Decoherence and discrete symmetries in deformed relativistic kinematics

Michele Arzano

Dipartimento di Fisica "Sapienza" University of Rome

October 26, 2016 KLOE-2 Workshop - LNF

Fundamental decoherence in quantum gravity?

PHYSICAL REVIEW D

VOLUME 14, NUMBER 10

15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking[†]

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125 (Received 25 August 1975)

Fundamental decoherence in quantum gravity?

PHYSICAL REVIEW D VOLUME 14. NUMBER 10 15 NOVEM

15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking[†]

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125 (Received 25 August 1975)

• Ordinary quantum evolution is *unitary*: $ho_{\it fin} = S
ho_{\it in} S^\dagger$ with $SS^\dagger = 1$

Fundamental decoherence in quantum gravity?

PHYSICAL REVIEW D

VOLUME 14, NUMBER 10

15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking[†]

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125 (Received 25 August 1975)

- ullet Ordinary quantum evolution is *unitary*: $ho_{\mathit{fin}} = S
 ho_{\mathit{in}} S^\dagger$ with $SS^\dagger = 1$
- Unitary $S \Longrightarrow \text{if } \operatorname{Tr} \rho_{in}^2 = 1 \text{ then } \operatorname{Tr} \rho_{fin}^2 = 1 \text{ i.e. } \text{purity is eternal}$

Fundamental decoherence in quantum gravity?

PHYSICAL REVIEW D VOLUME 14, NUMBER 10 15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Häwking!
Department of Applied Mathematics and Theoretical Physics. University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125
(Received 25 August 1975)

- Ordinary quantum evolution is *unitary*: $ho_{\it fin} = S
 ho_{\it in} S^\dagger$ with $SS^\dagger = 1$
- Unitary $S \Longrightarrow \text{if } \mathrm{Tr} \rho_{in}^2 = 1 \text{ then } \mathrm{Tr} \rho_{fin}^2 = 1 \text{ i.e. }$ purity is eternal
- BH quantum radiance suggests $\rho_{in}(\text{pure}) \to \rho_{fin}(\text{mixed})$ should be possible

Fundamental decoherence in quantum gravity?

PHYSICAL REVIEW D

VOLUME 14, NUMBER 10

15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking[†]

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125 (Received 25 August 1975)

- Ordinary quantum evolution is unitary: $ho_{\mathit{fin}} = S
 ho_{\mathit{in}} S^\dagger$ with $SS^\dagger = 1$
- Unitary $S \Longrightarrow \text{if } \mathrm{Tr} \rho_{in}^2 = 1 \text{ then } \mathrm{Tr} \rho_{fin}^2 = 1 \text{ i.e. }$ purity is eternal
- BH quantum radiance suggests $\rho_{\it in}({\rm pure}) o \rho_{\it fin}({\rm mixed})$ should be possible
- Hawking suggested to replace S with a "superscattering" operator $: \rho_{fin} = \$\rho_{in} \neq S\rho_{in}S^{\dagger}$ then $\operatorname{Tr}\rho_{fin}^2 \leq 1$

Fundamental decoherence in quantum gravity?

PHYSICAL REVIEW D

VOLUME 14, NUMBER 10

15 NOVEMBER 1976

Breakdown of predictability in gravitational collapse*

S. W. Hawking[†]

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England and California Institute of Technology, Pasadena, California 91125 (Received 25 August 1975)

- Ordinary quantum evolution is unitary: $ho_{\mathit{fin}} = S
 ho_{\mathit{in}} S^\dagger$ with $SS^\dagger = 1$
- Unitary $S \Longrightarrow \text{if } \mathrm{Tr} \rho_{in}^2 = 1 \text{ then } \mathrm{Tr} \rho_{fin}^2 = 1 \text{ i.e. }$ purity is eternal
- BH quantum radiance suggests $\rho_{\it in}({\rm pure}) o \rho_{\it fin}({\rm mixed})$ should be possible
- Hawking suggested to replace S with a "superscattering" operator $: \rho_{fin} = \$\rho_{in} \neq S\rho_{in}S^{\dagger}$ then $\operatorname{Tr}\rho_{fin}^2 \leq 1$

• Ellis, Hagelin, Nanopoulos and Srednicki (Nucl. Phys. B 241, 381 (1984)) studied dynamics associated to \$ represented by a differential equation for ρ

$$\dot{\rho} = \mathcal{H}\rho \neq -i[H,\rho]$$

(EHNS focused on phenomenology for neutral kaon systems and neutron interferometry)

• Ellis, Hagelin, Nanopoulos and Srednicki (Nucl. Phys. B 241, 381 (1984)) studied dynamics associated to \$ represented by a differential equation for ρ

$$\dot{\rho} = \mathcal{H}\rho \neq -i[H,\rho]$$

(EHNS focused on phenomenology for neutral kaon systems and neutron interferometry)

ullet Ellis, Hagelin, Nanopoulos and Srednicki (Nucl. Phys. B 241, 381 (1984)) studied dynamics associated to \$ represented by a differential equation for ho

$$\dot{\rho} = \mathcal{H}\rho \neq -i[H,\rho]$$

(EHNS focused on phenomenology for neutral kaon systems and neutron interferometry)

- - $\rho = \rho^{\dagger}$
 - $ightharpoonup Tr \rho = 1$

are preserved by time evolution

• Ellis, Hagelin, Nanopoulos and Srednicki (Nucl. Phys. B 241, 381 (1984)) studied dynamics associated to \$ represented by a differential equation for ρ

$$\dot{\rho} = \mathcal{H}\rho \neq -i[H,\rho]$$

(EHNS focused on phenomenology for neutral kaon systems and neutron interferometry)

- - $\rho = \rho^{\dagger}$
 - $ightharpoonup \operatorname{Tr} \rho = 1$

are preserved by time evolution they (re)-discovered the Lindblad equation

$$\dot{\rho} = -i[H,\rho] - \frac{1}{2}h_{\alpha\beta}\left(Q^{\alpha}Q^{\beta}\rho + \rho Q^{\beta}Q^{\alpha} - 2Q^{\alpha}\rho Q^{\beta}\right)$$

 $h_{\alpha\beta}$ is a hermitian matrix of constants and Q^{α} form a basis of hermitian matrices

THIS TALK: show how generalized quantum evolution of Lindblad type emerges naturally when four-momentum space is a non-abelian Lie group

(MA: 1403.6457; Phys. Rev. D 90, 024016 (2014))

THIS TALK: show how generalized quantum evolution of Lindblad type emerges naturally when four-momentum space is a non-abelian Lie group

(MA: 1403.6457; Phys. Rev. D 90, 024016 (2014))

Lie group-valued momenta are associated to deformations of relativistic symmetries and make their appearance when one couples point particles to gravity in 2+1 dimensions

General relativity in 2+1 dimensions admits no local d.o.f.

General relativity in 2+1 dimensions admits no local d.o.f.

Particles: point-like defects → conical space

$$ds^2 = -dt^2 + dr^2 + (1-4{\it Gm})^2 r^2 darphi^2$$
 (Deser, Jackiw, 't Hooft, 1984)

General relativity in 2+1 dimensions admits no local d.o.f.

Particles: point-like defects → conical space

$$ds^2 = -dt^2 + dr^2 + (1-4{\it Gm})^2 r^2 darphi^2$$
 (Deser, Jackiw, 't Hooft, 1984)

• Euclidean plane with a wedge "cut-out", with deficit angle $\alpha=8\pi\,{\rm Gm}$ proportional to the particle's mass m

(3d Newton's constat G $\sim 1/M_{\rm Planck}$)

General relativity in 2+1 dimensions admits no local d.o.f.

Particles: point-like defects → conical space

$$ds^2=-dt^2+dr^2+(1-4{\it Gm})^2r^2darphi^2$$
 (Deser, Jackiw, 't Hooft, 1984)

• Euclidean plane with a wedge "cut-out", with deficit angle $\alpha=8\pi\,{\rm Gm}$ proportional to the particle's mass m

(3d Newton's constat G $\sim 1/M_{\rm Planck}$)

In such topological theory the particle's mass (rest energy) is described by a rotation $h_{\alpha} \in SL(2,\mathbb{R})$

Matschull and Welling (Class. Quant. Grav. 15, 2981 (1998)) showed that such "conical" particle's phase space is embedded in $\mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

Matschull and Welling (Class. Quant. Grav. 15, 2981 (1998)) showed that such "conical" particle's phase space is embedded in $\mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

Physical momentum of a moving particle: $h = gh_{\alpha}g^{-1}$; $g \in SL(2,\mathbb{R})$

What are the corresponding **three-momenta**??

Matschull and Welling (Class. Quant. Grav. 15, 2981 (1998)) showed that such "conical" particle's phase space is embedded in $\mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

Physical momentum of a moving particle: $h = gh_{\alpha}g^{-1}$; $g \in SL(2,\mathbb{R})$

What are the corresponding three-momenta??

Parametrize group: $h=u\mathbb{1}+rac{p^{\mu}}{\kappa}\gamma_{\mu}$ with $\kappa=(4\pi G)^{-1}$ and γ_{μ} traceless matrices

Matschull and Welling (Class. Quant. Grav. 15, 2981 (1998)) showed that such "conical" particle's phase space is embedded in $\mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

Physical momentum of a moving particle: $h = gh_{\alpha}g^{-1}$; $g \in SL(2,\mathbb{R})$

What are the corresponding three-momenta??

Parametrize group: $h=u\mathbb{1}+\frac{p^{\mu}}{\kappa}\gamma_{\mu}$ with $\kappa=(4\pi G)^{-1}$ and γ_{μ} traceless matrices The unit determinant condition $u^2+p^2/\kappa^2=1$ \Longrightarrow

Matschull and Welling (Class. Quant. Grav. 15, 2981 (1998)) showed that such "conical" particle's phase space is embedded in $\mathbb{R}^{2,1} \times SL(2,\mathbb{R})$

Physical momentum of a moving particle: $h = gh_{\alpha}g^{-1}$; $g \in SL(2,\mathbb{R})$

What are the corresponding three-momenta??

Parametrize group: $h=u\mathbb{1}+\frac{p^{\mu}}{\kappa}\gamma_{\mu}$ with $\kappa=(4\pi G)^{-1}$ and γ_{μ} traceless matrices The unit determinant condition $u^2+p^2/\kappa^2=1$ \Longrightarrow

 p^{μ} are embedding coordinates on AdS space

Elementary one-particle Hilbert space $\mathcal{H}\colon \textbf{irreps}$ of Poincaré group

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

ullet basis of ${\cal H}$ given by **eigenstates** of the translation generators

$$P_{\mu}|k\rangle=k_{\mu}|k\rangle$$

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

ullet basis of ${\cal H}$ given by **eigenstates** of the translation generators

$$P_{\mu}|k\rangle = k_{\mu}|k\rangle$$

• action on $\langle k| \in \mathcal{H}^*$, dual space: $P_{\mu}\langle k| = -k_{\mu}\langle k| = \langle k|(-k_{\mu})$

Elementary one-particle Hilbert space \mathcal{H} : irreps of Poincaré group

ullet basis of ${\cal H}$ given by **eigenstates** of the translation generators

$$P_{\mu}|k\rangle=k_{\mu}|k\rangle$$

• action on $\langle k | \in \mathcal{H}^*$, dual space: $P_{\mu} \langle k | = -k_{\mu} \langle k | = \langle k | (-k_{\mu}) \equiv \langle k | S(P_{\mu})$

Elementary one-particle Hilbert space \mathcal{H} : **irreps** of Poincaré group

ullet basis of ${\cal H}$ given by **eigenstates** of the translation generators

$$P_{\mu}|k\rangle=k_{\mu}|k\rangle$$

- action on $\langle k | \in \mathcal{H}^*$, dual space: $P_{\mu} \langle k | = -k_{\mu} \langle k | = \langle k | (-k_{\mu}) \equiv \langle k | S(P_{\mu})$
- action on **composite system** $\mathcal{H} \otimes \mathcal{H}$:

$$P_{\mu}(|k_1\rangle\otimes|k_2\rangle)=P_{\mu}|k_1\rangle\otimes|k_2\rangle+|k_1\rangle\otimes P_{\mu}|k_2\rangle$$

Elementary one-particle Hilbert space \mathcal{H} : **irreps** of Poincaré group

ullet basis of ${\mathcal H}$ given by **eigenstates** of the translation generators

$$P_{\mu}|k\rangle=k_{\mu}|k\rangle$$

- action on $\langle k | \in \mathcal{H}^*$, dual space: $P_{\mu} \langle k | = -k_{\mu} \langle k | = \langle k | (-k_{\mu}) \equiv \langle k | S(P_{\mu})$
- action on composite system H⊗ H:

$$P_{\mu}(|k_1\rangle\otimes|k_2\rangle) = P_{\mu}|k_1\rangle\otimes|k_2\rangle + |k_1\rangle\otimes P_{\mu}|k_2\rangle \equiv \Delta P_{\mu}|k_1\rangle\otimes|k_2\rangle$$

Elementary one-particle Hilbert space \mathcal{H} : **irreps** of Poincaré group

ullet basis of ${\cal H}$ given by **eigenstates** of the translation generators

$$P_{\mu}|k\rangle=k_{\mu}|k\rangle$$

- action on $\langle k| \in \mathcal{H}^*$, dual space: $P_{\mu}\langle k| = -k_{\mu}\langle k| = \langle k|(-k_{\mu}) \equiv \langle k|S(P_{\mu})$
- action on composite system H⊗ H:

$$P_{\mu}(|k_1\rangle \otimes |k_2\rangle) = P_{\mu}|k_1\rangle \otimes |k_2\rangle + |k_1\rangle \otimes P_{\mu}|k_2\rangle \equiv \Delta P_{\mu}|k_1\rangle \otimes |k_2\rangle$$

"Antipode":
$$S(P_\mu) = -P_\mu$$
 , "Co-product": $\Delta P_\mu = P_\mu \otimes \mathbb{1} + \mathbb{1} \otimes P_\mu$

Elementary one-particle Hilbert space \mathcal{H} : **irreps** of Poincaré group

ullet basis of ${\cal H}$ given by **eigenstates** of the translation generators

$$P_{\mu}|k\rangle=k_{\mu}|k\rangle$$

- action on $\langle k | \in \mathcal{H}^*$, dual space: $P_{\mu} \langle k | = -k_{\mu} \langle k | = \langle k | (-k_{\mu}) \equiv \langle k | S(P_{\mu})$
- action on composite system H⊗ H:

$$P_{\mu}(|k_1\rangle \otimes |k_2\rangle) = P_{\mu}|k_1\rangle \otimes |k_2\rangle + |k_1\rangle \otimes P_{\mu}|k_2\rangle \equiv \Delta P_{\mu}|k_1\rangle \otimes |k_2\rangle$$

"Antipode": $S(P_{\mu}) = -P_{\mu}$, "Co-product": $\Delta P_{\mu} = P_{\mu} \otimes \mathbb{1} + \mathbb{1} \otimes P_{\mu}$ Hopf algebra notions "built in" in everyday quantum theory..

Elementary one-particle Hilbert space \mathcal{H} : **irreps** of Poincaré group

ullet basis of ${\cal H}$ given by **eigenstates** of the translation generators

$$P_{\mu}|k\rangle=k_{\mu}|k\rangle$$

- action on $\langle k | \in \mathcal{H}^*$, dual space: $P_{\mu} \langle k | = -k_{\mu} \langle k | = \langle k | (-k_{\mu}) \equiv \langle k | S(P_{\mu})$
- action on composite system H⊗ H:

$$P_{\mu}(|k_{1}\rangle\otimes|k_{2}\rangle) = P_{\mu}|k_{1}\rangle\otimes|k_{2}\rangle + |k_{1}\rangle\otimes P_{\mu}|k_{2}\rangle \equiv \Delta P_{\mu}|k_{1}\rangle\otimes|k_{2}\rangle$$

"Antipode":
$$S(P_{\mu}) = -P_{\mu}$$
, "Co-product": $\Delta P_{\mu} = P_{\mu} \otimes \mathbb{1} + \mathbb{1} \otimes P_{\mu}$
Hopf algebra notions "built in" in everyday quantum theory..

• these notions suffice to derive action of P_{μ} on **operators**...take e.g. $\pi_k = |k\rangle\langle k|$

Elementary one-particle Hilbert space \mathcal{H} : **irreps** of Poincaré group

ullet basis of ${\cal H}$ given by **eigenstates** of the translation generators

$$P_{\mu}|k\rangle=k_{\mu}|k\rangle$$

- action on $\langle k | \in \mathcal{H}^*$, dual space: $P_{\mu} \langle k | = -k_{\mu} \langle k | = \langle k | (-k_{\mu}) \equiv \langle k | S(P_{\mu})$
- action on **composite system** $\mathcal{H} \otimes \mathcal{H}$:

$$P_{\mu}(|k_{1}\rangle\otimes|k_{2}\rangle) = P_{\mu}|k_{1}\rangle\otimes|k_{2}\rangle + |k_{1}\rangle\otimes P_{\mu}|k_{2}\rangle \equiv \Delta P_{\mu}|k_{1}\rangle\otimes|k_{2}\rangle$$

"Antipode": $S(P_{\mu}) = -P_{\mu}$, "Co-product": $\Delta P_{\mu} = P_{\mu} \otimes \mathbb{1} + \mathbb{1} \otimes P_{\mu}$ Hopf algebra notions "built in" in everyday quantum theory..

ullet these notions suffice to derive action of P_μ on **operators**...take e.g. $\pi_k=|k
angle\langle k|$

$$egin{aligned} P_{\mu}(\pi_k) &= P_{\mu}(|k
angle\langle k|) = \ &= P_{\mu}(|k
angle)\langle k| + |k
angle P_{\mu}(\langle k|) = P_{\mu}|k
angle\langle k| - |k
angle\langle k| P_{\mu} = [P_{\mu}, \pi_k] \end{aligned}$$

Elementary one-particle Hilbert space \mathcal{H} : **irreps** of Poincaré group

ullet basis of ${\cal H}$ given by **eigenstates** of the translation generators

$$P_{\mu}|k\rangle=k_{\mu}|k\rangle$$

- action on $\langle k | \in \mathcal{H}^*$, dual space: $P_{\mu} \langle k | = -k_{\mu} \langle k | = \langle k | (-k_{\mu}) \equiv \langle k | S(P_{\mu})$
- action on composite system H ⊗ H:

$$P_{\mu}(|k_{1}\rangle\otimes|k_{2}\rangle) = P_{\mu}|k_{1}\rangle\otimes|k_{2}\rangle + |k_{1}\rangle\otimes P_{\mu}|k_{2}\rangle \equiv \Delta P_{\mu}|k_{1}\rangle\otimes|k_{2}\rangle$$

"Antipode": $S(P_{\mu}) = -P_{\mu}$, "Co-product": $\Delta P_{\mu} = P_{\mu} \otimes \mathbb{1} + \mathbb{1} \otimes P_{\mu}$ Hopf algebra notions "built in" in everyday quantum theory..

ullet these notions suffice to derive action of P_μ on **operators**...take e.g. $\pi_k=|k
angle\langle k|$

$$P_{\mu}(\pi_k) = P_{\mu}(|k\rangle\langle k|) =$$

$$= P_{\mu}(|k\rangle)\langle k| + |k\rangle P_{\mu}(\langle k|) = P_{\mu}|k\rangle\langle k| - |k\rangle\langle k|P_{\mu} = [P_{\mu}, \pi_k]$$

i.e. just the familiar **adjoint action**... **Note:** Using the spectral theorem any operator can be written in terms of a combination of projectors $|k\rangle\langle k|$

Deformed quantum theory

Deformation of symmetry generators provide a *generalization* of these basic notions

Deformed quantum theory

Deformation of symmetry generators provide a *generalization* of these basic notions

ullet $|\pi
angle$ labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi\rangle = \mathcal{P}_{\mu}(\pi)|\pi\rangle = \pi_{\mu}|\pi\rangle$$

Deformation of symmetry generators provide a *generalization* of these basic notions

ullet $|\pi
angle$ labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi\rangle = \mathcal{P}_{\mu}(\pi)|\pi\rangle = \pi_{\mu}|\pi\rangle$$

for action on bras the non-trivial structure of momentum space comes into play

$$|P_{\mu}\langle\pi| = \mathcal{P}_{\mu}(\pi^{-1})\langle\pi| \equiv \langle\pi|S(P_{\mu})|$$

Deformation of symmetry generators provide a generalization of these basic notions

ullet $|\pi
angle$ labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi\rangle = \mathcal{P}_{\mu}(\pi)|\pi\rangle = \pi_{\mu}|\pi\rangle$$

for action on bras the non-trivial structure of momentum space comes into play

$$|P_{\mu}\langle\pi| = \mathcal{P}_{\mu}(\pi^{-1})\langle\pi| \equiv \langle\pi|S(P_{\mu})|$$

• action on multi-particle states also non-trivial

$$P_{\mu}(|\pi_1\rangle\otimes|\pi_2\rangle) = \mathcal{P}_{\mu}(\pi_1\cdot\pi_2)|\pi_1\rangle\otimes|\pi_2\rangle \equiv \Delta P_{\mu}|\pi_1\rangle\otimes|\pi_2\rangle$$

Deformation of symmetry generators provide a generalization of these basic notions

ullet $|\pi
angle$ labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi\rangle = \mathcal{P}_{\mu}(\pi)|\pi\rangle = \pi_{\mu}|\pi\rangle$$

for action on bras the non-trivial structure of momentum space comes into play

$$|P_{\mu}\langle\pi| = \mathcal{P}_{\mu}(\pi^{-1})\langle\pi| \equiv \langle\pi|S(P_{\mu})|$$

• action on multi-particle states also non-trivial

$$P_{\mu}(|\pi_1\rangle\otimes|\pi_2\rangle) = \mathcal{P}_{\mu}(\pi_1\cdot\pi_2)|\pi_1\rangle\otimes|\pi_2\rangle \equiv \Delta P_{\mu}|\pi_1\rangle\otimes|\pi_2\rangle$$

composition rule of momentum eigenvalues is deformed

$$\mathcal{P}_{\mu}(\pi_1 \cdot \pi_2) \equiv \mathcal{P}_{\mu}(\pi_1) \oplus \mathcal{P}_{\mu}(\pi_2) \neq \mathcal{P}_{\mu}(\pi_2 \cdot \pi_1),$$

Deformation of symmetry generators provide a *generalization* of these basic notions

ullet $|\pi
angle$ labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi\rangle = \mathcal{P}_{\mu}(\pi)|\pi\rangle = \pi_{\mu}|\pi\rangle$$

for action on bras the non-trivial structure of momentum space comes into play

$$|P_{\mu}\langle\pi| = \mathcal{P}_{\mu}(\pi^{-1})\langle\pi| \equiv \langle\pi|S(P_{\mu})|$$

• action on multi-particle states also non-trivial

$$P_{\mu}(|\pi_1\rangle\otimes|\pi_2\rangle) = \mathcal{P}_{\mu}(\pi_1\cdot\pi_2)|\pi_1\rangle\otimes|\pi_2\rangle \equiv \Delta P_{\mu}|\pi_1\rangle\otimes|\pi_2\rangle$$

composition rule of momentum eigenvalues is deformed

$$\mathcal{P}_{\mu}(\pi_1\cdot\pi_2)\equiv\mathcal{P}_{\mu}(\pi_1)\oplus\mathcal{P}_{\mu}(\pi_2)
eq\mathcal{P}_{\mu}(\pi_2\cdot\pi_1)\,,\;\;\mathcal{P}_{\mu}(\pi)\oplus\mathcal{P}_{\mu}(\pi^{-1})=\mathcal{P}_{\mu}(\mathbb{1})=0$$

Deformation of symmetry generators provide a generalization of these basic notions

ullet $|\pi
angle$ labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi\rangle = \mathcal{P}_{\mu}(\pi)|\pi\rangle = \pi_{\mu}|\pi\rangle$$

for action on bras the non-trivial structure of momentum space comes into play

$$|P_{\mu}\langle\pi| = \mathcal{P}_{\mu}(\pi^{-1})\langle\pi| \equiv \langle\pi|S(P_{\mu})|$$

• action on multi-particle states also non-trivial

$$P_{\mu}(|\pi_1\rangle\otimes|\pi_2\rangle) = \mathcal{P}_{\mu}(\pi_1\cdot\pi_2)|\pi_1\rangle\otimes|\pi_2\rangle \equiv \Delta P_{\mu}|\pi_1\rangle\otimes|\pi_2\rangle$$

composition rule of momentum eigenvalues is deformed

$$\mathcal{P}_{\mu}(\pi_1 \cdot \pi_2) \equiv \mathcal{P}_{\mu}(\pi_1) \oplus \mathcal{P}_{\mu}(\pi_2) \neq \mathcal{P}_{\mu}(\pi_2 \cdot \pi_1), \quad \mathcal{P}_{\mu}(\pi) \oplus \mathcal{P}_{\mu}(\pi^{-1}) = \mathcal{P}_{\mu}(\mathbb{1}) = 0$$

In Hopf algebraic lingo: **co-product** ΔP_{μ} and **antipode** of $S(P_{\mu})$ non-trivial

Deformation of symmetry generators provide a generalization of these basic notions

ullet | π | labelled by coordinates on a non-abelian Lie group

$$P_{\mu}|\pi\rangle = \mathcal{P}_{\mu}(\pi)|\pi\rangle = \pi_{\mu}|\pi\rangle$$

• for action on bras the non-trivial structure of momentum space comes into play

$$|P_{\mu}\langle\pi| = \mathcal{P}_{\mu}(\pi^{-1})\langle\pi| \equiv \langle\pi|S(P_{\mu})|$$

• action on multi-particle states also non-trivial

$$P_{\mu}(|\pi_1\rangle\otimes|\pi_2\rangle) = \mathcal{P}_{\mu}(\pi_1\cdot\pi_2)|\pi_1\rangle\otimes|\pi_2\rangle \equiv \Delta P_{\mu}|\pi_1\rangle\otimes|\pi_2\rangle$$

composition rule of momentum eigenvalues is deformed

$$\mathcal{P}_{\mu}(\pi_1 \cdot \pi_2) \equiv \mathcal{P}_{\mu}(\pi_1) \oplus \mathcal{P}_{\mu}(\pi_2) \neq \mathcal{P}_{\mu}(\pi_2 \cdot \pi_1), \quad \mathcal{P}_{\mu}(\pi) \oplus \mathcal{P}_{\mu}(\pi^{-1}) = \mathcal{P}_{\mu}(\mathbb{1}) = 0$$

In Hopf algebraic lingo: **co-product** ΔP_{μ} and **antipode** of $S(P_{\mu})$ non-trivial

Key point: the action on operators will be deformed accordingly

Deformed translations and Lindblad evolution in three dimensions

For the deformed translation generators associated to $SL(2,\mathbb{R})$ momentum space:

$$\Delta P_{\mu} = P_{\mu} \otimes \mathbb{1} + \mathbb{1} \otimes P_{\mu} + rac{1}{\kappa} \, \epsilon_{\mu
u \sigma} P^{
u} \otimes P^{\sigma} + \mathcal{O}\left(rac{1}{\kappa^2}
ight) \, , \;\; S(P_{\mu}) = -P_{\mu} \, .$$

Deformed translations and Lindblad evolution in three dimensions

For the deformed translation generators associated to $SL(2,\mathbb{R})$ momentum space:

$$\Delta P_{\mu} = P_{\mu} \otimes \mathbb{1} + \mathbb{1} \otimes P_{\mu} + rac{1}{\kappa} \, \epsilon_{\mu
u \sigma} P^{
u} \otimes P^{\sigma} + \mathcal{O}\left(rac{1}{\kappa^2}
ight) \,, \;\; \mathcal{S}(P_{\mu}) = -P_{\mu} \,.$$

 ΔP_0 and $S(P_0)$ determine the action of **time transl. generator** P_0 on an operator ρ

$$\mathrm{ad}_{P_0}(\rho) = [P_0, \rho] - \frac{1}{\kappa} \, \epsilon_{0ij} P^i \rho \, P^j$$

Deformed translations and Lindblad evolution in three dimensions

For the deformed translation generators associated to $SL(2,\mathbb{R})$ momentum space:

$$\Delta P_\mu = P_\mu \otimes \mathbb{1} + \mathbb{1} \otimes P_\mu + \frac{1}{\kappa} \, \epsilon_{\mu\nu\sigma} P^\nu \otimes P^\sigma + \mathcal{O}\left(\frac{1}{\kappa^2}\right) \,, \ \ S(P_\mu) = -P_\mu \,.$$

 ΔP_0 and $S(P_0)$ determine the action of time transl. generator P_0 on an operator ρ

$$\operatorname{ad}_{P_0}(\rho) = [P_0, \rho] - \frac{1}{\kappa} \epsilon_{0ij} P^i \rho P^j$$

which leads to a Lindlblad equation

$$\dot{\rho} = -i[P_0, \rho] - \frac{1}{2}h_{ij}\left(P^iP^j\rho + \rho P^jP^i - 2P^j\rho P^i\right)$$

with "decoherence" matrix given by

$$h = \frac{i}{\kappa} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

Deformed translation in four dimensions

Can the picture be generalized to the four-dimensional case?

Yes

Deformed translation in four dimensions

Can the picture be generalized to the four-dimensional case?

Yes

• κ -Poincaré: deformation of relativistic symmetries governed by UV-scale κ (Lukierski, Nowicki and Ruegg, Phys. Lett. B 293, 344 (1992))

Deformed translation in four dimensions

Can the picture be generalized to the four-dimensional case?

Yes

- κ -Poincaré: deformation of relativistic symmetries governed by **UV-scale** κ (Lukierski, Nowicki and Ruegg, Phys. Lett. B **293**, 344 (1992))
- Structural analogies of momentum sector with 3d case only recently appreciated...

Can the picture be generalized to the four-dimensional case?

Yes

- κ -Poincaré: deformation of relativistic symmetries governed by **UV-scale** κ (Lukierski, Nowicki and Ruegg, Phys. Lett. B **293**, 344 (1992))
- Structural analogies of momentum sector with 3d case only recently appreciated...

 κ -momenta: coordinates on **Lie group** AN(3) obtained form the Iwasawa decomposition of $SO(4,1) \simeq SO(3,1)AN(3)$, sub-manifold of dS_4

$$-p_0^2 + p_1^2 + p_2^2 + p_3^2 + p_4^2 = \kappa^2$$
; $p_0 + p_4 > 0$

with $\kappa \sim E_{Planck}$

These structures have been advocated as encoding the kinematics of a "Minkowski-limit" of quantum gravity...deformed relativistic kinematics at the Planck scale (see Amelino-Camelia's talk)

In parallel with 3d case we consider translation generators P_{μ} associated to *embedding* coordinates p_{μ} on dS_4

In parallel with 3d case we consider translation generators P_μ associated to embedding coordinates p_μ on dS_4

Their **co-products** and **antipodes** at *leading order* in κ

$$\Delta(P_0) = P_0 \otimes \mathbb{1} + \mathbb{1} \otimes P_0 + \frac{1}{\kappa} P_m \otimes P_m,$$

$$\Delta(P_i) = P_i \otimes \mathbb{1} + \mathbb{1} \otimes P_i + \frac{1}{\kappa} P_i \otimes P_0,$$

$$S(P_0) = -P_0 + \frac{1}{\kappa} \vec{P}^2,$$

$$S(P_i) = -P_i + \frac{1}{\kappa} P_i P_0,$$

In parallel with 3d case we consider translation generators P_μ associated to embedding coordinates p_μ on dS_4

Their **co-products** and **antipodes** at *leading order* in κ

$$\Delta(P_0) = P_0 \otimes \mathbb{1} + \mathbb{1} \otimes P_0 + \frac{1}{\kappa} P_m \otimes P_m,$$

$$\Delta(P_i) = P_i \otimes \mathbb{1} + \mathbb{1} \otimes P_i + \frac{1}{\kappa} P_i \otimes P_0,$$

$$S(P_0) = -P_0 + \frac{1}{\kappa} \vec{P}^2,$$

$$S(P_i) = -P_i + \frac{1}{\kappa} P_i P_0,$$

this *basis* of κ -Poincaré is called "classical" because

action of Lorentz sector on P_μ in undeformed;

In parallel with 3d case we consider translation generators P_μ associated to embedding coordinates p_μ on dS_4

Their **co-products** and **antipodes** at *leading order* in κ

$$\Delta(P_0) = P_0 \otimes \mathbb{1} + \mathbb{1} \otimes P_0 + \frac{1}{\kappa} P_m \otimes P_m,$$

$$\Delta(P_i) = P_i \otimes \mathbb{1} + \mathbb{1} \otimes P_i + \frac{1}{\kappa} P_i \otimes P_0,$$

$$S(P_0) = -P_0 + \frac{1}{\kappa} \vec{P}^2,$$

$$S(P_i) = -P_i + \frac{1}{\kappa} P_i P_0,$$

this *basis* of κ -Poincaré is called "classical" because

- action of Lorentz sector on P_{μ} in **undeformed**;
- mass-shell condition undeformed $P_0^2 \vec{P}^2 = const$

In parallel with 3d case we consider translation generators P_μ associated to embedding coordinates p_μ on dS_4

Their **co-products** and **antipodes** at *leading order* in κ

$$\Delta(P_0) = P_0 \otimes \mathbb{1} + \mathbb{1} \otimes P_0 + \frac{1}{\kappa} P_m \otimes P_m,$$

$$\Delta(P_i) = P_i \otimes \mathbb{1} + \mathbb{1} \otimes P_i + \frac{1}{\kappa} P_i \otimes P_0,$$

$$S(P_0) = -P_0 + \frac{1}{\kappa} \vec{P}^2,$$

$$S(P_i) = -P_i + \frac{1}{\kappa} P_i P_0,$$

this basis of κ -Poincaré is called "classical" because

- action of Lorentz sector on P_{μ} in **undeformed**;
- mass-shell condition undeformed $P_0^2 \vec{P}^2 = const$

In embedding coordinates we have *ordinary relativistic kinematics* at the **one-particle** level...all non-trivial structures confined to "co-algebra" sector

A straightforward calculation of $\mathrm{ad}_{P_0}(\rho)$ leads to a non-symmetric Lindblad equation

$$\dot{\rho} = -i[P_0, \rho] + \frac{i}{\kappa} P_m \rho P_m - \frac{i}{\kappa} \rho \vec{P}^2$$

From a comparison with 3d case we would expect an extra $\vec{P}^2 \rho$ term...

A straightforward calculation of $\mathrm{ad}_{P_0}(\rho)$ leads to a non-symmetric Lindblad equation

$$\dot{\rho} = -i[P_0, \rho] + \frac{i}{\kappa} P_m \rho P_m - \frac{i}{\kappa} \rho \vec{P}^2$$

From a comparison with 3d case we would expect an extra $\vec{P}^2 \rho$ term...

...non-trivial antipode $S(P_0)$ leads to deformed notion of **hermitian adjoint**: $(\operatorname{ad}_{P_0}(\cdot))^{\dagger} \equiv \operatorname{ad}_{S(P_0)}(\cdot)$

A straightforward calculation of $\mathrm{ad}_{P_0}(\rho)$ leads to a non-symmetric Lindblad equation

$$\dot{\rho} = -i[P_0, \rho] + \frac{i}{\kappa} P_m \rho P_m - \frac{i}{\kappa} \rho \vec{P}^2$$

From a comparison with 3d case we would expect an extra $\vec{P}^2 \rho$ term...

...non-trivial antipode
$$S(P_0)$$
 leads to deformed notion of **hermitian adjoint**: $(\operatorname{ad}_{P_0}(\cdot))^\dagger \equiv \operatorname{ad}_{S(P_0)}(\cdot)$

While in 3d the Lindblad equation was covariant in "ordinary" sense, here:

• momenta p_{μ} transform as ordinary **Lorentz four-vectors** and the translation generators P_{μ} close **undeformed** algebra

A straightforward calculation of $\mathrm{ad}_{P_0}(\rho)$ leads to a non-symmetric Lindblad equation

$$\dot{\rho} = -i[P_0, \rho] + \frac{i}{\kappa} P_m \rho P_m - \frac{i}{\kappa} \rho \vec{P}^2$$

From a comparison with 3d case we would expect an extra $\vec{P}^2 \rho$ term...

...non-trivial antipode $S(P_0)$ leads to deformed notion of **hermitian adjoint**: $(\operatorname{ad}_{P_0}(\cdot))^\dagger \equiv \operatorname{ad}_{S(P_0)}(\cdot)$

While in 3d the Lindblad equation was covariant in "ordinary" sense, here:

- momenta p_{μ} transform as ordinary **Lorentz four-vectors** and the translation generators P_{μ} close **undeformed** algebra
- the adjoint action of boosts on an operator is deformed:

$$\operatorname{ad}_{N_i}(\rho) = [N_i, \rho] + \frac{1}{\kappa} [P_0, \rho] N_i + \frac{1}{\kappa} \epsilon^{ijm} [P_j, \rho] M_m$$

A straightforward calculation of $ad_{P_0}(\rho)$ leads to a non-symmetric **Lindblad equation**

$$\dot{\rho} = -i[P_0, \rho] + \frac{i}{\kappa} P_m \rho P_m - \frac{i}{\kappa} \rho \vec{P}^2$$

From a comparison with 3d case we would expect an extra $\vec{P}^2 \rho$ term...

...non-trivial antipode
$$S(P_0)$$
 leads to deformed notion of **hermitian adjoint**: $(\mathrm{ad}_{P_0}(\cdot))^\dagger \equiv \mathrm{ad}_{S(P_0)}(\cdot)$

While in 3d the Lindblad equation was covariant in "ordinary" sense, here:

- momenta p_{μ} transform as ordinary **Lorentz four-vectors** and the translation generators P_{μ} close **undeformed** algebra
- the adjoint action of boosts on an operator is deformed:

$$\operatorname{ad}_{N_i}(\rho) = [N_i, \rho] + \frac{1}{\kappa} [P_0, \rho] N_i + \frac{1}{\kappa} \epsilon^{ijm} [P_j, \rho] M_m$$

• the adjoint actions of N_i and P_0 satisfy

$$\mathrm{ad}_{\mathrm{ad}N_i(P_0)}(\cdot) = \mathrm{ad}_{N_i}(\mathrm{ad}_{P_0})(\cdot) - \mathrm{ad}_{P_0}(\mathrm{ad}_{N_i})(\cdot)$$

in this sense the κ -Lindblad equation follows a **deformed notion of covariance**

Phenomenology of κ -Lindblad evolution? (Ellis et al. "Search for Violations of Quantum Mechanics," Nucl. Phys. B **241**, 381 (1984)); bounds on κ using precision measurements of neutral kaon systems (KLOE and KLOE-2 experiment)?

• Work in progress: input from κ -Lindblad to derive deformed evolution based on effective Hamiltonia for K^0 - \bar{K}^0 (with PhD student D. Perricone)

- Work in progress: input from κ -Lindblad to derive deformed evolution based on effective Hamiltonia for K^0 - \bar{K}^0 (with PhD student D. Perricone)
- Besides fundamental decoherence another important test carried out at KLOE is for violations of CPT...

- Work in progress: input from κ -Lindblad to derive deformed evolution based on effective Hamiltonia for K^0 - \bar{K}^0 (with PhD student D. Perricone)
- Besides fundamental decoherence another important test carried out at KLOE is for violations of CPT...
- Natural question: do the new structures introduced so far affect discrete symmetries ??

- Work in progress: input from κ -Lindblad to derive deformed evolution based on effective Hamiltonia for K^0 - \bar{K}^0 (with PhD student D. Perricone)
- Besides fundamental decoherence another important test carried out at KLOE is for violations of CPT...
- Natural question: do the new structures introduced so far affect discrete symmetries ??
- A first step: use basic physical requirements and algebraic consistency to define the action of P, T and C on the generators of the κ-Poincaré group.
 (MA and J Kowalski-Glikman, Phys. Lett. B 760, 69 (2016))

PARITY

▶ "physical" requirement: total linear momentum of particle + parity image system must vanish $\Rightarrow \mathbb{P}: P_i \to S(P)_i$

- ▶ "physical" requirement: total linear momentum of particle + parity image system must vanish $\Rightarrow \mathbb{P}: P_i \to S(P)_i$
- algebraic consistency:
 - (1) if use **antipode** for P_i must use it <u>for all</u> symmetry generators;

- ▶ "physical" requirement: total linear momentum of particle + parity image system must vanish $\Rightarrow \mathbb{P}: P_i \to S(P)_i$
- algebraic consistency:
 - (1) if use **antipode** for P_i must use it <u>for all</u> symmetry generators;
 - (2) "correspondence principle": in the limit $\kappa \to \infty$ recover **ordinary** \mathbb{P} .

- ▶ "physical" requirement: total linear momentum of particle + parity image system **must vanish** \Rightarrow \mathbb{P} : $P_i \rightarrow S(P)_i$
- algebraic consistency:
 - (1) if use **antipode** for P_i must use it <u>for all</u> symmetry generators;
 - (2) "correspondence principle": in the limit $\kappa \to \infty$ recover **ordinary** \mathbb{P} .

$$\mathbb{P}(P_i) = S(P)_i = -P_i + \frac{P_0 P_i}{\kappa} + O\left(\frac{1}{\kappa^2}\right); \quad \mathbb{P}(P_0) = -S(P)_0 = P_0 - \frac{\mathbf{P}^2}{\kappa} + O\left(\frac{1}{\kappa^2}\right)$$

$$\mathbb{P}(M_i) = -S(M)_i = M_i; \quad \mathbb{P}(N_i) = S(N)_i = -N_i + \frac{1}{\kappa} \left(-P_0 N_i + \epsilon_{ijk} P_j M_k\right) + O\left(\frac{1}{\kappa^2}\right)$$

PARITY

- ▶ "physical" requirement: total linear momentum of particle + parity image system **must vanish** \Rightarrow \mathbb{P} : $P_i \rightarrow S(P)_i$
- algebraic consistency:
 - (1) if use **antipode** for P_i must use it <u>for all</u> symmetry generators;
 - (2) "correspondence principle": in the limit $\kappa \to \infty$ recover **ordinary** \mathbb{P} .

$$\mathbb{P}(P_{i}) = S(P)_{i} = -P_{i} + \frac{P_{0}P_{i}}{\kappa} + O\left(\frac{1}{\kappa^{2}}\right); \quad \mathbb{P}(P_{0}) = -S(P)_{0} = P_{0} - \frac{\mathbf{P}^{2}}{\kappa} + O\left(\frac{1}{\kappa^{2}}\right)$$

$$\mathbb{P}(M_{i}) = -S(M)_{i} = M_{i}; \quad \mathbb{P}(N_{i}) = S(N)_{i} = -N_{i} + \frac{1}{\kappa} \left(-P_{0}N_{i} + \epsilon_{ijk} P_{j}M_{k}\right) + O\left(\frac{1}{\kappa^{2}}\right)$$

• **TIME REVERSAL**: require that in the limit $\kappa \to \infty$, \mathbb{T} flips sign of M_i

$$\mathbb{T}(P_i) = S(P)_i, \quad \mathbb{T}(P_0) = -S(P)_0$$

 $\mathbb{T}(M_i) = S(M)_i, \quad \mathbb{T}(N_i) = -S(N)_i.$

• CHARGE CONJUGATION (a bit more subtle than $\mathbb P$ and $\mathbb T$)

- CHARGE CONJUGATION (a bit more subtle than $\mathbb P$ and $\mathbb T$)
 - ► For a complex scalar field: *H* one-particle Hilbert space;

- CHARGE CONJUGATION (a bit more subtle than ℙ and T)
 - ▶ For a complex scalar field: H one-particle Hilbert space;
 - ► The complex conjugate space $\bar{\mathcal{H}} \equiv$ one-antiparticle space: ordinary charge conjugation: $\mathbb{C}: \phi(k) \in \mathcal{H} \to \bar{\phi}(-k) \in \bar{\mathcal{H}}$

- CHARGE CONJUGATION (a bit more subtle than ℙ and T)
 - ▶ For a complex scalar field: H one-particle Hilbert space;
 - ► The complex conjugate space $\bar{\mathcal{H}} \equiv$ one-antiparticle space: ordinary charge conjugation: $\mathbb{C}: \phi(k) \in \mathcal{H} \to \bar{\phi}(-k) \in \bar{\mathcal{H}}$
 - $\bar{\mathcal{H}}$ is isomorphic to the dual Hilbert space \mathcal{H}^* : symmetry generators act via $\mathbf{antipode}$

- CHARGE CONJUGATION (a bit more subtle than $\mathbb P$ and $\mathbb T$)
 - ▶ For a complex scalar field: H one-particle Hilbert space;
 - ► The complex conjugate space $\bar{\mathcal{H}} \equiv$ one-antiparticle space: ordinary charge conjugation: $\mathbb{C}: \phi(k) \in \mathcal{H} \to \bar{\phi}(-k) \in \bar{\mathcal{H}}$
 - $m{\mathcal{H}}$ is isomorphic to the dual Hilbert space \mathcal{H}^* : symmetry generators act via ${f antipode}$
 - imposing that in the $\kappa\to\infty$ one recovers usual ordinary $\mathbb C$ we obtain

$$\mathbb{C}(P_i) = -S(P)_i, \quad \mathbb{C}(P_0) = -S(P)_0$$

$$\mathbb{C}(M_i) = -S(M)_i, \quad \mathbb{C}(N_i) = -S(N)_i.$$

Putting all together we obtain the action of the $\kappa\text{-deformed }\mathbb{CPT}$ operator

Putting all together we obtain the action of the κ -deformed \mathbb{CPT} operator

$$\begin{split} \mathbb{CPT}(P_i) &= P_i - \frac{P_0 P_i}{\kappa} + O\left(\frac{1}{\kappa^2}\right), \quad \mathbb{CPT}(P_0) = -S(P)_0 = P_0 - \frac{\mathbf{P}^2}{\kappa} + O\left(\frac{1}{\kappa^2}\right) \\ \mathbb{CPT}(M_i) &= -M_i, \quad \mathbb{CPT}(N_i) = -N_i + \frac{1}{\kappa} \left(-P_0 N_i + 3P_i + \epsilon_{ijk} \, P_j M_k\right) + O\left(\frac{1}{\kappa^2}\right). \end{split}$$

Putting all together we obtain the action of the κ -deformed \mathbb{CPT} operator

$$\begin{split} \mathbb{CPT}(P_i) &= P_i - \frac{P_0 P_i}{\kappa} + O\left(\frac{1}{\kappa^2}\right), \quad \mathbb{CPT}(P_0) = -S(P)_0 = P_0 - \frac{\mathbf{P}^2}{\kappa} + O\left(\frac{1}{\kappa^2}\right) \\ \mathbb{CPT}(M_i) &= -M_i, \quad \mathbb{CPT}(N_i) = -N_i + \frac{1}{\kappa} \left(-P_0 N_i + 3P_i + \epsilon_{ijk} \, P_j M_k\right) + O\left(\frac{1}{\kappa^2}\right). \end{split}$$

MAIN MESSAGE: non-trivial antipode \Rightarrow the action of the \mathbb{CPT} operator is deformed (NOTE: this differs from the usual violation of \mathbb{CPT} expected in presence of decoherence (Wald, 1980))

Putting all together we obtain the action of the κ -deformed \mathbb{CPT} operator

$$\begin{split} \mathbb{CPT}(P_i) &= P_i - \frac{P_0 P_i}{\kappa} + O\left(\frac{1}{\kappa^2}\right), \quad \mathbb{CPT}(P_0) = -S(P)_0 = P_0 - \frac{\mathbf{P}^2}{\kappa} + O\left(\frac{1}{\kappa^2}\right) \\ \mathbb{CPT}(M_i) &= -M_i, \quad \mathbb{CPT}(N_i) = -N_i + \frac{1}{\kappa} \left(-P_0 N_i + 3P_i + \epsilon_{ijk} \, P_j M_k\right) + O\left(\frac{1}{\kappa^2}\right). \end{split}$$

MAIN MESSAGE: non-trivial antipode \Rightarrow the action of the \mathbb{CPT} operator is deformed (NOTE: this differs from the usual violation of \mathbb{CPT} expected in presence of decoherence (Wald, 1980))

OPEN QUESTIONS

We just defined the action of \mathbb{CPT} on symmetry generators, action on general quantum fields and states? a "deformed" \mathbb{CPT} -theorem?

Putting all together we obtain the action of the κ -deformed \mathbb{CPT} operator

$$\begin{split} \mathbb{CPT}(P_i) &= P_i - \frac{P_0 P_i}{\kappa} + O\left(\frac{1}{\kappa^2}\right), \quad \mathbb{CPT}(P_0) = -S(P)_0 = P_0 - \frac{\mathbf{P}^2}{\kappa} + O\left(\frac{1}{\kappa^2}\right) \\ \mathbb{CPT}(M_i) &= -M_i, \quad \mathbb{CPT}(N_i) = -N_i + \frac{1}{\kappa} \left(-P_0 N_i + 3P_i + \epsilon_{ijk} \, P_j M_k\right) + O\left(\frac{1}{\kappa^2}\right). \end{split}$$

MAIN MESSAGE: non-trivial antipode \Rightarrow the action of the \mathbb{CPT} operator is deformed (NOTE: this differs from the usual violation of \mathbb{CPT} expected in presence of decoherence (Wald, 1980))

OPEN QUESTIONS

- We just defined the action of \mathbb{CPT} on *symmetry generators*, action on general **quantum fields and states**? a "deformed" \mathbb{CPT} -theorem?
- ► Can we extract **sensible phenomenology** (possibly involving K^0 - \bar{K}^0 precision measurements) to place bounds on κ ?

Putting all together we obtain the action of the κ -deformed \mathbb{CPT} operator

$$\begin{split} \mathbb{CPT}(P_i) &= P_i - \frac{P_0 P_i}{\kappa} + O\left(\frac{1}{\kappa^2}\right), \quad \mathbb{CPT}(P_0) = -S(P)_0 = P_0 - \frac{\mathbf{P}^2}{\kappa} + O\left(\frac{1}{\kappa^2}\right) \\ \mathbb{CPT}(M_i) &= -M_i, \quad \mathbb{CPT}(N_i) = -N_i + \frac{1}{\kappa} \left(-P_0 N_i + 3P_i + \epsilon_{ijk} \, P_j M_k\right) + O\left(\frac{1}{\kappa^2}\right). \end{split}$$

MAIN MESSAGE: non-trivial antipode \Rightarrow the action of the \mathbb{CPT} operator **is deformed** (NOTE: this differs from the usual violation of \mathbb{CPT} expected in presence of decoherence (Wald, 1980))

OPEN QUESTIONS

- We just defined the action of \mathbb{CPT} on *symmetry generators*, action on general **quantum fields and states**? a "deformed" \mathbb{CPT} -theorem?
- ► Can we extract **sensible phenomenology** (possibly involving K^0 - \bar{K}^0 precision measurements) to place bounds on κ ?

THANKS FOR THE ATTENTION!