Models (\& some searches) for CPT Violation

Nick E. Mavromatos

King's College London,
Physics Dept., London UK

OUTLINE

I. Theory Background on fundamental symmetries violation:

> Quantum OR Classical Gravity (Geometrical Backgrounds in Early Universe) may violate fundamental space-time symmetries: continuous (Lorentz (LV)) \&/or discrete (T \& CPT (CPTV))

Quantum Gravity (QG) Microscopic fluctuations may induce decoherence of propagating quantum matter (inaccesibility by local observers to all QG d.o.f.) \rightarrow CPT quantum-mechanical operator NOT WELL DEFINED
II. Decoherene-induced CPTV Experimental searches: Entangled Neutral Mesons- $\boldsymbol{\omega}$ effect
III. Decoherence CPTV and spin-statistics theorem Possible Pauli Exclusion Principle violation.
IV. Conclusions-Outlook (CPT Violation in early universe (torsionful) geometries - Standard Model extension type Lagrangian from geometry \& matter-antimatter asymmetry in the Universe... - as with decoherence CPTV model, this CPTV is also due to gravitational background but here background is classical, and CPT op. is well-defined)

CPT Theorem

Schwinger 1951

Lüders 1954

J S Bell 1954

Pauli 1955

Res Jost 1958

CPT Theorem

Conditions for the Validity of CPT Theorem

$$
P: \vec{x} \rightarrow-\vec{x}, \quad T: t \rightarrow-t(T), \quad C \psi\left(q_{i}\right)=\psi\left(-q_{i}\right)
$$

CPT Invariance Theorem :
A quantum field theory lagrangian is invariant under CPT if it satisfies
(i) Flat space-times
(ii) Lorentz invariance
(iii) Locality
(iv) Unitarity

Schwinger, Pauli, Luders, Jost, Bell

GPT Theorem

Conditions for the Validity of CPT Theorem

$$
P: \vec{x} \rightarrow-\vec{x}, \quad T: t \rightarrow-t(T), \quad C \psi\left(q_{i}\right)=\psi\left(-q_{i}\right)
$$

CPT Invariance Theorem :
A quantum field theory lagrangian is invariant under CPT if it satisfies
(i) Flat space-times
(ii) Lorentz invariance
(iii) Locality
(iv) Unitarity

> Schwinger, Pauli, Luders, Jost, Bell revisited by:
> Greenberg, Chaichian, Dolgov, Novikov, Fujikawa, Tureanu ...
(ii)-(iv) Independent reasons for violation

GPT VIOLATION

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem :
(i) Flat space-iimes
(i) Lorentz invariance
(iii) Locality
(iv) Unitarity

Kostelecky, Bluhm, Colladay, Potting, Russell, Lehnert, Mewes, Diaz , Tasson....
Standard Model Extension (SME)

(ii)-(iv) Independent reasons for violation

$$
\mathcal{L} \ni \cdots+\bar{\psi}^{f}\left(i \gamma^{\mu} \nabla_{\mu}-m_{f}\right) \psi^{f}+a_{\mu} \bar{\psi}^{f} \gamma^{\mu} \psi^{f}+b_{\mu} \bar{\psi}^{f} \gamma^{\mu} \gamma^{5} \psi^{f}+\ldots
$$

GPT VIOLATION

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem :
(i) Flat space-times
(ii) Lorentz invariance
(iii) Locality
(iv) Unitarity

Barenboim, Borissov, Lykken PHENOMENOLOGICAL models with non-local mass parameters

(ii)-(iv) Independent reasons for violation

$$
\mathbf{S}=\int d^{4} x \bar{\psi}(x) i \not \partial \psi(x)+\frac{i m}{\pi} \int d^{3} x \int d t d t^{\prime} \bar{\psi}(t, \mathbf{x}) \frac{1}{t-t^{\prime}} \psi\left(t^{\prime}, \mathbf{x}\right) .
$$

CPT VIOLATION

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem :
(i) Flat space-times
(ii) Lorentz invariance
(iii) Locality
(iv) Unitarity
(ii)-(iii) CPT V well-defined as Operator Θ does not commute with Hamiltonian $[\Theta, H] \neq 0$

GPT VIOLATION

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem :
(i) Flat space-times
(ii) Lorentz invariance
(iii) Locality
(iv) Unitarity

(ii)-(iv) Independent reasons for violation

e.g. QUANTUM SPACE-TIME FOAM AT PLANCK SCALES

GPT VIOLATION

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem :
(i) Flat space-times
(ii) Lorentz invariance
(iii) Locality
(iv) Unitarity

Hawking,
Ellis, Hagelin, Nanopoulos
Srednicki,
Banks, Peskin, Strominger,
Lopez, NEM, Barenboim...

(ii)-(iv) Independent reasons for violation

 QUANTUM GRAVITY INDUCED DECOHERENCE EVOLUTION OF PURE QM STATES TO MIXED AT LOW ENERGIESLOW ENERGY CPT OPERATOR NOT WELL DEFINED cf. ω-effect in EPR entanglement

GPT VIOLATION

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem :
(i) Flat space-times
(ii) Lorentz invariance
(iii) Locality
(iv) Unitarity

Hawking,
Ellis, Hagelin, Nanopoulos Srednicki,
Banks, Peskin, Strominger, Lopez, NEM, Barenboim...

(ii)-(iv) Independent reasons for violation

 QUANTUM GRAVITY INDUCED DECOHERENCE EVOLUTION OF PURE QM STATES TO MIXED AT LOW ENERGIICS

NB: Decoherence \& CPTV

Decoherence implies Chat
asymptotic density
malrix of
low-energy malter
$\rho=\operatorname{Tr}|\psi\rangle\langle\psi|$
$\rho_{\text {out }}=\$ \rho_{\text {in }}$
$\$ \neq S S^{\dagger}$
$S=e^{i \int H d t}$

May induce quantum decoherence of propagating matter and intrinsic CPT Violation
in the sense that the CPT operator Θ is not well-defined \rightarrow beyond Local Effective Field theory

$\Theta \rho_{\text {in }}=\bar{\rho}_{\text {out }}$

If Θ well-defined $\Phi^{-1}=\Theta^{-1} \Phi^{-1}$
can show that
exists !

INCOMPATIBLE WITH DECOHERENCE!
Hence Θ ill-defined at low-energies in Wald (79) QG foam models

NB: Decoherence \& CPTV

Decoherence implies that
asymptotic density
matrix of
low-energy maker

May induce quantum decoherence of propagating matter and intrinsic CPT Violation in the sense that the CPT operator $\boldsymbol{\Theta}$ is not well-defined \rightarrow beyond Local Effective Field theory

$$
\begin{aligned}
& |i\rangle=\mathcal{N}\left[\left|M_{0}(\vec{k})\right\rangle\left|\bar{M}_{0}(-\vec{k})\right\rangle-\left|\bar{M}_{0}(\vec{k})\right\rangle\left|M_{0}(-\vec{k})\right\rangle\right. \\
& \left.+\omega\left(\left|M_{0}(\vec{k})\right\rangle\left|\bar{M}_{0}(-\vec{k})\right\rangle+\left|\bar{M}_{0}(\vec{k})\right\rangle\left|M_{0}(-\vec{k})\right\rangle\right)\right]
\end{aligned}
$$

$$
\omega=|\omega| e^{i \vartheta}
$$

May contaminate initially antisymmetric neutral meson M state by symmetric parts (ω-effect)

Bernabeu, NEM, Papavassiliou (04),...

Hence Θ ill-defined at low-energies in Wald (79) QG foam models \rightarrow may affect EPR

NB: Decoherence \& CPTV

Decoherence implies that
asymptotic density matrix of low-energy maker

May induce quantum decoherence of propagating matter and intrinsic CPT Violation
in the como tidal the ert

operator \boldsymbol{O} is not well-defined \rightarrow

 beyond Local Effective Field theory
$\rho=\operatorname{Tr}|\psi\rangle\langle\psi|$

$$
\begin{gathered}
|i\rangle=\mathcal{N}\left[\left|M_{0}(\vec{k})\right\rangle\left|\bar{M}_{0}(-\vec{k})\right\rangle-\left|\bar{M}_{0}(\vec{k})\right\rangle\left|M_{0}(-\vec{k})\right\rangle\right. \\
\left.+\omega\left(\left|M_{0}(\vec{k})\right\rangle\left|\bar{M}_{0}(-\vec{k})\right\rangle+\left|\bar{M}_{0}(\vec{k})\right\rangle\left|M_{0}(-\vec{k})\right\rangle\right)\right]
\end{gathered}
$$

$$
\omega=|\omega| e^{i \vartheta}
$$

May contaminate initially anbiogmulria neutral meson M state by symmetric parts (ω-effect)

Bernabeu, NEM, Papavassiliou (04),...

Hence Θ ill- defined at low-energies in QG foam models \rightarrow may affect EPR

ω-Effect order of magnitude estimates

(Bernabéu, Sarben Sarkar, NM, hep-th/0606137)
Theoretical models using interactions of particle-probes with specific space-time defects (e.g. D-particles, inspired by string/brane theory); Use stationary perturbation theory to describe gravitationally dressed 2-meson state - medium effects like MSW \Rightarrow initial state:
$|\psi\rangle=|k, \uparrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}-|k, \downarrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}+\xi|k, \uparrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}+\xi^{\prime}|k, \downarrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}$
NB: $\xi=-\xi^{\prime}$: strangeness conserving ω-effect $\left(\left|K_{L}\right\rangle=|\uparrow\rangle, \quad\left|K_{S}\right\rangle=|\downarrow\rangle.\right)$.
In recoil D-particle stochastic model: (momentum transfer: $\Delta p_{i} \sim \zeta p_{i},\left\langle\Delta p_{i}\right\rangle=0,\left\langle\Delta p_{i} \Delta p_{j}\right\rangle \neq 0$)

$$
|\omega|^{2} \sim \frac{\zeta^{2} k^{4}}{M_{P}^{2}\left(m_{1}-m_{2}\right)^{2}}
$$

NB: For neutral kaons, with momenta of the order of the rest energies $|\omega| \sim 10^{-4}|\zeta|$. For $1>\zeta \geq 10^{-2}$ not far below the sensitivity of current facilities, such as DA Φ NE (c.f. Experimental Talk (M. Testa)). Constrain ζ significantly in upgraded facilities.

Perspectives for KLOE-2 at DA Φ NE-2 (A. Di Domenico home page) :
$\operatorname{Re}(\omega), \operatorname{Im}(\omega) \longrightarrow 2 \times 10^{-5}$.
NB: ω-Effect also generated by propagation through the medium, but with time-dependent (sinusoidal) $\omega(t)$-terms, can be (in principle) disentangled from initial-state ones...

ω-Effect order of magnitude estimates

(Bernabéu, Sarben Sarkar, NM, hep-th/0606137)
Theoretical models using interactions of particle-probes with specific space-time defects (e.g. D-particles, inspired by string/brane theory); Use stationary perturbation theory to describe gravitationally dressed 2-meson state - medium effects like MSW \Rightarrow initial state:
$|\psi\rangle=|k, \uparrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}-|k, \downarrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}+\xi|k, \uparrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}+\xi^{\prime}|k, \downarrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}$
NV. $\xi=-\xi^{\prime}$: strangeness consenving ω-effect $\left(\left|K_{L}\right\rangle=|\uparrow\rangle, \quad\left|K_{S}\right\rangle=|\downarrow\rangle\right.$.).
In recoil D-particle stochastic model (momentum transfer: $\Delta p_{i} \sim \zeta p_{i},\left\langle\Delta p_{i}\right\rangle=0,\left\langle\Delta p_{i} \Delta p_{j}\right\rangle \neq 0$)

$$
|\omega|^{2} \sim \frac{\zeta^{2} k^{4}}{M_{P}^{2}\left(m_{1}-m_{2}\right)^{2}}
$$

NB: For neutral kaons, with momenta of the order of the rest energies $|\omega| \sim 10^{-4}|\zeta|$. For
$1>\zeta \geq 10^{-2}$ not far below the sensitivity of current facilities, such as DA $\Phi N E$ (c.f. Experimental Talk (M. Testa)). Constrain ζ significantly in upgraded facilities.

Perspectives for KLOE-2 at DA Φ NE-2 (A. Di Domenico home page) :
$\operatorname{Re}(\omega), \operatorname{Im}(\omega) \longrightarrow 2 \times 10^{-5}$.
NB: ω-Effect also generated by propagation through the medium, but with time-dependent (sinusoidal) $\omega(t)$-terms, can be (in principle) disentangled from initial-state ones...

- Neutral mesons no longer indistinguishable particles, initial entangled state:

$$
\begin{aligned}
\mid i> & =\mathcal{N}\left[\left(\left|K_{S}(\vec{k}), K_{L}(-\vec{k})>-\right| K_{L}(\vec{k}), K_{S}(-\vec{k})>\right)\right. \\
& \left.+\omega\left(\left|K_{S}(\vec{k}), K_{S}(-\vec{k})>-\right| K_{L}(\vec{k}), K_{L}(-\vec{k})>\right)\right]
\end{aligned} \omega=|\omega| e^{i \Omega}
$$

$|\omega|^{2} \sim \frac{\zeta^{2} k^{2}}{M_{\mathrm{QG}}^{2}\left(m_{1}-m_{2}\right)^{2}}, \Delta p \sim \zeta p$ (kaon momentum transfer)
If QCD effects, sub-structure in neutral mesons ignored, and D-foam acts as if they were structureless particles, then for $\mathrm{M}_{\mathrm{QG}} \sim 10^{18} \mathrm{GeV}$ the estimate for ω : $\quad|\omega| \sim 10^{-4}|\zeta|$, for $1>|\zeta|>10^{-2}$ (natural) Not far from sensitivity of upgraded meson factories (e.g. KLOE2)

- Neutral mesons no longer indistinguishable particles, initial entangled state:

$$
\begin{aligned}
\mid i> & =\mathcal{N}\left[\left(\left|K_{S}(\vec{k}), K_{L}(-\vec{k})>-\right| K_{L}(\vec{k}), K_{S}(-\vec{k})>\right)\right. \\
& \left.+\omega\left(\left|K_{S}(\vec{k}), K_{S}(-\vec{k})>-\right| K_{L}(\vec{k}), K_{L}(-\vec{k})>\right)\right]
\end{aligned}
$$

$$
\omega=|\omega| e^{i \Omega}
$$

IF CPT ILL-DEFINED (e.g. flavour violating (FV) D-particle Foam)
$|\omega|^{2} \sim \frac{\zeta^{2} k^{2}}{M_{Q \mathrm{G}}^{2}\left(m_{1}-m_{2}\right)^{2}}, \Delta p \sim \zeta p$ (kaon momentum transfer)
If QCD effects, sub-structure in neutral mesons ignored, and Dर्-foam acts as if they were structureless particles, then for $\mathrm{M}_{\mathrm{QG}} \sim 10^{18} \mathrm{GeV}$ the estimate for ω : $\quad|\omega| \sim 10^{-4} \quad|\zeta|$, for $1>|\zeta|>10^{-2}$ (natural) Not far from sensitivity of upgraded meson factories (e.g. KLOE2)
(

D-particle recoil and entangled Meson States

- Apply non-degenerate perturbation theorv to construct "gravitationally dressed' states from $|k, \uparrow\rangle^{(i)},|k, \downarrow\rangle^{(i)}, i=1,2$

D-particle recoil and entangled Meson States

- Apply non-degenerate perturbation theorv to construct "gravitationally dressed' states from $|k, \uparrow\rangle^{(i)},|k, \downarrow\rangle^{(i)}, i=1,2$

$$
\left|k^{(i)}, \downarrow\right\rangle_{Q G}^{(i)}=\left|k^{(i)}, \downarrow\right\rangle^{(i)}+\left|k^{(i)}, \uparrow\right\rangle^{(i)} \alpha^{(i)}
$$

$$
\alpha^{(i)}=\frac{{ }^{(i)}\left\langle\uparrow, k^{(i)}\right| \widehat{H_{I}}\left|k^{(i)}, \downarrow\right\rangle^{(i)}}{E_{2}-E_{1}}
$$

$$
\widehat{H_{I}}=-\left(r_{1} \sigma_{1}+r_{2} \sigma_{2}\right) \widehat{k}
$$

FLAVOUR FLIP

Perturbation due to recoil distortion of space-time

$$
\begin{gathered}
g_{0 i} \propto \Delta k_{i} / M_{P} \otimes(\text { flavour }- \text { flip }) \\
\Delta k_{i}=r_{i} k, \ll r_{i} \gg=0, \ll r_{i} r_{j} \gg=\Delta \delta_{i j}
\end{gathered}
$$

D-particle recoil and entangled Meson States

- Apply non-degenerate perturbation theorv to construct "gravitationally dressed' states from $|k, \uparrow\rangle^{(i)},|k, \downarrow\rangle^{(i)}, i=1,2$
$\left|k^{(i)}, \downarrow\right\rangle_{Q G}^{(i)}=\left|k^{(i)}, \downarrow\right\rangle^{(i)}+\left|k^{(i)}, \uparrow\right\rangle^{(i)} \alpha^{(i)}$

$$
\alpha^{(i)}=\frac{{ }^{(i)}\left\langle\uparrow, k^{(i)}\right| \widehat{H_{I}}\left|k^{(i)}, \downarrow\right\rangle^{(i)}}{E_{2}-E_{1}}
$$

Similarly for
the dressed state
$|\downarrow\rangle \leftrightarrow|\uparrow\rangle$ and $\alpha \rightarrow \beta$
$\beta^{(i)}=\frac{{ }^{(i)}\left\langle\downarrow, k^{(i)}\right| \widehat{H_{I}}\left|k^{(i)}, \uparrow\right\rangle^{(i)}}{E_{1}-E_{2}}$

$$
\begin{aligned}
& \left.\left.|k, \uparrow\rangle\rangle_{C}^{(1)}|-k, \downarrow\rangle_{Q G}^{(2)}-\left|k, \downarrow{ }_{(C}^{(1)}\right|-k, \uparrow\right\rangle\right\rangle_{Q G}^{(2)}= \\
& |k, \uparrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}-|k, \downarrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)} \\
& \left.+|k, \downarrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}\left(\beta^{(1)}-\beta^{(2)}\right)+|k, \uparrow\rangle^{(1)}|-k, \uparrow\rangle\right\rangle^{(2)}\left(\alpha^{(2)}-\alpha^{(1)}\right) \\
& +\beta^{(1)} \alpha^{(2)}|k, \downarrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}-\alpha^{(1)} \beta^{(2)}|k, \uparrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}
\end{aligned}
$$

D-particle recoil and entangled Meson States

- Apply non-degenerate perturbation theorv to construct "gravitationally dressed' states from $|k, \uparrow\rangle^{(i)},|k, \downarrow\rangle^{(i)}, i=1,2$
$\left|k^{(i)}, \downarrow\right\rangle_{Q G}^{(i)}=\left|k^{(i)}, \downarrow\right\rangle^{(i)}+\left|k^{(i)}, \uparrow\right\rangle^{(i)} \alpha^{(i)}$

$$
\alpha^{(i)}=\frac{{ }^{(i)}\left\langle\uparrow, k^{(i)}\right| \widehat{H_{I}}\left|k^{(i)}, \downarrow\right\rangle^{(i)}}{E_{2}-E_{1}}
$$

Similarly for
the dressed state
$|\downarrow\rangle \leftrightarrow|\uparrow\rangle$ and $\alpha \rightarrow \beta$
$\beta^{(i)}=\frac{{ }^{(i)}\left\langle\downarrow, k^{(i)}\right| \widehat{H_{I}}\left|k^{(i)}, \uparrow\right\rangle^{(i)}}{E_{1}-E_{2}}$

$$
\begin{aligned}
& \left.|k, \uparrow\rangle_{Q G}^{(1)}|-k, \downarrow\rangle_{Q G}^{(2)}-|k, \downarrow\rangle_{Q G}^{(1)}|-k, \uparrow\rangle\right\rangle_{Q G}^{(2)}= \\
& \left.|k, \uparrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}-|k,|\right\rangle^{(1)}|-k, \uparrow\rangle^{(2)} \\
& \not \subset|k, \downarrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}\left(\beta^{(1)}-\beta^{(2)}\right)+|k, \uparrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}\left(\alpha^{(2)}-\alpha^{(1)}\right) \\
& \left.+\beta^{(1)} \alpha^{(2)}\left|k, \downarrow \|^{(1)}\right|-k,\left|\left.\right|^{(2)}-\alpha^{(1)} \beta^{(2)}\right| k, \uparrow\right\rangle^{(1)}|-k, \downarrow\rangle^{(2)}
\end{aligned}
$$

ω-effect

D-particle recoil and entangled Meson States

- Apply non-degenerate perturbation theorv to construct "gravitationally dressed' states from $|k, \uparrow\rangle^{(i)},|k, \downarrow\rangle^{(i)}, i=1,2$
$\left|k^{(i)}, \downarrow\right\rangle_{Q G}^{(i)}=\left|k^{(i)}, \downarrow\right\rangle^{(i)}+\left|k^{(i)}, \uparrow\right\rangle^{(i)} \alpha^{(i)}$

$$
\alpha^{(i)}=\frac{{ }^{(i)}\left\langle\uparrow, k^{(i)}\right| \widehat{H_{I}}\left|k^{(i)}, \downarrow\right\rangle^{(i)}}{E_{2}-E_{1}}
$$

Similarly for
the dressed state
$|\downarrow\rangle \leftrightarrow|\uparrow\rangle$ and $\alpha \rightarrow \beta$
$\beta^{(i)}=\frac{{ }^{(i)}\left\langle\downarrow, k^{(i)}\right| \widehat{H_{I}}\left|k^{(i)}, \uparrow\right\rangle^{(i)}}{E_{1}-E_{2}}$

$$
\begin{aligned}
& |k, \uparrow\rangle_{Q G}^{(1)}|-k, \downarrow\rangle_{Q G}^{(2)}-|k, \downarrow\rangle_{Q G}^{(1)}|-k, \uparrow\rangle_{Q G}^{(2)}= \\
& |k, \uparrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}-|k, \downarrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)} \\
& +|k, \downarrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}\left(\beta^{(1)}-\beta^{(2)}\right)-\beta_{k}^{(1)}| \rangle^{(1)}|-k, \uparrow\rangle^{(2)}\left(\alpha^{(2)}-\alpha^{(1)}\right) \\
& +\beta^{(1)} \alpha^{(2)}|k, \downarrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}-\alpha^{(1)} \beta^{(2)}|k, \uparrow\rangle^{(1)}|-k, \downarrow\rangle
\end{aligned}
$$

w-effect

D-particle recoil and entangled Meson States

- Apply non-degenerate perturbation theorv to construct "gravitationally dressed' states from $|k, \uparrow\rangle^{(i)},|k, \downarrow\rangle^{(i)}, i=1,2$
$\left|k^{(i)}, \downarrow\right\rangle_{Q G}^{(i)}=\left|k^{(i)}, \downarrow\right\rangle^{(i)}+\left|k^{(i)}, \uparrow\right\rangle^{(i)} \alpha^{(i)}$

$$
\alpha^{(i)}=\frac{{ }^{(i)}\left\langle\uparrow, k^{(i)}\right| \widehat{H_{I}}\left|k^{(i)}, \downarrow\right\rangle^{(i)}}{E_{2}-E_{1}}
$$

Similarly for the dressed state $|\downarrow\rangle \leftrightarrow|\uparrow\rangle$ and $\alpha \rightarrow \beta$
$\beta^{(i)}=\frac{{ }^{(i)}\left\langle\downarrow, k^{(i)}\right| \widehat{H_{I}}\left|k^{(i)}, \uparrow\right\rangle^{(i)}}{E_{1}-E_{2}}$

$$
\begin{aligned}
& \left.|k, \uparrow\rangle_{Q G}^{(1)}|-k, \downarrow\rangle_{Q G}^{(2)}-|k, \downarrow\rangle_{Q G}^{(1)}|-k, \uparrow\rangle\right\rangle_{Q G}^{(2)}= \\
& |k, \uparrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}-|k, \downarrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)} \\
& +|k, \downarrow\rangle^{(1)}|-k, \downarrow\rangle^{(2)}\left(\beta^{(1)}-\beta^{(2)}\right\rangle\langle k, \uparrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}\left(\alpha^{(2)}-\alpha^{(1)}\right) \\
& +\beta^{(1)} \alpha^{(2)}|k, \downarrow\rangle^{(1)}|-k, \uparrow\rangle^{(2)}-\alpha^{(1)} \beta^{(2)}|k, T\rangle^{(1)}|-k, \downarrow\rangle^{(2)}
\end{aligned}
$$

w-effect

Part II

Decoherence-induced

 CPT Violation \&
Entangled meson states
 (w-effect searches)

CPTV \& EPR-correlations modification

(Bernabeu, NM and Papavassiliou, hep-ph/0310180 (PRL 92))
If CPT is broken via Quantum Gravity (QG) decoherence effects on $\$ \neq S S^{\dagger}$, then: CPT operator Θ is ILL defined \Rightarrow Antiparticle Hilbert Space INDEPENDENT OF particle Hilbert space.
Neutral mesons K^{0} and \bar{K}^{0} SHOULD NO LONGER be treated as IDENTICAL PARTICLES. \Rightarrow initial Entangled State in $\phi(\mathrm{B})$ factories $\mid i>$ (in terms of mass eigenstates):

$$
\begin{aligned}
\mid i> & =\mathcal{N}\left[\left(\left|K_{S}(\vec{k}), K_{L}(-\vec{k})>-\right| K_{L}(\vec{k}), K_{S}(-\vec{k})>\right)\right. \\
& \left.+\omega\left(\left|K_{S}(\vec{k}), K_{S}(-\vec{k})>-\right| K_{L}(\vec{k}), K_{L}(-\vec{k})>\right)\right]
\end{aligned} \quad \omega=|\omega| e^{i \Omega}
$$

NB ! $K_{S} K_{S}$ or $K_{L}-K_{L}$ combinations, due to CPTV ω, important in decay channels. There is contamination of C (odd) state with C (even). Complex ω controls the amount of contamination by the "wrong" (C(even)) symmetry state.
Experimental Tests of ω-Effect in ϕ, B factories... in B-factories: ω-effect \rightarrow demise of flavour tagging (Alvarez et al. (PLB607)) Bernabeu, Botella, NEM, Nebot (2016).
NB1: Disentangle ωC-even background effects ($e^{+} e^{-} \Rightarrow 2 \gamma \Rightarrow K^{0} \bar{K}^{0}$): terms of the type $K_{S} K_{S}$ (which dominate over $K_{L} K_{L}$) coming from the ϕ-resonance as a result of ω-CPTV can be distinguished from those coming from the $C=+$ background because they interfere differently with the regular $C=-$ resonant contribution with $\omega=0$.
NB2: Also disentangle ω from non-unitary evolution ($\alpha=\gamma \ldots$) effects (different structures)
(Bernabéu, NM, Papavassiliou, Waldron NP B744:180-206,2006)

$\boldsymbol{\omega}$-effect observables/current bounds

ϕ Decays and the ω Effect

Consider the ϕ decay amplitude: final state X at t_{1} and Y at time $t_{2}(t=0$ at the moment of ϕ decay)

Amplitudes:

$$
A(X, Y)=\left\langle X \mid K_{S}\right\rangle\left\langle Y \mid K_{S}\right\rangle \mathcal{N}\left(A_{1}+A_{2}\right)
$$

with

$$
\begin{aligned}
& A_{1}=e^{-i\left(\lambda_{L}+\lambda_{S}\right) t / 2}\left[\eta_{X} e^{-i \Delta \lambda \Delta t / 2}-\eta_{Y} e^{i \Delta \lambda \Delta t / 2}\right] \\
& A_{2}=\omega\left[e^{-i \lambda_{S} t}-\eta_{X} \eta_{Y} e^{-i \lambda_{L} t}\right]
\end{aligned}
$$

the CPT-allowed and CPT-violating parameters respectively, and $\eta_{X}=\left\langle X \mid K_{L}\right\rangle /\left\langle X \mid K_{S}\right\rangle$ and $\eta_{Y}=\left\langle Y \mid K_{L}\right\rangle /\left\langle Y \mid K_{S}\right\rangle$.
The "intensity" $I(\Delta t):\left(\Delta t=t_{1}-t_{2}\right)$ is an observable

$$
I(\Delta t) \equiv \frac{1}{2} \int_{|\Delta t|}^{\infty} d t|A(X, Y)|^{2}
$$

Bernabeu, NEM, Papavassiliou (04),...

$\boldsymbol{\omega}$-effect observables/current bounds

ϕ Decays and the ω Effect

Consider the ϕ decay amplitude: final state X at t_{1} and Y at time $t_{2}(t=0$ at the moment of ϕ decay)

$$
I(\Delta t=0) \neq 0
$$

if $\boldsymbol{\omega}$-effect present
The "intensity" $I(\Delta t):\left(\Delta t=t_{1}-t_{2}\right)$ is an observable

$$
I(\Delta t) \equiv \frac{1}{2} \int_{|\Delta t|}^{\infty} d t|A(X, Y)|^{2}
$$

$$
\begin{aligned}
& I(\Delta t) \equiv \frac{1}{2} \int_{|\Delta t|}^{\infty} d t\left|A\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-}\right)\right|^{2}=\left|\left\langle\pi^{+} \pi^{-} \mid K_{S}\right\rangle\right|^{4}|\mathcal{N}|^{2}\left|\eta_{+-}\right|^{2}\left[I_{1}+I_{2}+I_{12}\right] \\
& I_{1}(\Delta t)=\frac{e^{-\Gamma_{S} \Delta t}+e^{-\Gamma_{L} \Delta t}-2 e^{-\left(\Gamma_{S}+\Gamma_{L}\right) \Delta t / 2} \cos (\Delta M \Delta t)}{\Gamma_{L}+\Gamma_{S}} \\
& I_{2}(\Delta t)=\frac{|\omega|^{2}}{\left|\eta_{+-}\right|^{2}} \frac{e^{-\Gamma_{S} \Delta t}}{2 \Gamma_{S}} \\
& I_{12}(\Delta t)=-\frac{4}{4(\Delta M)^{2}+\left(3 \Gamma_{S}+\Gamma_{L}\right)^{2}} \frac{|\omega|}{\left|\eta_{+-}\right|} \times \\
& {\left[2 \Delta M\left(e^{-\Gamma_{S} \Delta t} \sin \left(\phi_{+-}-\Omega\right)-e^{-\left(\Gamma_{S}+\Gamma_{L}\right) \Delta t / 2} \sin \left(\phi_{+-}-\Omega+\Delta M \Delta t\right)\right)\right.} \\
& \left.\quad-\left(3 \Gamma_{S}+\Gamma_{L}\right)\left(e^{-\Gamma_{S} \Delta t} \cos \left(\phi_{+-}-\Omega\right)-e^{-\left(\Gamma_{S}+\Gamma_{L}\right) \Delta t / 2} \cos \left(\phi_{+-}-\Omega+\Delta M \Delta t\right)\right)\right]
\end{aligned}
$$

$\Delta M=M_{S}-M_{L}$ and $\eta_{+-}=\left|\eta_{+-}\right| e^{i \phi_{+-}}$.
NB: sensitivities up to $|\omega| \sim 10^{-6}$ in ϕ factories, due to enhancement by $\left|\eta_{+-}\right| \sim 10^{-3}$ factor.
Bernabeu, NEM, Papavassiliou (04),...

$$
\begin{aligned}
& I(\Delta t) \equiv \frac{1}{2} \int_{|\Delta t|}^{\infty} d t\left|A\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-}\right)\right|^{2}=\left|\left\langle\pi^{+} \pi^{-} \mid K_{S}\right\rangle\right|^{4}|\mathcal{N}|^{2}\left|\eta_{+-}\right|^{2}\left[I_{1}+I_{2}+I_{12}\right] \\
& I_{1}(\Delta t)=\frac{e^{-\Gamma_{S} \Delta t}+e^{-\Gamma_{L} \Delta t}-2 e^{-\left(\Gamma_{S}+\Gamma_{L}\right) \Delta t / 2} \cos (\Delta M \Delta t)}{\Gamma_{L}+\Gamma_{S}} \\
& \quad|\omega|^{2} \quad e^{-\Gamma_{S} \Delta t} \quad \text { enhancement factor due to CP violation } \\
& I_{2}(\Delta t)=\frac{|\omega|}{\left|\eta_{+-}\right|^{2}} \frac{e}{2 \Gamma_{S}} \quad \text { compared with, eg, B-mesons } \\
& I_{12}(\Delta t)=-\frac{4}{4(\Delta M)^{2}+\left(3 \Gamma_{S}+\Gamma_{L}\right)} \frac{|\omega|}{\left|\eta_{+-}\right|} \times \\
& {\left[2 \Delta M\left(e^{-\Gamma_{S} \Delta t} \sin \left(\phi_{+-}-\Omega\right)-e^{\left.-\Gamma_{S}+\Gamma_{I}\right)} \Delta_{t / 2} \sin \left(\phi_{+-}-\Omega+\Delta M \Delta t\right)\right)\right.} \\
& \left.-\left(3 \Gamma_{S}+\Gamma_{L}\right)\left(e^{-\Gamma_{S} \Delta t} \cos \left(\phi_{+-}-\Omega\right)-e^{-\left(\Gamma_{S}+\Gamma_{L}\right) \Delta t / 2} \cos \left(\phi_{+-}-\Omega+\Delta M \Delta t\right)\right)\right]
\end{aligned}
$$

$\Delta M=M_{S}-M_{L}$ and $\eta_{+-}=\left|\eta_{+-}\right| e^{i \phi_{+-}}$.
NB: sensitivities up to $|\omega| \sim 10^{-6}$ in ϕ factories, due to enhancement by $\left|\eta_{+-}\right| \sim 10^{-3}$ factor.

ω-Effect \& Intensities

Characteristic cases of the intensity $I(\Delta t)$, with $|\omega|=0$ (solid line) vs $I(\Delta t)$ (dashed line) with (from top left to right): (i) $|\omega|=\left|\eta_{+-}\right|, \Omega=\phi_{+-}-0.16 \pi$, (ii) $|\omega|=\left|\eta_{+-}\right|, \Omega=\phi_{+-}+0.95 \pi$, (iii) $|\omega|=0.5\left|\eta_{+-}\right|, \Omega=\phi_{+-}+0.16 \pi$, (iv) $|\omega|=1.5\left|\eta_{+-}\right|, \Omega=\phi_{+-} . \Delta t$ is measured in units of τ_{S} (the mean life-time of K_{S}) and $I(\Delta t)$ in units of $|C|^{2}\left|\eta_{+-}\right|^{2}\left|\left\langle\pi^{+} \pi^{-} \mid K_{S}\right\rangle\right|^{4} \tau_{S}$.

Bernabeu, NEM,

 Papavassiliou (04),...
ω-Effect \& Intensities

Characteristic cases of the intensity $I(\Delta t)$, with $|\omega|=0$ (solid line) vs $I(\Delta t)$ (dashed line) with (from top left to right): (i) $|\omega|=\left|\eta_{+-}\right|, \Omega=\phi_{+-}-0.16 \pi$, (ii) $|\omega|=\left|\eta_{+-}\right|, \Omega=\phi_{+-}+0.95 \pi$, (iii) $|\omega|=0.5\left|\eta_{+-}\right|, \Omega=\phi_{+-}+0.16 \pi$, (iv)
$|\omega|=1.5\left|\eta_{+-}\right|, \Omega=\phi_{+-} . \Delta t$ is measured in units of τ_{S} (the mean life-time of $\left.K_{S}\right)$ and $I(\Delta t)$ in units of $|C|^{2}\left|\eta_{+-}\right|^{2}\left|\left\langle\pi^{+} \pi^{-} \mid K_{S}\right\rangle\right|^{4} \tau_{S}$.

Perspectives for KLOE-2 : $\operatorname{Re}(\omega), \operatorname{Im}(\omega) \rightarrow 2 \times 10^{-5}$
A di Domenico

CPTV \& EPR-correlations modification

(Bernabeu, NM and Papavassiliou, hep-ph/0310180 (PRL 92))
If CPT is broken via Quantum Gravity (QG) decoherence effects on $\$ \neq S S^{\dagger}$, then: CPT operator Θ is ILL defined \Rightarrow Antiparticle Hilbert Space INDEPENDENT OF particle Hilbert space.
Neutral mesons K^{0} and \bar{K}^{0} SHOULD NO LONGER be treated as IDENTICAL PARTICLES. \Rightarrow initial Entangled State in $\phi(\mathrm{B})$ factories $\mid i>$ (in terms of mass eigenstates):

$$
\begin{aligned}
\mid i> & =\mathcal{N}\left[\left(\left|K_{S}(\vec{k}), K_{L}(-\vec{k})>-\right| K_{L}(\vec{k}), K_{S}(-\vec{k})>\right)\right. \\
& \left.+\omega\left(\left|K_{S}(\vec{k}), K_{S}(-\vec{k})>-\right| K_{L}(\vec{k}), K_{L}(-\vec{k})>\right)\right]
\end{aligned} \quad \omega=|\omega| e^{i \Omega}
$$

NB ! $K_{S} K_{S}$ or $K_{L}-K_{L}$ combinations, due to CPTV ω, important in decay channels. There is contamination of C (odd) state with C (even). Complex ω controls the amount of contamination by the "wrong" (C(even)) symmetry state.
Experimental Tests of ω-Effect in ϕ, B factories... in B-factories: ω-effect \rightarrow demise of flavour tagging (Alvarez et al. (PLB607)) Bernabeu, Botella, NEM, Nebot (2016).

NB1: Disentangle ωC-even background effects ($e^{+} e^{-} \Rightarrow 2 \gamma \Rightarrow K^{0} \bar{K}^{0}$): terms of the type $K_{S} K_{S}$ (which dominate over $K_{L} K_{L}$) coming from the ϕ-resonance as a result of ω-CPTV can be distinguished from those coming from the $C=+$ background because they interfere differently with the regular $C=-$ resonant contribution with $\omega=0$.
NB2: Also disentangle ω from non-unitary evolution ($\alpha=\gamma \ldots$) effects (different structures)
(Bernabéu, NM, Papavassiliou, Waldron NP B744:180-206,2006)

EquaL-Sign di-lepton charge asymmetry Δt dependence

- Interesting tests of the ω-effect can be performed by looking at the equal-sign dilepton decay channels
a first decay $B \rightarrow X \ell^{ \pm}$and a second decay, Δt later, $B \rightarrow X^{\prime} \ell^{ \pm}$

$$
\begin{aligned}
A_{s l} & =\left.\frac{I\left(\ell^{+}, \ell^{+}, \Delta t\right)-I\left(\ell^{-}, \ell^{-}, \Delta t\right)}{I\left(\ell^{+}, \ell^{+}, \Delta t\right)+I\left(\ell^{-}, \ell^{-}, \Delta t\right)}\right|_{\omega=0}=4 \frac{\operatorname{Re}(\varepsilon)}{1+|\varepsilon|^{2}}+\mathscr{O}\left((\operatorname{Re} \varepsilon)^{2}\right) \\
\omega & =|\omega| e^{i \Omega} \quad \square\left(\ell^{ \pm}, \ell^{ \pm}, \Delta t=0\right) \sim|\omega|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& I\left(X \ell^{ \pm}, X^{\prime} \ell^{ \pm}, \Delta t\right)=\frac{1}{8} e^{-\Gamma \Delta t}\left|A_{X}\right|^{2}\left|A_{X^{\prime}}\right|^{2}\left|\frac{\left(1+s_{\epsilon} \epsilon\right)^{2}-\delta^{2} / 4}{1-\epsilon^{2}+\delta^{2} / 4}\right|^{2} \\
& \left\{\left[\frac{1}{\Gamma}+a_{\omega} \frac{8 \Gamma}{4 \Gamma^{2}+\Delta m^{2}} R e(\omega)+\frac{1}{\Gamma}|\omega|^{2}\right] \cosh \left(\frac{\Delta \Gamma \Delta t}{2}\right)+\right. \\
& {\left[-\frac{1}{\Gamma}+b_{\omega} \frac{8 \Gamma}{4 \Gamma^{2}+\Delta m^{2}} R e(\omega)-\frac{\Gamma}{\Gamma^{2}+\Delta m^{2}}|\omega|^{2}\right] \cos (\Delta m \Delta t)+} \\
& \left.\left[d_{\omega} \frac{4 \Delta m}{4 \Gamma^{2}+\Delta m^{2}} R e(\omega)+\frac{\Delta m}{\Gamma^{2}+\Delta m^{2}}|\omega|^{2}\right] \sin (\Delta m \Delta t)\right\},
\end{aligned}
$$

$A_{s l}(\Delta t)$ asymmetry for short $\Delta t \ll 1 / \Gamma$

(b) $\Omega=\frac{3}{2} \pi$
(a) $\Omega=0$

$$
\Delta t_{\text {peak }}=\frac{1}{\Gamma} \sqrt{\frac{2}{1+x_{d}^{2}}}|\omega|+\mathcal{O}\left(\omega^{2}\right) \approx \frac{1}{\Gamma} 1.12|\omega|
$$

EXPERIMENTAL LIMITS circa 2005

$$
\begin{aligned}
& A_{s l}^{e x p}=0.0019 \pm 0.0105 \\
& \operatorname{Re}(\omega) \leq 0.0100
\end{aligned}
$$

$A_{s l}(\Delta t)$ asymmetry for long $\Delta t>1 / \Gamma$

(a)
(b)

Region where asymmetry is quasi-independent but ω-effect shifted

Asymmetry plotted in the range including $\Delta \mathrm{m} \Delta \mathrm{t} \sim 2 \pi \rightarrow$ second peak due to quasi periodicity

$$
I\left(X \ell^{ \pm}, X^{\prime} \ell^{ \pm}, \Delta t\right)=\frac{1}{8} e^{-\Gamma \Delta t}\left|A_{X}\right|^{2}\left|A_{X^{\prime}}\right|^{2}\left|\frac{\left(1+s_{\epsilon} \epsilon\right)^{2}-\delta^{2} / 4}{1-\epsilon^{2}+\delta^{2} / 4}\right|^{2}
$$

Dominant terms for long $\Delta t>1 / \Gamma$

TIME REVERSAL TESTS

INDEPENDENTLY OF CP VIOLATION

IN EPR ENTANGLED STATES

Testing Time Reversal (T) Symmetry independently of CP \& CPT in entangled particle states: some ideas for antiprotonic Atoms

Early results from CPLEAR, NA48

Bernabeu,

+ Banuls (99)
+ di Domenico, Villanueva-Perez (13)
+ Botella, Nebot (16)

Direct evidence for \mathbf{T} violation: experiment must show it independently of violations of CP \& potentially CPT
opportunity in entangled states of mesons, such as neutral Kaons, B-mesons; EPR entanglement crucial Observed in B-mesons (Ba-Bar Coll) Phys.Rev.Lett. 109 (2012) 21180

Experimental strategy: Use initial (|i>) EPR correlated state for flavour tagging

$$
\begin{aligned}
& |i\rangle=\frac{1}{\sqrt{2}}\left\{\left|\mathrm{~K}^{0}\right\rangle\left|\overline{\mathrm{K}}^{0}\right\rangle-\left|\overline{\mathrm{K}}^{0}\right\rangle\left|\mathrm{K}^{0}\right\rangle\right\} \\
& =\frac{1}{\sqrt{2}}\left\{\left|\mathrm{~K}_{+}\right\rangle\left|\mathrm{K}_{-}\right\rangle-\left|\mathrm{K}_{-}\right\rangle\left|\mathrm{K}_{+}\right\rangle\right\}
\end{aligned}
$$

construct observables by looking at
infer flavour (K^{0} or $\overline{\mathrm{K}}^{0}$) by observation of flavour specific decay $\left(\pi^{+} \ell^{-} \bar{\nu}\right.$ or $\left.\pi^{-} \ell^{+} \nu\right)$ of the other meson appropriate T violating transitions interchanging in \& out states, not simply being T-odd

Hence, in view of recent T Reversal Violation measurements exploiting the EPR nature of entangled Kaons we may measure directly T violation, independently of CPT, and CP \rightarrow novel tests of CPT invariance

But there are subtleties associated with ω-effect \& EPR:
limitations
in flavour tagging

Bernabeu, Botella, NEM, Nebot to appear

$$
\begin{array}{ll}
\mathbf{H}\left|B_{H}\right\rangle=\mu_{H}\left|B_{H}\right\rangle, & \left|B_{H}\right\rangle=p_{H}\left|B_{d}^{0}\right\rangle+q_{H}\left|\bar{B}_{d}^{0}\right\rangle, \\
\mathbf{H}\left|B_{L}\right\rangle=\mu_{L}\left|B_{L}\right\rangle, \quad\left|B_{L}\right\rangle=p_{L}\left|B_{d}^{0}\right\rangle-q_{L}\left|\bar{B}_{d}^{0}\right\rangle .
\end{array}
$$

$\left|\Psi_{0}\right\rangle \propto\left|B_{L}\right\rangle\left|B_{H}\right\rangle-\left|B_{H}\right\rangle\left|B_{L}\right\rangle$

$$
+\omega\left\{\theta\left[\left|B_{H}\right\rangle\left|B_{L}\right\rangle+\left|B_{L}\right\rangle\left|B_{H}\right\rangle\right]+(1-\theta) \frac{p_{L}}{p_{H}}\left|B_{H}\right\rangle\left|B_{H}\right\rangle-(1+\theta) \frac{p_{H}}{p_{L}}\left|B_{L}\right\rangle\left|B_{L}\right\rangle\right\}
$$

ω-effect

$$
\text { CPTV in Hamiltonian } \quad \theta=\frac{\mathbf{H}_{22}-\mathbf{H}_{11}}{\mu_{H}-\mu_{L}}
$$

Part III
 Decoherence -induced CPT Violation

 \&
Spin Statistics Theorem

Spin-Statistics Theorem: The pioneers

Fierz 1939: First formulation

Pauli 1940:

More Systematic formulation
His Exclusion Principle (1925) is a consequence of spin-statistics theorem

Schwinger 1950:
More conceptual argument making clear the underlying assumptions (discussed in and of relevance to the talk)

Spin-Statistics Theorem: Basic concepts

Spin-Statistics Theorem: The wave function of a system of identical integer-spin particles has the same value when the positions of any two particles are swapped. Particles with wave functions symmetric under exchange are called bosons. The wave function of a system of identical half-integer spin particles changes sign when two particles are swapped. Particles with wave functions antisymmetric under exchange are called fermions.

Consequence: Wavefunction of two identical fermions is zero, hence two identical fermions (i.e. with all quantum numbers the same) cannot occupy the same state- PAULI EXCLUSION PRINCIPLE (PEP).

In quantum field theory, Bosons obey commutation relations, whilst fermions obey anticommutation ones.

Spin-Statistics Theorem: Basic assumptions

The proof requires the following assumptions:
(1) The theory has a Lorentz \& CPT invariant Lagrangian \& relativistic causality.
(2) The vacuum is Lorentz-invariant (can be weakened).
(3) The particle is a localized excitation. Microscopically, it is not attached to a string or domain wall.
(4) The particle is propagating (has a not-infinite mass).
(5) The particle is a real excitation, meaning that states containing this particle have a positive-definite norm \& has positive energy.

NB: spinless anticommuting fields for instance are not relativistic invariant ghost fields in gauge theories are spinless fermions but they have negative norm.
In 2+1 dimensional Chern-Simons theory has anyons (fractional spin)
Despite being attached to a confining string, QCD quarks can have a spin-statistics relation proven at short distances (ultraviolet limit) due to asymptotic freedom.

Spin-Statistics Theorem: Basic assumptions

The proof requires the following assumptions:
(1) The theory has a Lorentz \& CPT invariant Da causality.
(2) The vacuum is Lorentz-invariant (can be weake
(3) The particle is a localized excitation. Microscopically, it is not attached to a string or domain wall.
(4) The particle is propagating (has a not-infinite mass).
(5) The particle is a real excitation, meaning that states containing this particle have a positive-definite norm \& has positive energy.

NB: spinless anticommuting fields for instance are not relativistic invariant ghost fields in gauge theories are spinless fermions but they have negative norm.
In 2+1 dimensional Chern-Simons theory has anyons (fractional spin)
Despite being attached to a confining string, QCD quarks can have a spin-statistics relation proven at short distances (ultraviolet limit) due to asymptotic freedom.

The VIolation of Pauli principle Experiment (VIP(2))

C. Curceanu et al. arXiv:1602.00867 Found.Phys. 46 (2016) 263

```
Pichler et al. arXiv:1602.00867
PoS EPS-HEP2015 (2015) 570
```

Look for forbidden $2 p \rightarrow 1 s$ spontaneous transition in Copper (for electrons)

$$
\begin{aligned}
& \mathrm{n}=2 \\
& \mathrm{n}=1
\end{aligned}
$$

Normal (allowed) 2p-1s transition with an energy of 8.05 keV for copper (left) and non-Paulian (forbidden) transition with an energy of around 7.7 keV for copper (right).

The Vlolation of Pauli principle Experiment (VIP(2))

C. Curceanu et al. arXiv:1602.00867 Found.Phys. 46 (2016) 263

Pichler et al. arXiv:1602.00867
PoS EPS-HEP2015 (2015) 570

Look for forbidden $2 p \rightarrow 1 s$ spontaneous transition in Copper (for electrons)
$\begin{aligned} & \text { VIP result (2010 data) for probability } \\ & \text { of PEP violation in an atom } \frac{\beta^{2}}{2}\end{aligned} \quad \frac{\beta^{2}}{2} \leq 4.7 \times 10^{-29}$

Curceanu, C. et al.: J. Phys. 306, 012036 (2011)
Curceanu, C. et al.: J. Phys. Conf Ser. 361, 012006 (2012)

The parameter " β "

Lgnatiev \& Kuzmin model
creation and destruction operators connect 3 states

- the vacuum state
- the single occupancy state
- the non-standard double-occupancy state

10 >
|1>
| 2 >
through the following relations:

$$
\begin{array}{ll}
a|0\rangle-0 & a^{*}|0\rangle-|1\rangle \\
a|1\rangle-|0\rangle & a^{*}|1\rangle-\beta|2\rangle \\
a|2\rangle-\beta|1\rangle & a^{*}|2\rangle=0
\end{array}
$$

The parameter β quantifies the degree of violation in the transition $|1>\rightarrow| 2>$. It is very small and for $\beta \rightarrow 0$ we can have the FermiDirac statistic again.

The VIolation of Pauli principle Experiment (VIP(2))

C. Curceanu et al. arXiv:1602.00867 Found.Phys. 46 (2016) 263

Pichler et al. arXiv:1602.00867
PoS EPS-HEP2015 (2015) 570

Look for forbidden $2 p \rightarrow 1 s$ spontaneous transition in Copper (for electrons)
$\begin{aligned} & \text { VIP result (2010 data) for probability } \\ & \text { of PEP violation in an atom } \frac{\beta^{2}}{2}\end{aligned} \quad \frac{\beta^{2}}{2} \leq 4.7 \times 10^{-29}$
VIP2 : forsee improvement by at least 2 orders of magnitude on this bound : $<\mathbf{1 0}^{-31}$

Experiment

CONCLUSIONS-OUTLOOK

- Quantum Gravity may imply effects beyond SME such as ω effect on EPR or decoherence-
ill-defined CPT generator -w-effect
- Precision Tests in Entangled States of neutral mesons (ongoing)
- Concrete examples of ω-like-effects in
string/brane theory \rightarrow order of magnitude estimates
"Quantum Gravity Dressed" composite particles
- $\quad \omega$-effect \& spin-statistics violations, PEP violations?
...to explore

Outlook CPT Violation in the Lagrangian

Microscopic origin

of (some of) SME
coefficients

Microscopic Origin of SME coefficients?

Several "Geometry-induced" examples:
Non-Commutative Geometries
Axisymmetric Background Geometries of the Early Universe
Torsionful Geometries (including strings...)
Early Universe T-dependent effects:
large @ high T, Low values today for coefficients of SME

Microscopic Origin of SME coefficients?

```
Several "Geometry-induced" examples:
Non-Commutative Geometries LV only
LV \& Axisymmetric Background
CPTV
Geometries of the Early Universe
Torsionful Geometries (including strings...)
```

Early Universe T-dependent effects: large @ high T, Low values today for coefficients of SME

Microscopic Origin of SME coefficients?

STANDARD MODEL EXTENSION

 Kostelecky et al.$$
\begin{aligned}
\mathcal{L}=\frac{1}{2} \mathrm{i} \bar{\psi} \Gamma^{\nu} \bar{\partial}_{\nu} \psi-\bar{\psi} M \psi: \quad M \equiv m+a_{\mu} \gamma^{\mu}+b_{\mu} \gamma_{5} \gamma^{\mu}+\frac{1}{2} H^{\mu \nu} \sigma_{\mu \nu} \\
\Gamma^{\nu} \equiv \gamma^{\nu}+c^{\mu \nu} \gamma_{\mu}+d^{\mu \nu} \gamma_{5} \gamma_{\mu}+\mathrm{e}^{\nu}+\mathrm{i} f^{\nu} \gamma_{5}+\frac{1}{2} g^{\lambda \mu \nu} \sigma_{\lambda \mu}
\end{aligned}
$$

In particular, space-times with

Torsión
CPTV Effects of different Space-Time-Curvature/ Spin couplings between fermions/antifermions
B. Mukhopadhyay, U. Debnath, N. Dadhich, M. Sinha Lambiase, Mohanty, NEM, Ellis, Sarkar, de Cesare

Dirac Lagrangian (for concreteness, it can be extended to Majorana neutrinos)

$$
\begin{gathered}
\mathcal{L}=\sqrt{-g}\left(i \bar{\psi} \gamma^{a} D_{a} \psi-m \bar{\psi} \psi\right) \\
D_{a}=\left(\partial_{a}-\frac{i}{4} \omega_{b c a} \sigma^{b c}\right), \quad \begin{array}{c}
\text { Gravitational covariant derivative } \\
\text { including spin connection } \\
\sigma^{a b}=\frac{i}{2}\left[\gamma^{a}, \gamma^{b}\right]
\end{array} \\
g_{\mu \nu}=e_{\mu}^{a} \eta_{a b} e_{\nu}^{b} \\
\omega_{b c a}=e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\gamma \mu}^{\lambda} e_{c}^{\gamma} e_{a}^{\mu}\right) . \\
\mathcal{L}=\mathcal{L}_{f}+\mathcal{L}_{I}=\sqrt{-g} \bar{\psi}\left[\left(i \gamma^{a} \partial_{a}-m\right)+\gamma^{a} \gamma^{5} B_{a}\right] \psi \\
B^{d}=\epsilon^{a b c d} e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\alpha \mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu}\right)
\end{gathered}
$$

Dirac Lagrangian (for concreteness, it can be extended to Majorana neutrinos)

$$
\begin{gathered}
\mathcal{L}=\sqrt{-g}\left(i \bar{\psi} \gamma^{a} D_{a} \psi-m \bar{\psi} \psi\right) \\
D_{a}=\left(\begin{array}{l}
\left.\partial_{a}-\frac{i}{4} \omega_{b c a} \sigma^{b c}\right), \\
\gamma^{a} \gamma^{b} \gamma^{c}=\eta^{a b} \gamma^{c}+\eta^{b c} \gamma^{a}-\eta^{a c} \gamma^{b}-i \epsilon^{d a b c} \gamma_{d} \gamma^{5} \\
g_{\mu \nu}=e_{\mu}^{a} \eta_{a b} e_{\nu}^{b} \\
\omega_{b c a}=e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\gamma \mu}^{\lambda} e_{c}^{\gamma} e_{a}^{\mu}\right) .
\end{array}\right. \\
\text { includitational covariant derivative } \\
\sigma^{a b}=\frac{i}{2}\left[\gamma^{a}, \gamma^{b}\right]
\end{gathered}
$$

$$
\mathcal{L}=\mathcal{L}_{f}+\mathcal{L}_{I}=\sqrt{-g} \bar{\psi}\left[\left(i \gamma^{a} \partial_{a}-m\right)+\gamma^{a} \gamma^{5} B_{a}\right] \psi
$$

$$
B^{d}=\epsilon^{a b c d} e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\alpha \mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu}\right)
$$

Dirac Lagrangian (for concreteness, it can be extended to Majorana neutrinos)

$$
\begin{gathered}
\mathcal{L}=\sqrt{-g}\left(i \bar{\psi} \gamma^{a} D_{a} \psi-m \bar{\psi} \psi\right) \\
D_{a}=\left(\partial_{a}-\frac{i}{4} \omega_{b c a} \sigma^{b c}\right), \quad \begin{array}{l}
\gamma^{a} \gamma^{b} \gamma^{c}=\eta^{a b} \gamma^{c}+\eta^{b c} \gamma^{a}-\eta^{a c} \gamma^{b}-i \epsilon^{d a b c} \gamma_{d} \gamma^{5} \\
\text { incluvitational covariant derivative sin connection }
\end{array} \\
g_{\mu \nu}=e_{\mu}^{a} \eta_{a b} e_{\nu}^{b} \\
\omega_{b c a}=e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\gamma \mu}^{\lambda} e_{c}^{\gamma} e_{a}^{\mu}\right) .
\end{gathered}
$$

$$
\mathcal{L}=\mathcal{L}_{f}+\mathcal{L}_{I}=\sqrt{-g} \bar{\psi}\left[\left(i \gamma^{a} \partial_{a}-m\right)+\gamma^{a} \gamma^{5} B_{a}\right] \psi,,
$$

$B^{d}=\epsilon^{a b c d} e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\alpha \mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu}\right)$
Standard Model Extension type Lorentz-violating coupling
(Kostelecky et al.)

Dirac Lagrangian (for concreteness, it can be extended to Majorana neutrinos)

$$
\begin{gathered}
\mathcal{L}=\sqrt{-g}\left(i \bar{\psi} \gamma^{a} D_{a} \psi-m \bar{\psi} \psi\right) \\
D_{a}=\left(\partial_{a}-\frac{i}{4} \omega_{b c a} \sigma^{b c}\right), \quad \begin{array}{l}
\begin{array}{l}
\text { Gravitational covariant derivative } \\
\text { including spin connection } \\
\sigma^{a b}=\frac{i}{2}\left[\gamma^{a}, \gamma^{b}\right]
\end{array} \\
g_{\mu \nu}=e_{\mu}^{a} \eta_{a b} e_{\nu}^{b} \\
\omega_{b c a}=e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\gamma \mu}^{\lambda} e_{c}^{\gamma} e_{a}^{\mu}\right) . \\
\mathcal{L}=\mathcal{L}_{f}+\mathcal{L}_{I}=\sqrt{-g} \bar{\psi}\left[\left(i \gamma^{a} \partial_{a}-m\right)+\gamma^{a} \gamma B_{a}\right] \psi,
\end{array} \\
B^{d}=\epsilon^{a b c d} e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\alpha \mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu}\right) \\
\begin{array}{l}
\text { For homogeneous and isotropic } \\
\text { Friedman-Robertson-Walker } \\
\text { geometries the resulting B } B^{\mu} \text { vanish }
\end{array}
\end{gathered}
$$

Dirac Lagrangian (for concreteness, it can be extended to Majorana neutrinos)

$$
\mathcal{L}=\sqrt{-g}\left(i \bar{\psi} \gamma^{a} D_{a} \psi-m \bar{\psi} \psi\right)
$$

$$
D_{a}=\left(\partial_{a}-\frac{i}{4} \omega_{b c a} \sigma^{b c}\right)
$$

Gravitational covariant derivative
including spin connection

$$
g_{\mu \nu}=e_{\mu}^{a} \eta_{a b} e_{\nu}^{b}
$$

$$
\sigma^{a b}=\frac{i}{2}\left[\gamma^{a}, \gamma^{b}\right]
$$

$$
\omega_{b c a}=e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\gamma \mu}^{\lambda} e_{c}^{\gamma} e_{a}^{\mu}\right)
$$

$$
\mathcal{L}=\mathcal{L}_{f}+\mathcal{L}_{I}=\sqrt{-g} \bar{\psi}\left[\left(i \gamma^{a} \partial_{a}-m\right)+\gamma^{a} \gamma\left(B_{a}\right]\right) \psi,
$$

Can be constant in a given

$$
B^{d}=\epsilon^{a b c d} e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\alpha \mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu}\right)
$$ local frame in Early Universe axisymmetric (Bianchi) cosmologies or near rotating Black holes,

$$
\begin{gathered}
\mathcal{L}=\sqrt{-g}\left(i \bar{\psi} \gamma^{a} D_{a} \psi-m \bar{\psi} \psi\right) \\
D_{a}=\left(\partial_{a}-\frac{i}{4} \omega_{b c a} \sigma^{b c}\right), \quad \begin{array}{c}
\text { Gravitational covariant derivative } \\
\text { including spin connection } \\
\sigma^{a b}=\frac{i}{2}\left[\gamma^{a}, \gamma^{b}\right]
\end{array} \\
g_{\mu \nu}=e_{\mu}^{a} \eta_{a b} e_{\nu}^{b} \\
\omega_{b c a}=e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\gamma \mu}^{\lambda} e_{c}^{\gamma} e_{a}^{\mu}\right) . \\
\mathcal{L}=\mathcal{L}_{f}+\mathcal{L}_{I}=\sqrt{-g} \bar{\psi}\left[\left(i \gamma^{a} \partial_{a}-m\right)+\gamma^{a} \gamma^{\vee} B_{a}\right] \psi,
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{L}=\sqrt{-g}\left(i \bar{\psi} \gamma^{a} D_{a} \psi-m \bar{\psi} \psi\right) \\
D_{a}=\left(\partial_{a}-\frac{i}{4} \omega_{b c a} \sigma^{b c}\right), \quad \begin{array}{l}
\text { Gravitational covariant derivative } \\
\text { including spin connection } \\
\sigma^{a b}=\frac{i}{2}\left[\gamma^{a}, \gamma^{b}\right]
\end{array} \\
g_{\mu \nu}=e_{\mu}^{a} \eta_{a b} e_{\nu}^{b} \\
\omega_{b c a}=e_{b \lambda}\left(\partial_{a} e_{c}^{\lambda}+\Gamma_{\gamma \mu}^{\lambda} e_{c}^{\gamma} e_{a}^{\mu}\right) . \\
\mathcal{L}=\mathcal{L}_{f}+\mathcal{L}_{I}=\sqrt{-g}\left[\left(i \gamma^{a} \partial_{a}-m\right)+\gamma^{a} \gamma \gamma^{\prime} B_{a}\right] \psi,
\end{gathered}
$$

PART IIIb

 COSMOLOGICALCONSEQUENCES
Of SME-type CPTV
Matter-antimatter
$\begin{gathered}\text { asymmetry in Universe } \\ \text { Lepto(Baryo)genesis }\end{gathered}$.

GPT VIOLATION IN THE EARLY UNIVERSE

De Cesare, NEM \& Sarkar arXiv:1412.7077
(Eur.Phys.J. C75 (2015) 10, 514)

Right-Handed Majorana Neutrinos

Mechanism
 For Torsion-Background-
 Induced tree-level
 Leptogenesis \rightarrow Baryogenesis

Through B-L conserving Sphaleron processes
In the standard model

physics.indiana.edu

CPTV Thermal Leptogenesis

Early Universe CPT Violation

Lepton number \& CP Violations @ tree-level due to Lorentz/CPTV Background

$$
N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}
$$

CPTV Thermal $\mathcal{L}=i \bar{N} \not \lambda^{\prime} N-\frac{m}{2}\left(\overline{N^{c}} N+\bar{N} N^{c}\right)-\bar{N} B \gamma^{5} N-Y_{k} \bar{L}_{k} \tilde{\phi} N+$ h.c.

Early Universe
 CPT Violation

 T > $1 \mathbf{0}^{5} \mathrm{GeV}$Lepton number \& CP Violations @ tree-level due to Lorentz/CPTV Background

$$
N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}
$$

$$
\text { CPTV Thermal } \mathcal{L}=i \bar{N} \phi{ }^{2} N-\frac{m}{2}\left(\overline{N^{c}} N+\bar{N} N^{c}\right)-\bar{N} B \gamma^{5} N-Y_{k} \bar{L}_{k} \tilde{\phi} N+\text { h.c. }
$$

Early Universe

 T > $10^{5} \mathrm{GeV}$Lepton number \& CP Violations @ tree-level due to Lorentz/CPTV Background

$$
N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}
$$

One generation of massive neutrinos N suffices for generating CPTV Leptogenesis;
CPTV Thermal $\mathcal{L}=i \bar{N} \not \partial N-\frac{m}{2}\left(\lambda^{c} N+\bar{N} N^{c}\right)-\bar{N} B \gamma^{5} N-Y_{k} \bar{L}_{k} \tilde{\phi} N+$ h.c.

Early Universe

 T > $1 \mathbf{0}^{5} \mathrm{GeV}$Lepton number \& CP Violations @ tree-level due to Lorentz/CPTV Background

$$
N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}
$$

One generation of massive neutrinos N suffices for generating CPTV Leptogenesis; mass m free to be fixed
CPTV Thermal $\left.\mathcal{L}=i \bar{N} \phi N-\frac{m}{2}\left(\overline{N^{c}} N+\bar{N} N^{c}\right)-\mathcal{N B}^{\gamma}\right) N-Y_{k} \bar{L}_{k} \tilde{\phi} N-$ h.c.

Early Universe
 CPT Violation

 T > $10^{5} \mathrm{GeV}$
:

Lepton number \& CP Violations @ tree-level
due to Lorentz/CPTV Background
$N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}$
Produce Lepton asymmetry

CPTV Thermal $\left.\mathcal{L}=i \bar{N} \phi N-\frac{m}{2}\left(\overline{N^{c}} N+\bar{N} N^{c}\right)-\bar{N} \mathbf{\lambda} \gamma^{5} N-r_{k} \overline{L_{k}} \phi \bar{\phi}\right)+$ h.c.

Early Universe T > $10^{5} \mathrm{GeV}$

Lepton number \& CP Violations @ tree-level due to Lorentz/CPTV Background

| $N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}$ |
| :---: | :--- | :--- |
| Produce Lepton asymmetry |

Constant H-torsion CPT Violation

$$
N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}
$$

Produce Lepton asymmetry

Produce Lepton asymmetry

CPTV Thermal
 $$
\mathcal{L}=i \bar{N} \not \partial N-\frac{m}{2}\left(\overline{N^{c}} N+\bar{N} N^{c}\right)-\bar{N} \dot{B} \gamma^{5} N-Y_{k} \bar{L}_{k} \tilde{\phi} N+\text { h.c. }
$$

Early Universe T > $1 \mathbf{0}^{5} \mathrm{GeV}$

Lepton number \& CP Violations @ tree-level due to Lorentz/CPTV Background
$N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}$

CPT Violation
Constant H-torsion $\mathrm{B}^{0} \neq 0$ background

Produce Lepton asymmetry

$$
\begin{gathered}
\quad Y_{k} \sim 10^{-5} \\
m \geq 100 \mathrm{TeV} \rightarrow \\
B^{0} \sim 1 \mathrm{MeV} \\
T_{D} \simeq m \sim 100 \mathrm{TeV}
\end{gathered}
$$

CPTV Thermal
 $$
\mathcal{L}=i \bar{N} \not \partial N-\frac{m}{2}\left(\overline{N^{c}} N+\bar{N} N^{c}\right)-\bar{N} \dot{B} \gamma^{5} N-Y_{k} \bar{L}_{k} \tilde{\phi} N+\text { h.c. }
$$

Early Universe T > $1 \mathbf{0}^{5} \mathrm{GeV}$

Lepton number \& CP Violations @ tree-level due to Lorentz/CPTV Background
$N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}$

CPT Violation

$$
\frac{\Delta L}{n_{\gamma}} \simeq 10^{-10}
$$

Constant H-torsion $B^{0} \neq 0$ background

Produce Lepton asymmetry

$$
\begin{aligned}
& \quad Y_{k} \sim 10^{-5} \\
& m \geq 100 \mathrm{TeV} \rightarrow \\
& B^{0} \sim 1 \mathrm{MeV} \\
& T_{D} \simeq m \sim 100 \mathrm{TeV}
\end{aligned}
$$

CPTV Thermal
 $$
\mathcal{L}=i \bar{N} \not \partial N-\frac{m}{2}\left(\overline{N^{c}} N+\bar{N} N^{c}\right)-\bar{N} \phi \gamma^{5} N-Y_{k} \bar{L}_{k} \tilde{\phi} N+\text { h.c. }
$$

Early Universe
 CPT Violation

 T > $1 \mathbf{0}^{5} \mathrm{GeV}$Lepton number \& CP Violations @ tree-level due to Lorentz/CPTV Background

$$
N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}
$$

Constant H-torsion $\mathrm{B}^{0} \neq 0$ background

Produce Lepton asymmetry

Equilibrated electroweak $B+L$ violating sphaleron interactions

Environmental
Conditions Dependent

Observed Baryon Asymmetry In the Universe (BAU)

$$
L=\frac{2}{M} l_{L} l_{L} \phi \phi+\text { H.c. }
$$

where

$$
l_{L}=\binom{v_{e}}{e}_{L},\binom{v_{\mu}}{\mu}_{L},\binom{v_{\tau}}{\tau}_{L}
$$

Fukugita, Yanagida,

CPTV Thermal

$$
\mathcal{L}=i \bar{N} \not{ }_{\phi} N-\frac{m}{2}\left(\overline{N^{c}} N+\bar{N} N^{c}\right)-\bar{N} \dot{B} \gamma^{5} N-Y_{k} \bar{L}_{k} \tilde{\phi} N+h . c .
$$

Early Universe
 CPT Violation

 T > $1 \mathbf{0}^{5} \mathrm{GeV}$Lepton number \& CP Violations @ tree-level due to Lorentz/CPTV Background

$$
N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}
$$

Constant H-torsion $B^{0} \neq 0$ background

Equilibrated electroweak
$B+L$ violating sphaleron interactions
Environmental
Conditions Dependent

$$
\frac{\Delta L}{n_{\gamma}} \simeq 10^{-10},
$$

$Y_{k} \sim 10^{-5}$
B-L conserved $\quad m \geq 100 \mathrm{TeV} \rightarrow$
observed Baryon Asymmetry $T_{D} \simeq m \sim 100 \mathrm{TeV}$ In the Universe (BAU)

Estimate BAU by fixing CPTV background parameters In some models this means fine tuning

CPTV Thermal

$$
\mathcal{L}=i \bar{N} \not{ }_{\phi} N-\frac{m}{2}\left(\overline{N^{c}} N+\bar{N} N^{c}\right)-\bar{N} \dot{B} \gamma^{5} N-Y_{k} \bar{L}_{k} \tilde{\phi} N+h . c .
$$

Early Universe T > $1 \mathbf{0}^{5} \mathrm{GeV}$
 CPT Violation

Lepton number \& CP Violations @ tree-level due to Lorentz/CPTV Background

$$
N_{I} \rightarrow H \nu, \bar{H} \bar{\nu}
$$

Constant H-torsion $B^{0} \neq 0$ background

Produce Lepton asymmetry

Equilibrated electroweak $B+L$ violating sphaleron interactions Environmental

$$
\frac{\Delta L}{n_{\gamma}} \simeq 10^{-10},
$$ $m \geq 100 \mathrm{TeV} \rightarrow$

B-L conserved
observed Baryon Asymmetry $T_{D} \simeq m \sim 100 \mathrm{TeV}$ In the Universe (BAU)

Estimate BAU by fixing CPTV background parameters In some models this means fine tuning

e.g. May Require Fine tuning of Vacuum energy
$\mathbf{B}^{\mathbf{0}}$: (string) theory underwent a phase transition @ $\mathrm{T} \approx \mathrm{T}_{\mathrm{d}}=10^{5} \mathrm{GeV}$, from $\mathrm{B}^{0}=$ const $=1 \mathrm{MeV}$ to :
(i) either $\mathrm{B}^{0}=0$
(ii) or \mathbf{B}^{0} small today but non zero

$$
\begin{aligned}
& B^{0} \sim \dot{\bar{b}} \sim 1 / a^{3}(t) \sim T^{3} \\
& B_{0}=c_{0} T^{3} \quad c_{0}=10^{-42} \mathrm{meV}^{-2}
\end{aligned}
$$

$$
B_{0 \text { today }}=\mathcal{O}\left(10^{-44}\right) \mathrm{meV}
$$

Quite safe from stringent Experimental Bounds

$$
\begin{gathered}
\left|B^{0}\right|<10^{-2} \mathrm{eV} \\
B_{i} \equiv b_{i}<10^{-31} \mathrm{GeV}
\end{gathered}
$$

IS THIS CPTV ROUTE WORTH FOLLOWING?

CPT Violation

Construct Microscopic (Quantum) Gravity models with strong CPT Violation in Early Universe, but maybe weak today... Fit with all available data... Estimate in this way matter-antimatter asymmetry in Universe.

SPARES

Spin-Statistics Theorem: (Schwinger's) Proof

Object of interest for generic fields:

$$
G(x)=\langle 0| \phi(-x) \phi(x)|0\rangle
$$

Rotation matrix of spin polarization of the field by π : $R(\pi)$
STEP I : Formulate a quantum field theory in Euclidean space time where path integral makes rigorous sense, in this case: spatial Lorentz transformations are ordinary rotations, but Boosts become also rotations in imaginary time, and hence a rotation by π in (\mathbf{x} (space) -t (time)) plane in Euclidean space-time is a CPT transformation in the language of Minkowski spacetime. CPT transformation, if well defined, takes states in a path integral into their conjugates so

$$
\langle 0| R \phi(x) \phi(-x)|0\rangle
$$

must be positive-definite at $\mathrm{x}=0$ according to positive-norm-state assumption (5) of the spin-statistics theorem. Propagating states, i.e. finite mass, implies that this correlator is non-zero at space-like separations. You need relativity to define space-like intervals of course, hence the Lorentz invariance (LI) assumptions (1) + (2).

STEP II: . LI allows fields to be transformed according to their spin, and such that:

$$
\langle 0| R R \phi(x) R \phi(-x)|0\rangle= \pm\langle 0| \phi(-x) R \phi(x)|0\rangle
$$

where + is for Bosons (integer spin) and - for fermions (half-integer spin).
STEP III : USE CPT INVARIANCE (which is equivalent to also assuming well-defined CPT operator and which in Euclidean space-time is equivalent to rotational invariance) to equate the rotated correlation function to $G(x)$, hence

$$
\langle 0|(R \phi(x) \phi(y)-\phi(y) R \phi(x))|0\rangle=0
$$

for integer spins, and

$$
\langle 0| R \phi(x) \phi(y)+\phi(y) R \phi(x)|0\rangle=0
$$

for half-integer spins.
NB: The theorem essentially implies that: since the operators are spacelike separated, a different order can only create states that differ by a phase. The argument fixes the phase to be -1 or 1 according to the spin. Since it is possible to rotate the space-like separated polarizations independently by local perturbations, the phase should not depend on the polarization in appropriately chosen field coordinates.

STEP II: . LI allows fields to be transformed according to their spin, and such that:

$$
\langle 0| R R \phi(x) R \phi(-x)|0\rangle= \pm\langle 0| \phi(-x) R \phi(x)|0\rangle
$$

where + is for Bosono (integor spin) and -

STEP III: USE CPT INVARIANCE (vh

 well-defined CPT operator and which in rotational invariance) to equate the rotatec violation? PEP violation? , ence$$
\langle 0|(R \phi(x) \phi(y)-\phi(y) R \phi(x))|0\rangle=0
$$

for integer spins, and

$$
\langle 0| R \phi(x) \phi(y)+\phi(y) R \phi(x)|0\rangle=0
$$

for half-integer spins.
NB: The theorem essentially implies that: since the operators are spacelike separated, a different order can only create states that differ by a phase. The argument fixes the phase to be -1 or 1 according to the spin. Since it is possible to rotate the space-like separated polarizations independently by local perturbations, the phase should not depend on the polarization in appropriately chosen field coordinates.

NB ...CPT Violating neutrino-antineutrino

Mass difference alone MAY REPRODUCE observed BAU

$$
\begin{gathered}
\quad m_{i}=\tan \beta_{i} \bar{m}_{i} \\
i=1,2,3 \quad \text { Light } \mathrm{v} \text { species }
\end{gathered}
$$

Barenboim, Borissov, Lykken, Smirnov (01) PHENOMENOLOGICAL MODELS

$$
n_{B}=n_{\nu}-n_{\bar{\nu}} \simeq \frac{\mu_{\nu} T^{2}}{6}
$$

MINOS Exp. RESULTS ON Potential Neutrino-Antineutrino OSCILLATION PARAMETER DIFFERENCES

[arXiv:1108.1509]
http://www-numi.fnal.gov

$\bar{v}_{\mu} \mathrm{vs} \mathrm{v}_{\mu}$ Oscillation parameters
[arXiv:1104.0344] [arXiv1103.0340]

$$
\bar{v}_{\mu} \text { disappearance } \Delta \overline{\mathrm{m}}^{2}=(2.62+0.31-0.28 \text { (stat.) } \pm 0.09 \text { (syst.) }) \times 10^{-3} \mathrm{eV}^{2}
$$

$$
\sin ^{2}(2 \Theta)=0.95+0.10-0.11 \text { (stat.) } \pm 0.01 \text { (syst.). }
$$

V_{μ} disappearance: $\Delta \mathrm{m}^{2}=(2.32+0.12-0.08) \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2}(2 \Theta)=1.00\left(\sin ^{2}(2 \Theta)>0.90 @ 90 \% \mathrm{CL}\right.$
Consistent with equality of mass differences between particle/antiparticles

MINOS Exp. RESULTS ON Potential Neutrino-Antineutrino OSCILLATION PARAMETER DIFFERENCES

\bar{v}_{μ} disapearance-Energ
$\overline{\mathrm{v}}_{\mu}$ vs v_{μ} Oscillation parameters
[arXiv:1104.0344] [arXiv1103.0340]
$\overline{\mathrm{v}}_{\mu}$ disappearand $\quad 0.31-0.28$ (stat.) ± 0.09 (syst.) $) \times 10^{-3} \mathrm{eV}^{2}$, $=0.95+0.10-0.11$ (stat.) ± 0.01 (syst.).

v_{μ} disappe $\quad 1^{2}=(2.32+0.12-0.08) \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2}(2 \Theta)=1.00\left(\sin ^{2}(2 \Theta)>0.90 @ 90 \% \mathrm{CL}\right.$
Consiste, Nith equality of mass differences between particle/antiparticles

Other beyond Local EFT Effects-QG-induced ecoherence

Quantum Gravity (QG) may induce decoherence and oscillations $K^{0} \rightarrow \bar{K}^{0} \Rightarrow$ could use Lindblad-type approach (one example) (Ellis, Hagelin, Nanopoulos, Srednicki, Lopez, NM):

$$
\partial_{t} \rho=i[\rho, H]+\delta \mu H \rho
$$

where

$$
H_{\alpha \beta}=\left(\begin{array}{cccc}
-\Gamma & -\frac{1}{2} \delta \Gamma & -\operatorname{Im} \Gamma_{12} & -\operatorname{Re} \Gamma_{12} \\
-\frac{1}{2} \delta \Gamma & -\Gamma & -2 \operatorname{Re} M_{12} & -2 \operatorname{Im} M_{12} \\
-\operatorname{Im} \Gamma_{12} & 2 \operatorname{Re} M_{12} & -\Gamma & -\delta M \\
-\operatorname{Re} \Gamma_{12} & -2 \operatorname{Im} M_{12} & \delta M & -\Gamma
\end{array}\right)
$$

and

$$
\delta H_{\alpha \beta}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -2 \alpha & -2 \beta \\
0 & 0 & -2 \beta & -2 \gamma
\end{array}\right)
$$

positivity of ρ requires: $\alpha, \gamma>0, \quad \alpha \gamma>\beta^{2}$.
α, β, γ violate CPT (Wald : decoherence) \& CP: $C P=\sigma_{3} \cos \theta+\sigma_{2} \sin \theta, \quad\left[\delta / H_{\alpha \beta}, C P\right] \neq 0$

Neutral Kaon Entangled States

- Complete Positivity

Different parametrization of Decoherence matrix (Benatti-Floreanini) (in α, β, γ framework: $\alpha=\gamma, \beta=0$)

FROM DA Φ NE :

KLOE preliminary (A. Di Domenico Home Page, (c.f. Experimental Talk (M. Testa)).) http://www.roma1.infn.it/people/didomenico/roadmap/kaoninterferometry.html
$\alpha=\left(-10_{-31 \text { stat }}^{+41} \pm 9_{\text {syst }}\right) \times 10^{-17} \mathrm{GeV}$,
$\beta=\left(3.7_{-9.2 \text { stat }}^{+6.9} \pm 1.8_{\text {syst }}\right) \times 10^{-19} \mathrm{GeV}$,
$\gamma=\left(-0.4_{-5.1 \mathrm{stat}}^{+5.8} \pm 1.2_{\mathrm{syst}}\right) \times 10^{-21} \mathrm{GeV}$,

NB: For entangled states, Complete Positivity requires (Benatti, FLoreanini) $\alpha=\gamma, \beta=0$, one independent parameter (which has the greatest experimental sensitivity by the way) γ !
with $L=2.5 \mathrm{fb}^{-1}: \gamma \rightarrow \pm 2.2_{\text {stat }} \times 10^{-21} \mathrm{GeV}$,
Perspectives with KLOE-2 at DA Φ NE-2 :
$\gamma \rightarrow \pm 0.2 \times 10^{-21} \mathrm{GeV}$
(present best measurement $\gamma=\left(1.3_{-2.4 \text { stat }}^{+2.8} \pm 0.4_{\text {syst }}\right) \cdot 10^{-21} \mathrm{GeV}$
(KLOE)

