_{i}, \quad \mathbb{C P T}\left(N_{i}\right)=-N_{i}+\frac{1}{\kappa}\left(-P_{0} N_{i}+3 P_{i}+\epsilon_{i j k} P_{j} M_{k}\right)+O\left(\frac{1}{\kappa^{2}}\right) .
\end{aligned}
$$

MAIN MESSAGE: non-trivial antipode \Rightarrow the action of the $\mathbb{C P T}$ operator is deformed (NOTE: this differs from the usual violation of $\mathbb{C P T}$ expected in presence of decoherence (Wald, 1980))

- OPEN QUESTIONS
- We just defined the action of $\mathbb{C P T}$ on symmetry generators, action on general quantum fields and states? a "deformed" $\mathbb{C P T}$-theorem?
- Can we extract sensible phenomenology (possibly involving $K^{0}-\bar{K}^{0}$ precision measurements) to place bounds on κ ?

THANKS FOR THE ATTENTION!

