Collision physics at I Cev 26-28 October 2016 INFN - Laboratori Nazionali di Frascati, Italy

DISCRETE SYMMETRIES WITH NEUTRAL MESONS

José Bernabén IFIC-Univ. Valencia

FUNDAMENTAL ROLE OF SYMMETRY BREAKING

- ➤ Gauge Symmetry Breaking → Origin of Mass (1964-2012)
- Parity PV → Fields of definite transformation properties under Gauge Group: CHIRAL FIELDS
 Standard Model (1955 → 1957 → 1962 → 1967 → 1973)
- ➤ CPV → 3 Families of Elementary Fermions ← Mixing
 Flavour Physics (1964-1973-2001)
- > TRV \rightarrow Antiunitary \iff i \rightleftharpoons f \rightarrow "impossible" (?) for decaying particles ...

CPTV ? - Beyond QFT paradigmNothing in QM forbids CPTV

OUTLINE

- CPTV in SemiLeptonic Decays of Neutral Kaons
- Genuine T, CP, CPT Separate Asymmetries in B_d-Transitions
- ➤ Direct Measurements of TRV
 in Neutral Kaon Transitions at KLOE-2
- ➤ Direct Tests of CPT in Neutral Kaon Transitions at KLOE-2
- > The ω-EFFECT
- Outlook

CPT test at CPLEAR

Test of **CPT** in the time evolution of neutral kaons using the semileptonic asymmetry

$$\begin{cases} A_{\delta}(\tau) = \frac{\overline{R}_{+}(\tau) - \alpha R_{-}(\tau)}{\overline{R}_{+}(\tau) + \alpha R_{-}(\tau)} + \frac{\overline{R}_{-}(\tau) - \alpha R_{+}(\tau)}{\overline{R}_{-}(\tau) + \alpha R_{+}(\tau)} \\ R_{+(-)}(\tau) = R \left(K^{0}_{t=0} \rightarrow (e^{+(-)}\pi^{-(+)}v)_{t=\tau} \right) \\ \overline{R}_{-(+)}(\tau) = R \left(\overline{K}^{0}_{t=0} \rightarrow (e^{-(+)}\pi^{+(-)}v)_{t=\tau} \right) \\ \alpha = 1 + 4\Re \varepsilon_{L} \end{cases}$$

$$A_{\delta}(\tau >> \tau_{S}) = 8\Re \delta$$

 $\Re \delta = (0.30 \pm 0.33 \pm 0.06) \times 10^{-3}$

CPLEAR PLB444 (1998) 52

$A_S - A_L$ at KLOE – 2

Semileptonic decays of neutral kaons

$$egin{aligned} \ket{\mathcal{K}_S} &= rac{1}{\sqrt{2(1+|\epsilon_S|^2)}} \left((1+\epsilon_S) \ket{\mathcal{K}^0} + (1-\epsilon_S) \ket{ar{\mathcal{K}^0}}
ight) \ \ket{\mathcal{K}_L} &= rac{1}{\sqrt{2(1+|\epsilon_L|^2)}} \left((1+\epsilon_L) \ket{\mathcal{K}^0} - (1-\epsilon_L) \ket{ar{\mathcal{K}^0}}
ight) \end{aligned}$$

$$\epsilon_{S \setminus L} = \epsilon_K \pm \delta_K$$

parameter describing CP violation parameter describing CPT violation

Possible semileptonic decays:

$$egin{aligned} \mathcal{K}^0 &
ightarrow \pi^- e^+ ar{
u} \ ar{\mathcal{K}^0} &
ightarrow \pi^+ e^-
u \ ar{\mathcal{K}^0} &
ightarrow \pi^+ e^-
u \ ar{\mathcal{K}^0} &
ightarrow \pi^- e^+ ar{
u} \end{aligned}$$

Two decays are allowed according to elementary Quarks $(\Delta S = \Delta Q \text{ rule})$

$A_s - A_l$ at KLOE – 2

We can parametrize semileptonic amplitudes in the following way:

$$a + b = \langle \pi^- e^+ \nu | H_{weak} | K^0 \rangle = (if \ \mathcal{CP}) = a^* + b^*,$$

$$a^* - b^* = \langle \pi^+ e^- \bar{\nu} | H_{weak} | \overline{K}^0 \rangle = (if \ \mathcal{CP}) = a + b$$

and then we obtain following relations between symmetries and semileptonic amplitudes:

	CP	T	CPT	
а	Im = 0	Im = 0		; CPTV in Decay Amplitude
b	lm = 0 Re = 0	Im = 0	= 0	\rightarrow y = - b/a

Charge Asymmetry

$$A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^{-}e^{+}\nu) - \Gamma(K_{S,L} \to \pi^{+}e^{-}\overline{\nu})}{\Gamma(K_{S,L} \to \pi^{-}e^{+}\nu) + \Gamma(K_{S,L} \to \pi^{+}e^{-}\overline{\nu})} = 2 \left[Re \left(\epsilon_{K} \right) \pm Re \left(\delta_{K} \right) - Re \left(y \right) \right]$$

$$A_L = (3.332 \pm 0.058_{stat} \pm 0.047_{syst}) \cdot 10^{-3}$$
 [KTeV Collaboration, PRL 88 (2002)]

$$A_S = (1.5 \pm 9.6_{stat} \pm 2.9_{syst}) \cdot 10^{-3}$$
 [KLOE, PL B 636 (2006) 173-182]

SYMMETRIES IN THE LAWS OF PHYSICS

➤In Quantum Mechanics, there is an operator U_T implementing the T-symmetry acting on the states of the physical system, such that

$$U_T \vec{r} U_T^+ = \vec{r}, \ U_T \vec{p} U_T^+ = -\vec{p}, \ U_T \vec{s} U_T^+ = -\vec{s}$$

By considering the commutator $[r_j, p_K] = i\hbar \delta_{jK} I$

the operator U_T must be ANTI-UNITARY:

UNITARY- for conserving probabilities, ANTI- for complex conjugation

ANTIUNITARITY introduces many intriguing subtleties:

$$S_{i \to f} \xrightarrow{T} S_{U_T f \to U_T i}$$

T - Violation means Asymmetry under

Interchange in — out states

ightharpoonup Similarly for ANTIUNITARY CPT which needs not only in \Longrightarrow out, but also $i,f \rightarrow \bar{f},\bar{i}$, in transitions.

WHAT IS CPT-TRANSFORMATION EXPERIMENTALLY?

The problem is in the preparation and filtering of the appropriate initial and final meson states for a CPT-test in TRANSITIONS

ΔS[±], ΔC[±] ASYMMETRY PARAMETERS

$$I_{i}(\Delta t) \sim e^{-\Gamma \Delta t} \left\{ C_{i} \cos(\Delta m \Delta t) + S_{i} \sin(\Delta m \Delta t) + C'_{i} \cosh(\Delta \Gamma \Delta t) + S'_{i} \sinh(\Delta \Gamma \Delta t) \right\}$$

GENUINE T, CP, CPT ASYMMETRIES

J.B., F. Botella, M. Nebot, JHEP 1606 (2016) 100

 \triangleright 3 different Observables ΔC_h , ΔC_c , ΔS_c for each symmetry \blacksquare

9 Asymmetry parameters with different information content

$$\Delta S_c^T = -0.687 \pm 0.020$$
; $\Delta S_c^{cP} = -0.680 \pm 0.021$

Impressive separate evidence of TRV, CPV

"Intriguing" 2σ - effect for CPTV $\Re \delta$

Analysis assuming perfect ENTANGLEMENT

The two Time-Ordered Decays f, g satisfy

$$C_h(f,g) = C_h(g,f) ; C_c(f,g) = C_c(g,f) ; S_c(f,g) = -S_c(g,f)$$

 \triangleright Weakening Entanglement \rightarrow CPTV ω-effect violates this relation, in progress

TIME REVERSAL VIOLATION IN NEUTRAL KAON TRANSITIONS

EPR correlations at a ϕ -Factory can be exploited to study T-conjugated TRANSITIONS between K^0 , \overline{K}^0 and the orthogonal K_+ , K_- states filtered by CP-eigenstate decay products

TIME REVERSAL VIOLATION IN NEUTRAL KAON TRANSITIONS

T symmetry test

Ref	erence	T-conjugate		
Transition	Decay products	Transition Decay products		
$\bar{K}^0 \to K$	$(\ell^+,\pi^0\pi^0\pi^0)$	$K_{-} \to \bar{K}^{0} (\pi^{0}\pi^{0}\pi^{0}, \ell^{-})$		
$\mathrm{K}_+ \to \mathrm{K}^0$	$(\pi^0\pi^0\pi^0,\ell^+)$	$\mathrm{K}^0 \to \mathrm{K}_+ \qquad (\ell^-, \pi\pi)$		
$\bar{K}^0 \to K_+$	$(\ell^+,\pi\pi)$	$K_{+} \rightarrow \bar{K}^{0} (\pi^{0}\pi^{0}\pi^{0}, \ell^{-})$		
$\mathrm{K} \to \mathrm{K}^0$	$(\pi\pi,\ell^+)$	$\mathrm{K}^0 \to \mathrm{K} \qquad (\ell^-, \pi\pi)$		

One can define the following ratios of probabilities:

$$R_{1}(\Delta t) = P \left[K^{0}(0) \to K_{+}(\Delta t) \right] / P \left[K_{+}(0) \to K^{0}(\Delta t) \right]$$

$$R_{2}(\Delta t) = P \left[K^{0}(0) \to K_{-}(\Delta t) \right] / P \left[K_{-}(0) \to K^{0}(\Delta t) \right]$$

$$R_{3}(\Delta t) = P \left[\bar{K}^{0}(0) \to K_{+}(\Delta t) \right] / P \left[K_{+}(0) \to \bar{K}^{0}(\Delta t) \right]$$

$$R_{4}(\Delta t) = P \left[\bar{K}^{0}(0) \to K_{-}(\Delta t) \right] / P \left[K_{-}(0) \to \bar{K}^{0}(\Delta t) \right] .$$

Any deviation from R_i=1 constitutes a violation of T-symmetry

J. B., A. Di Domenico, P. Villanueva, NPB 868(2013)102

TIME REVERSAL VIOLATION IN NEUTRAL KAON TRANSITIONS

$$R_{1}^{\exp}(\Delta t) \equiv \frac{I(\ell^{-}, \pi \pi; \Delta t)}{I(3\pi^{0}, \ell^{+}; \Delta t)} = R_{1}(\Delta t) \times \frac{C(\ell^{-}, \pi \pi)}{C(3\pi^{0}, \ell^{+})}$$

$$R_{2}^{\exp}(\Delta t) \equiv \frac{I(\ell^{-}, 3\pi^{0}; \Delta t)}{I(\pi \pi, \ell^{+}; \Delta t)} = R_{2}(\Delta t) \times \frac{C(\ell^{-}, 3\pi^{0})}{C(\pi \pi, \ell^{+})}$$

$$R_{3}^{\exp}(\Delta t) \equiv \frac{I(\ell^{+}, \pi \pi; \Delta t)}{I(3\pi^{0}, \ell^{-}; \Delta t)} = R_{3}(\Delta t) \times \frac{C(\ell^{+}, \pi \pi)}{C(3\pi^{0}, \ell^{-})}$$

$$R_{4}^{\exp}(\Delta t) \equiv \frac{I(\ell^{+}, 3\pi^{0}; \Delta t)}{I(\pi \pi, \ell^{-}; \Delta t)} = R_{4}(\Delta t) \times \frac{C(\ell^{+}, 3\pi^{0})}{C(\pi \pi, \ell^{-})}$$

In practice two measurable ratios with ∆t <0 or >0

$$R_2^{\exp}(-\Delta t) = \frac{1}{R_3^{\exp}(\Delta t)} = \frac{1}{R_3(\Delta t)} \times \frac{C(3\pi^0, \ell^-)}{C(\ell^+, \pi\pi)},$$

$$R_4^{\exp}(-\Delta t) = \frac{1}{R_1^{\exp}(\Delta t)} = \frac{1}{R_1(\Delta t)} \times \frac{C(3\pi^0, \ell^+)}{C(\ell^-, \pi\pi)}.$$

T test could be feasible at KLOE-2 @ DAPHNE with L=O(10 fb⁻¹)

DIRECT TEST OF CPT IN NEUTRAL KAON TRANSITIONS

EPR correlations at a φ-Factory can be exploited to study CPT-conjugated Transitions involving Flavour $K^0 - \overline{K}^0$ and the filtered K+ and K- from CP-eigenstate Decay

Products

DIRECT TEST OF CPT IN NEUTRAL KAON TRANSITIONS

CPT symmetry test

Reference		CPT-conjuga	te
Transition	Decay products	Transition	Decay products
$K^0 \rightarrow K_+$	$(\ell^-,\pi\pi)$	$K_+ \rightarrow \bar{K}^0$	$(3\pi^0,\ell^-)$
$K^0 \rightarrow K$	$(\ell^{-}, 3\pi^{0})$	$\mathrm{K} ightarrow \bar{\mathrm{K}}^0$	$(\pi\pi,\ell^-)$
$\bar{\mathrm{K}}^0 \rightarrow \mathrm{K}_+$	$(\ell^+,\pi\pi)$	$K_+ \rightarrow K^0$	$(3\pi^{0}, \ell^{+})$
$\bar{\mathrm{K}}^0 \rightarrow \mathrm{K}$	$(\ell^+, 3\pi^0)$	$K \to K^0$	$(\pi\pi,\ell^+)$

One can define the following ratios of probabilities:

$$R_{1,\mathcal{CPT}}(\Delta t) = P \left[\mathbf{K}_{+}(0) \to \bar{\mathbf{K}}^{0}(\Delta t) \right] / P \left[\mathbf{K}^{0}(0) \to \mathbf{K}_{+}(\Delta t) \right]$$

$$R_{2,\mathcal{CPT}}(\Delta t) = P \left[\mathbf{K}^{0}(0) \to \mathbf{K}_{-}(\Delta t) \right] / P \left[\mathbf{K}_{-}(0) \to \bar{\mathbf{K}}^{0}(\Delta t) \right]$$

$$R_{3,\mathcal{CPT}}(\Delta t) = P \left[\mathbf{K}_{+}(0) \to \mathbf{K}^{0}(\Delta t) \right] / P \left[\bar{\mathbf{K}}^{0}(0) \to \mathbf{K}_{+}(\Delta t) \right]$$

$$R_{4,\mathcal{CPT}}(\Delta t) = P \left[\bar{\mathbf{K}}^{0}(0) \to \mathbf{K}_{-}(\Delta t) \right] / P \left[\mathbf{K}_{-}(0) \to \mathbf{K}^{0}(\Delta t) \right]$$

Any deviation from R_{i CPT}=1 constitutes a violation of CPT-symmetry

DIRECT TEST OF CPT IN NEUTRAL KAON TRANSITIONS

for visualization purposes, plots with Re(δ)=3.3 10⁻⁴ Im(δ)=1.6 10⁻⁵ (---- Im(δ)=0)

THE ω - EFFECT

In presence of decoherence and CPT violation induced by quantum gravity (CPT operator 'ill-defined') the definition of the particle-antiparticle states could be modified. This in turn could induce a breakdown of the correlations imposed by Bose statistics (EPR correlations) to the kaon state:

[JB, Mavromatos, Papavassiliou, PRL 92(2004) 131601]

 $I(\pi^+\pi^-, \pi^+\pi^-; \Delta t)$ (a.u.)

$$|i\rangle \propto \left(|K^{\circ}\rangle|\overline{K}^{\circ}\rangle - |\overline{K}^{\circ}\rangle|K^{\circ}\rangle\right) + \omega(|K^{\circ}\rangle|\overline{K}^{\circ}\rangle + |\overline{K}^{\circ}\rangle|K^{\circ}\rangle) \qquad 1$$

$$\propto \left(|K_{S}\rangle|K_{L}\rangle - |K_{L}\rangle|K_{S}\rangle\right) + \omega(|K_{S}\rangle|K_{S}\rangle - |K_{L}\rangle|K_{L}\rangle) \qquad 0.8$$
at most one expects:
$$|\omega|^{2} = O\left(\frac{E^{2}/M_{PLANCK}}{\Delta\Gamma}\right) \approx 10^{-5} \Rightarrow |\omega| \sim 10^{-3}$$

1.2

1

D.8

0.6

0.4 $|\omega| = 3 \times 10^{-3}$ D.2 $\phi_{\omega} = 0$ $\phi_{\omega} = 0$ $\phi_{\omega} = 0$ $\phi_{\omega} = 0$

In some microscopic models of space-time foam arising from non-critical string theory:

[JB, Mavromatos, Sarkar, PRD 74(2006) 045014]

$$|\omega| \sim 10^{-4} \div 10^{-5}$$

The maximum sensitivity to ω is expected for $f_1 = f_2 = \pi^+ \pi^-$

All CPTV effects induced by QG $(\alpha, \beta, \gamma, \omega)$ could be simultaneously disentangled.

MEASUREMENT OF ω - EFFECT

Im ω x10⁻²

Fit of $I(\pi^+\pi^-,\pi^+\pi^-;\Delta t,\omega)$:

• Analysed data: 1.5 fb⁻¹

KLOE result: PLB 642(2006) 315 Found. Phys. 40 (2010) 852

$$\Re \omega = \left(-1.6^{+3.0}_{-2.1\,STAT} \pm 0.4_{SYST}\right) \times 10^{-4}$$

$$\Im \omega = \left(-1.7^{+3.3}_{-3.0\,STAT} \pm 1.2_{SYST}\right) \times 10^{-4}$$

$$|\omega| < 1.0 \times 10^{-3} \text{ at } 95\% \text{ C.L.}$$

In the B system [Alvarez, Bernabeu, Nebot JHEP 0611, 087]:

 $-0.0084 \le \Re \omega \le 0.0100$ at 95% C.L.; $\Re \omega$ and $\Im \omega$ in progress

OUTLOOK

- ➤ Fundamental Role of Discrete Symmetry Breaking →
 Importance of Direct Asymmetries for Separate T, CP, CPT in Transitions
 → Need of Entanglement for Neutral Mesons
- ➤ DAPHNE → K_S decays → Charge Asymmetry in Semileptonic Decays of K_S at KLOE-2 → Separation of CPTV in the Mass Matrix of $K^0 \overline{K}^0$
- Flavour-CP Transitions in Entangled $B^0 \overline{B}^0$ have demonstrated **Genuine** Separate Asymmetries for T and CP with high statistical significance and compatibility with CPT invariance (with a 2 σ tension)
- ightharpoonup KLOE-2 is able to accomplish a complete Program of Genuine Separate Asymmetries for T, CP and CPT in Flavour-CP Transitions for $K^0 \overline{K}^0$ \rightarrow Possible fake effects controlled in the same experiment
- The best way to study the ω-effect weakening Entanglement due to ill-defined CPT \rightarrow CPV ($\pi^+\pi^-$, $\pi^+\pi^-$) Correlated Decay at KLOE-2 \rightarrow Distinguished signature from CPTV in the Effective Hamiltonian for $K^0 \overline{K}^0$

THANK YOU VERY MUCH FOR YOUR ATTENTION

BACK-UP

CAN TR BE TESTED IN UNSTABLE SYSTEMS?

THE FACTS

➤ Taking as Reference $K^0 \to \overline{K}^0$ and calling (X,Y) the observed decays at times t_1 and t_2 , with $\Delta t \equiv t_2 - t_1 > 0$, the CP, T and CPT transformed transitions are

Transition	$K^0 \to \overline{K}^0$	$\overline{K}^0 \to K^0$	$\overline{K}^0 \to K^0$	$K^0 \to \overline{K}^0$	$K^0 \rightarrow \overline{K}^0$
(X,Y)	(l ⁻ , l ⁻)	(l+, l+)	(l+, l+)	(l ⁻ , l ⁻)	(l ⁻ , l ⁻)
Transformation	Reference	СР	Т	CPT	Δt

No way to separate T and CP if T were defined.

- T-operator is not defined for **decaying** states: its time reverse is not a physical state.
- The Kabir asymmetry NEEDS the interference of CP mixing with the "initial state interaction" to generate the effect, directly proportional to $\Delta\Gamma$.

The decay plays an essential role

The time evolutions of $K^0 \to \overline{K}^0$ and $\overline{K}^0 \to K^0$ are equal, the asymmetry is time independent.

- \triangleright In the WW approach, the entire effect comes from the overlap of non-orthogonal K_L , K_S states. If the **stationary** states were orthogonal \Longrightarrow no asymmetry.
- L. Wolfenstein: "it is not as direct a test of TRV as one might like".