Models (& some searches) for CPT Violation

Nick E. Mavromatos

King's College London, Physics Dept., London UK

KLOE-2 Workshop en e e collision physics at legy

26-28 October 2016 INFN - Laboratori Nazionali di Frascati, Italy

OUTLINE

I. Theory Background on fundamental symmetries violation:

Quantum OR Classical Gravity (Geometrical Backgrounds in Early Universe) may violate fundamental space-time symmetries: continuous (Lorentz (LV)) &/or discrete (T & CPT (CPTV))

Quantum Gravity (QG) Microscopic fluctuations *may* induce *decoherence* of propagating quantum matter (inaccesibility by local observers to all QG d.o.f.) >

CPT quantum-mechanical operator *NOT WELL DEFINED*

- II. Decoherene-induced CPTV Experimental searches: Entangled Neutral Mesons- ω effect
- **III.** Decoherence CPTV and spin-statistics theorem Possible Pauli Exclusion Principle violation.
- IV. Conclusions-Outlook (CPT Violation in early universe (torsionful) geometries Standard Model extension type Lagrangian from geometry & matter-antimatter asymmetry in the Universe... as with decoherence CPTV model, this CPTV is also due to gravitational background but here background is classical, and CPT op. is well-defined)

CPT Violation THEORY

CPT Theorem

Schwinger 1951

Lüders 1954

J S Bell 1954

Pauli 1955

Res Jost 1958

CPT Theorem

Conditions for the Validity of CPT Theorem

$$P: \vec{x} \to -\vec{x}, \quad T: t \to -t(T), \quad C\psi(q_i) = \psi(-q_i)$$

CPT Invariance Theorem:
A quantum field theory
lagrangian is invariant
under CPT if it satisfies

- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Schwinger, Pauli, Luders, Jost, Bell

CPT Theorem

Conditions for the Validity of CPT Theorem

$$P: \vec{x} \to -\vec{x}, \quad T: t \to -t(T), \quad C\psi(q_i) = \psi(-q_i)$$

CPT Invariance Theorem:
A quantum field theory
lagrangian is invariant
under CPT if it satisfies

- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Schwinger, Pauli, Luders, Jost, Bell revisited by: Greenberg, Chaichian, Dolgov, Novikov, Fujikawa, Tureanu ...

(ii)-(iv) Independent reasons for violation

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem:

- (i) Flat space-times
- (i) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Kostelecky, Bluhm, Colladay, Potting, Russell, Lehnert, Mewes, Diaz, Tasson.... Standard Model Extension (SME)

(ii)-(iv) Independent reasons for violation

$$\mathcal{L}\ni\cdots+\overline{\psi}^f\Big(i\gamma^\mu\nabla_\mu-m_f\Big)\psi^f+a_\mu\overline{\psi}^f\gamma^\mu\psi^f+b_\mu\overline{\psi}^f\gamma^\mu\gamma^5\psi^f+\dots$$
Lorentz & CPT
Violation
Violation

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem:

- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Barenboim, Borissov, Lykken PHENOMENOLOGICAL models with non-local mass parameters

(ii)-(iv) Independent reasons for violation

$$\mathbf{S} = \int d^4x \, \bar{\psi}(x) i \not \! \partial \psi(x) + \frac{im}{\pi} \int d^3x \int dt dt' \, \bar{\psi}(t, \mathbf{x}) \, \frac{1}{t - t'} \, \psi(t', \mathbf{x}).$$

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem:

- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

(ii)-(iii) CPT V well-defined as Operator Θ does not commute with Hamiltonian [Θ, H] ≠ 0

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem:

- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

(ii)-(iv) Independent reasons for violation

e.g. **QUANTUM SPACE-TIME FOAM AT PLANCK SCALES**

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem:

- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Hawking, Ellis, Hagelin, Nanopoulos Srednicki, Banks, Peskin, Strominger, Lopez, NEM, Barenboim...

(ii)-(iv) Independent reasons for violation

QUANTUM GRAVITY INDUCED DECOHERENCE EVOLUTION OF PURE QM STATES TO MIXED AT LOW ENERGIES

LOW ENERGY CPT OPERATOR NOT WELL DEFINED

cf. ω -effect in EPR entanglement

Conditions for the Validity of CPT Theorem

CPT Invariance Theorem:

- (i) Flat space-times
- (ii) Lorentz invariance
- (iii) Locality
- (iv) Unitarity

Hawking, Ellis, Hagelin, Nanopoulos Srednicki, Banks, Peskin, Strominger, Lopez, NEM, Barenboim...

(ii)-(iv) Independent reasons for violation

QUANTUM GRAVITY INDUCED DECOHERENCE EVOLUTION OF PURE QM STATES TO MIXED AT LOW ENERGIES

LOW ENERGY CPT OPERATOR NOT WELL DEFINED

10⁻³⁵ m

cf. ω-effect in EPR entanglement

NB: Decoherence & CPTV

Decoherence implies
that
asymptotic density
matrix of
low-energy matter:

$$\rho = \text{Tr}|\psi\rangle\langle\psi|$$

$$\rho_{\text{out}} = \$\rho_{\text{in}}$$

$$\$ \neq S S^{\dagger}$$

$$S = e^{i \int H dt}$$

May induce quantum decoherence of propagating matter and intrinsic CPT Violation

in the sense that the CPT

operator Θ is not well-defined →

beyond Local Effective Field theory

$$\Theta
ho_{
m in}=\overline{
ho}_{
m out}$$

If Θ well-defined show that $\$^{-1} = \Theta^{-1}\Θ^{-1} can show that

INCOMPATIBLE WITH DECOHERENCE!

Hence Θ ill-defined at low-energies in QG foam models

Wald (79)

NB: Decoherence & CPTV

Decoherence implies
that
asymptotic density
matrix of
low-energy matter:

May induce quantum decoherence of propagating matter and intrinsic CPT Violation in the sense that the CPT operator

in the sense that the CPT

$$\rho = \text{Tr}|\psi\rangle\langle\psi|$$

$$\begin{vmatrix}
|i\rangle = \mathcal{N} \left[|M_0(\vec{k})\rangle |\overline{M}_0(-\vec{k})\rangle - |\overline{M}_0(\vec{k})\rangle |M_0(-\vec{k})\rangle \\
+ \omega \left(|M_0(\vec{k})\rangle |\overline{M}_0(-\vec{k})\rangle + |\overline{M}_0(\vec{k})\rangle |M_0(-\vec{k})\rangle\right)
\end{vmatrix} \omega = |\omega| e^{i\vartheta}$$

May contaminate initially antisymmetric neutral meson M state by symmetric parts (ω -effect)

Bernabeu, NEM, Papavassiliou (04),... Hence Θ ill-defined at low-energies in QG foam models -> may affect EPR

Wald (79)

NB: Decoherence & CPTV

Decoherence implies asymptotic density matrix of low-energy matter:

May induce quantum decoherence of propagating matter and

intrinsic CPT Violation

in the sense that the CFT

operator **⊙** is **not well-defined** → beyond Local Effective Field theory

$$\rho = \text{Tr}|\psi\rangle\langle\psi|$$

$$\frac{|i\rangle = \mathcal{N}\left[|M_0(\vec{k})\rangle |\overline{M}_0(-\vec{k})\rangle - |\overline{M}_0(\vec{k})\rangle |M_0(-\vec{k})\rangle}{+\omega\left(|M_0(\vec{k})\rangle |\overline{M}_0(-\vec{k})\rangle + |\overline{M}_0(\vec{k})\rangle |M_0(-\vec{k})\rangle\right)} \omega = |\omega|e^{i}$$

 $\omega = |\omega|e^{i\vartheta}$

May contaminate initially autisymmetric neutral meson M state by symmetric parts (w-effect)

Bernabeu, NEM, Papavassiliou (04),...

Hence Θ ill-defined at low-energies in QG foam models -> may affect EPR Wald (79)

ω -Effect order of magnitude estimates

(Bernabéu, Sarben Sarkar, NM, hep-th/0606137)

Theoretical models using interactions of particle-probes with specific space-time defects (e.g. D-particles, inspired by string/brane theory); Use stationary perturbation theory to describe gravitationally dressed 2-meson state - medium effects like MSW \Rightarrow initial state:

$$|\psi\rangle = |k,\uparrow\rangle^{(1)} |-k,\downarrow\rangle^{(2)} - |k,\downarrow\rangle^{(1)} |-k,\uparrow\rangle^{(2)} + \xi |k,\uparrow\rangle^{(1)} |-k,\uparrow\rangle^{(2)} + \xi' |k,\downarrow\rangle^{(1)} |-k,\downarrow\rangle^{(2)}$$

NB: $\xi = -\xi'$: strangeness conserving ω -effect $(|K_L\rangle = |\uparrow\rangle$, $|K_S\rangle = |\downarrow\rangle$.).

In recoil D-particle stochastic model: (momentum transfer: $\Delta p_i \sim \zeta p_i$, $\langle \Delta p_i \rangle = 0$, $\langle \Delta p_i \Delta p_j \rangle \neq 0$)

$$|\omega|^2 \sim \frac{\zeta^2 k^4}{M_P^2 (m_1 - m_2)^2}$$

NB: For neutral kaons, with momenta of the order of the rest energies $|\omega| \sim 10^{-4} |\zeta|$. For $1 > \zeta \geq 10^{-2}$ not far below the sensitivity of current facilities, such as DA Φ NE (c.f. Experimental Talk (M. Testa)). Constrain ζ significantly in upgraded facilities.

Perspectives for KLOE-2 at DA Φ NE-2 (A. Di Domenico home page) : $\operatorname{Re}(\omega), \operatorname{Im}(\omega) \longrightarrow 2 \times 10^{-5}.$

NB: ω -Effect also generated by propagation through the medium, but with time-dependent (sinusoidal) $\omega(t)$ -terms, can be (in principle) disentangled from initial-state ones...

ω -Effect order of magnitude estimates

(Bernabéu, Sarben Sarkar, NM, hep-th/0606137)

Theoretical models using interactions of particle-probes with specific space-time defects (e.g. D-particles, inspired by string/brane theory); Use stationary perturbation theory to describe gravitationally dressed 2-meson state - medium effects like MSW \Rightarrow initial state:

$$|\psi\rangle = |k,\uparrow\rangle^{(1)} |-k,\downarrow\rangle^{(2)} - |k,\downarrow\rangle^{(1)} |-k,\uparrow\rangle^{(2)} + \xi |k,\uparrow\rangle^{(1)} |-k,\uparrow\rangle^{(2)} + \xi' |k,\downarrow\rangle^{(1)} |-k,\downarrow\rangle^{(2)}$$

No. $\xi=-\xi'$: strangeness conserving ω -effect $(|K_L\rangle=|\uparrow\rangle$, $|K_S\rangle=|\downarrow\rangle$.).

In recoil D-particle stochastic model (momentum transfer: $\Delta p_i \sim \zeta p_i$, $\langle \Delta p_i \rangle = 0$, $\langle \Delta p_i \Delta p_j \rangle \neq 0$)

$$|\omega|^2 \sim \frac{\zeta^2 k^4}{M_P^2 (m_1 - m_2)^2}$$

NB: For neutral kaons, with momenta of the order of the rest energies $|\omega| \sim 10^{-4} |\zeta|$. For $1 > \zeta \geq 10^{-2}$ not far below the sensitivity of current facilities, such as DA Φ NE (c.f. Experimental Talk (M. Testa)). Constrain ζ significantly in upgraded facilities.

Perspectives for KLOE-2 at DA Φ NE-2 (A. Di Domenico home page) : $\operatorname{Re}(\omega), \operatorname{Im}(\omega) \longrightarrow 2 \times 10^{-5}.$

NB: ω -Effect also generated by propagation through the medium, but with time-dependent (sinusoidal) $\omega(t)$ -terms, can be (in principle) disentangled from initial-state ones...

order of magnitude estimates

hep-th/0606137)

tions of particle-probes with specific space-time defects (e.g. ane theory); Use stationary perturbation theory to describe state - medium effects like MSW ⇒ initial state:

$$\downarrow \rangle^{(1)} |-k,\uparrow \rangle^{(2)} + \xi |k,\uparrow \rangle^{(1)} |-k,\uparrow \rangle^{(2)} + \xi' |k,\downarrow \rangle^{(1)} |-k,\downarrow \rangle^{(2)}$$

erving ω -effect $(|K_L\rangle = |\uparrow\rangle$, $|K_S\rangle = |\downarrow\rangle$.).

odel: (momentum transfer: $\Delta p_i \sim \zeta p_i$, $\langle \Delta p_i \rangle = 0$, $\langle \Delta p_i \Delta p_j \rangle \neq 0$)

$$|\omega|^2 \sim \frac{\zeta^2 k^4}{M_P^2 (m_1 - m_2)^2}$$

nenta of the order of the rest energies $|\omega| \sim 10^{-4} |\zeta|$. For

 $1 > \zeta \ge 10^{-2}$ not far below the sensitivity of current facilities, such as DA Φ NE (c.f. Experimental Talk (M. Testa)). Constrain ζ significantly in upgraded facilities.

Perspectives for KLOE-2 at DA Φ NE-2 (A. Di Domenico home page) : $\operatorname{Re}(\omega)$, $\operatorname{Im}(\omega) \longrightarrow 2 \times 10^{-5}$.

NB: ω -Effect also generated by propagation through the medium, but with time-dependent (sinusoidal) $\omega(t)$ -terms, can be (in principle) disentangled from initial-state ones...

 Neutral mesons no longer indistinguishable particles, initial entangled state:

$$|i\rangle = \mathcal{N}\Big[\big(|K_S(\vec{k}), K_L(-\vec{k})\rangle - |K_L(\vec{k}), K_S(-\vec{k})\rangle\big) \\ + \omega\big(|K_S(\vec{k}), K_S(-\vec{k})\rangle - |K_L(\vec{k}), K_L(-\vec{k})\rangle\big]$$

$$W = |\omega|e^{i\Omega}$$

$$|K_S|K_L$$

$$|K_S|K_S|$$

$$|K_S|K_S|$$

$$|K_S|K_S|$$

$$|K_S|K_S|$$

$$|K_L|K_L$$

$$|K_L|K_L$$

$$|K_S|K_S|$$

$$|K_L|K_L$$

$$|K_L|K_L$$

$$|K_L|K_L$$

$$|K_S|K_S|$$

$$|K_L|K_L$$

$$|K_S|K_S|$$

$$|K_L|K_L$$

$$|K_L|K$$

$$|\omega|^2 \sim rac{\zeta^2 k^2}{M_{\rm QG}^2 (m_1 - m_2)^2}$$
 , $\Delta p \sim \zeta p$ (kaon momentum transfer)

If QCD effects, sub-structure in neutral mesons ignored, and D-foam acts as if they were structureless particles, then for $M_{QG} \sim 10^{18} \text{ GeV}$ the estimate for ω : $|\omega| \sim 10^{-4} |\zeta|$, for $1 > |\zeta| > 10^{-2}$ (natural) Not far from sensitivity of upgraded meson factories (e.g. KLOE2)

 Neutral mesons no longer indistinguishable particles, initial entangled state:

$$|\omega|^2 \sim rac{\zeta^2 k^2}{M_{\rm QG}^2 (m_1 - m_2)^2}$$
, $\Delta p \sim \zeta p$ (kaon momentum transfer)

If QCD effects, sub-structure in neutral mesons ignored, and D-foam acts as if they were structureless particles, then for $M_{QG} \sim 10^{18}$ GeV the estimate for ω : $|\omega| \sim 10^{-4}$ $|\zeta|$, for $1 > |\zeta| > 10^{-2}$ (natural) Not far from sensitivity of upgraded meson factories (e.g. KLOE2)

Apply non-degenerate perturbation theory to construct "gravitationally dressed" states from $|k,\uparrow\rangle^{(i)},\,|k,\downarrow\rangle^{(i)},\,i=1,2$

• Apply non-degenerate perturbation theory to construct "gravitationally dressed" states from $|k,\uparrow\rangle^{(i)},\,|k,\downarrow\rangle^{(i)},\,i=1,2$

$$\left|k^{(i)},\downarrow\right>_{QG}^{(i)} = \left|k^{(i)},\downarrow\right>^{(i)} + \left|k^{(i)},\uparrow\right>^{(i)}\alpha^{(i)}$$

$$\alpha^{(i)} = \frac{{}^{(i)}\left\langle \uparrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \downarrow \right\rangle^{(i)}}{E_2 - E_1}$$

$$\widehat{H}_{I} = -\left(r_{1}\sigma_{1} + r_{2}\sigma_{2}\right)\widehat{k}$$

FLAVOUR FLIP

Perturbation due to recoil distortion of space-time

$$g_{0i} \propto \Delta k_i / M_P \otimes (\text{flavour - flip})$$

 $\Delta k_i = r_i k, \ll r_i >>= 0, \ll r_i r_j >>= \Delta \delta_{ij}$

Apply non-degenerate perturbation theory to construct "gravitationally dressed' states from $|k,\uparrow\rangle^{(i)}, |k,\downarrow\rangle^{(i)}, i=1,2$

$$\left|k^{(i)},\downarrow\right\rangle_{QG}^{(i)} = \left|k^{(i)},\downarrow\right\rangle^{(i)} + \left|k^{(i)},\uparrow\right\rangle^{(i)}\alpha^{(i)}$$

$$\alpha^{(i)} = \frac{{}^{(i)}\left\langle\uparrow,k^{(i)}\right|\widehat{H_{I}}\left|k^{(i)},\downarrow\right\rangle^{(i)}}{E_{2} - E_{1}}$$

$$\alpha^{(i)} = \frac{{}^{(i)}\left\langle\uparrow, k^{(i)} \middle| \widehat{H}_{I} \middle| k^{(i)}, \downarrow\right\rangle^{(i)}}{E_{2} - E_{1}}$$

Similarly for $|k^{(i)},\uparrow\rangle^{(i)}$

$$|k^{(i)},\uparrow\rangle^{(i)}$$

the dressed state

$$|\downarrow\rangle \leftrightarrow |\uparrow\rangle$$
 and $\alpha \to \beta$

$$\beta^{(i)} = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2}$$

$$\beta^{(i)} = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ \begin{vmatrix} |k, \uparrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(2)} - |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} = \\ |k, \uparrow\rangle^{(1)} \middle| -k, \downarrow\rangle^{(2)} - |k, \downarrow\rangle^{(1)} \middle| -k, \uparrow\rangle^{(2)} \\ + |k, \downarrow\rangle^{(1)} \middle| -k, \downarrow\rangle^{(2)} \left(\beta^{(1)} - \beta^{(2)}\right) + |k, \uparrow\rangle^{(1)} \middle| -k, \uparrow\rangle^{(2)} \left(\alpha^{(2)} - \alpha^{(1)}\right) \\ + \beta^{(1)}\alpha^{(2)} \middle| k, \downarrow\rangle^{(1)} \middle| -k, \uparrow\rangle^{(2)} - \alpha^{(1)}\beta^{(2)} \middle| k, \uparrow\rangle^{(1)} \middle| -k, \downarrow\rangle^{(2)} \end{aligned}$$

Apply non-degenerate perturbation theory to construct "gravitationally dressed' states from $|k,\uparrow\rangle^{(i)}, |k,\downarrow\rangle^{(i)}, i=1,2$

$$\left|k^{(i)},\downarrow\right\rangle_{QG}^{(i)} = \left|k^{(i)},\downarrow\right\rangle^{(i)} + \left|k^{(i)},\uparrow\right\rangle^{(i)}\alpha^{(i)}$$

$$\alpha^{(i)} = \frac{{}^{(i)}\left\langle\uparrow,k^{(i)}\right|\widehat{H_{I}}\left|k^{(i)},\downarrow\right\rangle^{(i)}}{E_{2} - E_{1}}$$

$$\alpha^{(i)} = \frac{{}^{(i)}\left\langle\uparrow, k^{(i)}\right| \widehat{H}_I \left|k^{(i)},\downarrow\right\rangle^{(i)}}{E_2 - E_1}$$

Similarly for $|k^{(i)},\uparrow\rangle^{(i)}$

$$\left|k^{(i)},\uparrow\right\rangle^{(i)}$$

the dressed state

$$|\downarrow\rangle \leftrightarrow |\uparrow\rangle$$
 and $\alpha \to \beta$

$$\beta^{(i)} = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2}$$

$$\beta^{(i)} = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| -k, \downarrow \right\rangle^{(2)} - {}^{(i)}\left\langle \downarrow, k^{(i)} \middle| -k, \uparrow \right\rangle^{(2)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \downarrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| k^{(i)}, \downarrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| k^{(i)}, \downarrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| k^{(i)}, \downarrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| k^{(i)}, \downarrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| k^{(i)}, \downarrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| k^{(i)}, \downarrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| k^{(i)}, \downarrow \right\rangle^{(i)}}{E_1 - E_2} \\ = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| k^{(i)$$

ω-effect

Apply non-degenerate perturbation theory to construct "gravitationally dressed' states from $|k,\uparrow\rangle^{(i)}, |k,\downarrow\rangle^{(i)}, i=1,2$

$$\left|k^{(i)},\downarrow\right\rangle_{QG}^{(i)} = \left|k^{(i)},\downarrow\right\rangle^{(i)} + \left|k^{(i)},\uparrow\right\rangle^{(i)}\alpha^{(i)}$$

$$\alpha^{(i)} = \frac{{}^{(i)}\left\langle\uparrow,k^{(i)}\right|\widehat{H_{I}}\left|k^{(i)},\downarrow\right\rangle^{(i)}}{E_{2} - E_{1}}$$

$$\alpha^{(i)} = \frac{{}^{(i)}\left\langle\uparrow, k^{(i)}\right| \widehat{H}_I \left|k^{(i)},\downarrow\right\rangle^{(i)}}{E_2 - E_1}$$

Similarly for $|k^{(i)},\uparrow\rangle^{(i)}$

$$\left|k^{(i)},\uparrow\right\rangle^{(i)}$$

the dressed state

$$|\downarrow\rangle \leftrightarrow |\uparrow\rangle$$
 and $\alpha \to \beta$

$$\beta^{(i)} = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2}$$

$$\beta^{(i)} = \frac{{}^{(i)} \left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2} \\ |k, \uparrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(2)} - |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} = \\ |k, \uparrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \uparrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(1)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(2)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(2)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(2)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{QG}^{(2)} \middle| -k, \downarrow\rangle_{QG}^{(2)} \\ + |k, \downarrow\rangle_{Q$$

ω-effect

Apply non-degenerate perturbation theory to construct "gravitationally dressed' states from $|k,\uparrow\rangle^{(i)}, |k,\downarrow\rangle^{(i)}, i=1,2$

$$\left|k^{(i)},\downarrow\right\rangle_{QG}^{(i)} = \left|k^{(i)},\downarrow\right\rangle^{(i)} + \left|k^{(i)},\uparrow\right\rangle^{(i)}\alpha^{(i)}$$

$$\alpha^{(i)} = \frac{{}^{(i)}\left\langle\uparrow,k^{(i)}\right|\widehat{H_{I}}\left|k^{(i)},\downarrow\right\rangle^{(i)}}{E_{2} - E_{1}}$$

$$\alpha^{(i)} = \frac{{}^{(i)}\left\langle\uparrow, k^{(i)}\right|\widehat{H}_{I}\left|k^{(i)},\downarrow\right\rangle^{(i)}}{E_{2} - E_{1}}$$

Similarly for $|k^{(i)},\uparrow\rangle^{(i)}$

$$\left|k^{(i)},\uparrow\right\rangle^{(i)}$$

the dressed state

$$|\downarrow\rangle \leftrightarrow |\uparrow\rangle$$
 and $\alpha \to \beta$

$$\beta^{(i)} = \frac{{}^{(i)}\left\langle \downarrow, k^{(i)} \middle| \widehat{H_I} \middle| k^{(i)}, \uparrow \right\rangle^{(i)}}{E_1 - E_2}$$

$$\beta^{(i)} = \frac{{}^{(i)} \left< \downarrow, k^{(i)} \right| \widehat{H_I} \left| k^{(i)}, \uparrow \right>^{(i)}}{E_1 - E_2} \\ |k, \uparrow\rangle_{QG}^{(1)} \left| -k, \downarrow\rangle_{QG}^{(2)} - |k, \downarrow\rangle_{QG}^{(1)} \left| -k, \uparrow\rangle_{QG}^{(2)} = \\ |k, \uparrow\rangle_{QG}^{(1)} \left| -k, \downarrow\rangle_{QG}^{(1)} \left| -k, \uparrow\rangle_{QG}^{(2)} + \\ |k, \downarrow\rangle_{QG}^{(1)} \left| -k, \downarrow\rangle_{QG}^{(1)} \left| -k, \uparrow\rangle_{QG}^{(2)} + \\ |k, \downarrow\rangle_{QG}^{(1)} \left| -k, \downarrow\rangle_{QG}^{(1)} \left| -k, \uparrow\rangle_{QG}^{(2)} + \\ |k, \downarrow\rangle_{QG}^{(1)} \left| -k, \downarrow\rangle_{QG}^{(1)} \left| -k, \uparrow\rangle_{QG}^{(2)} + \\ |k, \downarrow\rangle_{QG}^{(1)} \left| -k, \downarrow\rangle_{QG}^{(1)} - \\ |k, \downarrow\rangle_{QG}^{(1)} \left| -k, \downarrow\rangle_{QG}^{(2)} - \\ |k, \uparrow\rangle_{QG}^{(1)} \left| -k, \uparrow\rangle_{QG}^{(2)} + \\ |k, \downarrow\rangle_{QG}^{(1)} \left| -k, \downarrow\rangle_{QG}^{(1)} - \\ |k, \downarrow\rangle_{QG}^{(1)} \left| -k, \uparrow\rangle_{QG}^{(2)} + \\ |k, \downarrow\rangle_{QG}^{(1)} \left| -k, \downarrow\rangle_{QG}^{(1)} - \\ |k, \downarrow\rangle_{QG}^{(1)} \left| -k, \downarrow\rangle_{QG}^{(2)} - \\ |k, \downarrow\rangle_{QG}^{(1)} - \\ |$$

ω-effect

Decoherence – induced CPT Violation

Entangled meson states (ω-effect searches)

CPTV & EPR-correlations modification

(Bernabeu, NM and Papavassiliou, hep-ph/0310180 (PRL 92))

If CPT is broken via Quantum Gravity (QG) decoherence effects on $\$ \neq SS^{\dagger}$, then: CPT operator Θ is ILL defined \Rightarrow Antiparticle Hilbert Space INDEPENDENT OF particle Hilbert space.

Neutral mesons K^0 and \overline{K}^0 SHOULD NO LONGER be treated as IDENTICAL PARTICLES. \Rightarrow initial Entangled State in ϕ (B) factories |i> (in terms of mass eigenstates):

$$|i\rangle = \mathcal{N}\left[\left(|K_S(\vec{k}), K_L(-\vec{k})\rangle - |K_L(\vec{k}), K_S(-\vec{k})\rangle\right) + \omega\left(|K_S(\vec{k}), K_S(-\vec{k})\rangle - |K_L(\vec{k}), K_L(-\vec{k})\rangle\right] \qquad \omega = |\omega|e^{i\Omega}$$

NB! K_SK_S or K_L-K_L combinations, due to CPTV ω , important in decay channels. There is contamination of C(odd) state with C(even). Complex ω controls the amount of contamination by the "wrong" (C(even)) symmetry state.

Experimental Tests of ω -Effect in ϕ , B factories... in B-factories: ω -effect \to demise of flavour tagging (Alvarez et al. (PLB607)) Bernabeu, Botella, NEM, Nebot (2016).

NB1: Disentangle ω C-even background effects ($e^+e^- \Rightarrow 2\gamma \Rightarrow K^0\overline{K}^0$): terms of the type K_SK_S (which dominate over K_LK_L) coming from the ϕ -resonance as a result of ω -CPTV can be distinguished from those coming from the C=+ background because they interfere differently with the regular C=- resonant contribution with $\omega=0$.

NB2: Also disentangle ω from non-unitary evolution ($\alpha = \gamma$...) effects (different structures) (Bernabéu, NM, Papavassiliou, Waldron NP B744:180-206,2006)

ω-effect observables/current bounds

ϕ Decays and the ω Effect

Consider the ϕ decay amplitude: final state X at t_1 and Y at time t_2 (t=0 at the moment of ϕ decay)

Amplitudes:

$$A(X,Y) = \langle X|K_S\rangle\langle Y|K_S\rangle\mathcal{N}\ (A_1 + A_2)$$

with

$$\begin{array}{lcl} A_1 & = & e^{-i(\lambda_L + \lambda_S)t/2} [\eta_X e^{-i\Delta\lambda\Delta t/2} - \eta_Y e^{i\Delta\lambda\Delta t/2}] \\ A_2 & = & \omega [e^{-i\lambda_S t} - \eta_X \eta_Y e^{-i\lambda_L t}] \end{array}$$

the CPT-allowed and CPT-violating parameters respectively, and $\eta_X = \langle X|K_L\rangle/\langle X|K_S\rangle$ and $\eta_Y = \langle Y|K_L\rangle/\langle Y|K_S\rangle$.

The "intensity" $I(\Delta t)$: $(\Delta t = t_1 - t_2)$ is an observable

$$I(\Delta t) \equiv \frac{1}{2} \int_{|\Delta t|}^{\infty} dt \, |A(X,Y)|^2$$

Bernabeu, NEM, Papavassiliou (04),...

ω-effect observables/current bounds

ϕ Decays and the ω Effect

Consider the ϕ decay amplitude: final state X at t_1 and Y at time t_2 (t=0 at the moment of ϕ decay)

 $I(\Delta t=0) \neq 0$ if w-effect present

The "intensity" $I(\Delta t)$: ($\Delta t = t_1 - t_2$) is an observable

$$I(\Delta t) \equiv \frac{1}{2} \int_{|\Delta t|}^{\infty} dt \, |A(X,Y)|^2$$

ω -Effect & Intensities

$$I(\Delta t) = \frac{1}{2} \int_{|\Delta t|}^{\infty} dt \, |A(\pi^{+}\pi^{-}, \pi^{+}\pi^{-})|^{2} = |\langle \pi^{+}\pi^{-}|K_{S}\rangle|^{4} |\mathcal{N}|^{2} |\eta_{+-}|^{2} \left[I_{1} + I_{2} + I_{12} \right]$$

$$I_{1}(\Delta t) = \frac{e^{-\Gamma_{S}\Delta t} + e^{-\Gamma_{L}\Delta t} - 2e^{-(\Gamma_{S}+\Gamma_{L})\Delta t/2} \cos(\Delta M \Delta t)}{\Gamma_{L} + \Gamma_{S}}$$

$$I_{2}(\Delta t) = \frac{|\omega|^{2}}{|\eta_{+-}|^{2}} \frac{e^{-\Gamma_{S}\Delta t}}{2\Gamma_{S}}$$

$$I_{12}(\Delta t) = -\frac{4}{4(\Delta M)^{2} + (3\Gamma_{S} + \Gamma_{L})^{2}} \frac{|\omega|}{|\eta_{+-}|} \times$$

$$\left[2\Delta M \left(e^{-\Gamma_{S}\Delta t} \sin(\phi_{+-} - \Omega) - e^{-(\Gamma_{S}+\Gamma_{L})\Delta t/2} \sin(\phi_{+-} - \Omega + \Delta M \Delta t) \right) - (3\Gamma_{S} + \Gamma_{L}) \left(e^{-\Gamma_{S}\Delta t} \cos(\phi_{+-} - \Omega) - e^{-(\Gamma_{S}+\Gamma_{L})\Delta t/2} \cos(\phi_{+-} - \Omega + \Delta M \Delta t) \right) \right]$$

 $\Delta M = M_S - M_L \text{ and } \eta_{+-} = |\eta_{+-}| e^{i\phi} + -.$

NB: sensitivities up to $|\omega| \sim 10^{-6}$ in ϕ factories, due to enhancement by $|\eta_{+-}| \sim 10^{-3}$ factor.

Bernabeu, NEM, Papavassiliou (04),...

ω -Effect & Intensities

$$I(\Delta t) \equiv \frac{1}{2} \int_{|\Delta t|}^{\infty} dt \, |A(\pi^{+}\pi^{-}, \pi^{+}\pi^{-})|^{2} = |\langle \pi^{+}\pi^{-}|K_{S}\rangle|^{4} |\mathcal{N}|^{2} |\eta_{+-}|^{2} \Big[I_{1} + I_{2} + I_{12} \Big]$$

$$I_1(\Delta t) = \frac{e^{-\Gamma_S \Delta t} + e^{-\Gamma_L \Delta t} - 2e^{-(\Gamma_S + \Gamma_L)\Delta t/2} \cos(\Delta M \Delta t)}{\Gamma_L + \Gamma_S}$$

$$I_2(\Delta t) = \frac{|\omega|^2}{|\eta_{+-}|^2} \frac{e^{-\Gamma_S \Delta t}}{2\Gamma_S}$$

 $I_2(\Delta t) = \frac{|\omega|^2}{|\eta_{+-}|^2} \frac{e^{-\Gamma_S \Delta t}}{2\Gamma_S}$ enhancement factor due to CP violation compared with, eg, B-mesons

$$I_{12}(\Delta t) = -\frac{4}{4(\Delta M)^2 + (3\Gamma_S + \Gamma_L)^2} \frac{|\omega|}{|\eta_{+-}|} \times \left[2\Delta M \left(e^{-\Gamma_S \Delta t} \sin(\phi_{+-} - \Omega) - e^{-(\Gamma_S + \Gamma_L) \Delta t/2} \sin(\phi_{+-} - \Omega + \Delta M \Delta t) \right) - (3\Gamma_S + \Gamma_L) \left(e^{-\Gamma_S \Delta t} \cos(\phi_{+-} - \Omega) - e^{-(\Gamma_S + \Gamma_L) \Delta t/2} \cos(\phi_{+-} - \Omega + \Delta M \Delta t) \right) \right]$$

$$\Delta M = M_S - M_L \text{ and } \eta_{+-} = |\eta_{+-}| e^{i\phi} + -.$$

NB: sensitivities up to $|\omega| \sim 10^{-6}$ in ϕ factories, due to enhancement by $|\eta_{+-}| \sim 10^{-3}$ factor.

Bernabeu, NEM, Papavassiliou (04),...

ω-Effect & Intensities

Characteristic cases of the intensity $I(\Delta t)$, with $|\omega|=0$ (solid line) vs $I(\Delta t)$ (dashed line) with (from top left to right): (i) $|\omega|=|\eta_{+-}|$, $\Omega=\phi_{+-}-0.16\pi$, (ii) $|\omega|=|\eta_{+-}|$, $\Omega=\phi_{+-}+0.95\pi$, (iii) $|\omega|=0.5|\eta_{+-}|$, $\Omega=\phi_{+-}+0.16\pi$, (iv) $|\omega|=1.5|\eta_{+-}|$, $\Omega=\phi_{+-}$. Δt is measured in units of τ_S (the mean life-time of K_S) and $I(\Delta t)$ in units of $|C|^2|\eta_{+-}|^2|\langle\pi^+\pi^-|K_S\rangle|^4\tau_S$.

Bernabeu, NEM, Papavassiliou (04),...

ω -Effect & Intensities **Current Limits (KLOE Coll.) on ω-effect** 0.4 $\Re(\omega) = \left(1.1^{+8.7}_{-5.3\text{stat}} \pm 0.9_{\text{syst}}\right) \cdot 10^{-4}$ $\Im(\omega) = \left(3.4^{+4.8}_{-5.0\text{stat}} \pm 0.6_{\text{syst}}\right) \cdot 10^{-4}$ Characteristic cases of the intensity $I(\Delta t)$, with $|\omega| = 0$ (solid line) vs $I(\Delta t)$ (dashed line) with (from top left to right): (i) $|\omega| = |\eta_{+-}|$, $\Omega = \phi_{+-} - 0.16\pi$, (ii) $|\omega| = |\eta_{+-}|$, $\Omega = \phi_{+-} + 0.95\pi$, (iii) $|\omega| = 0.5|\eta_{+-}|$, $\Omega = \phi_{+-} + 0.16\pi$, (iv) $|\omega|=1.5|\eta_{+-}|$, $\Omega=\phi_{+-}$. Δt is measured in units of τ_S (the mean life-time of K_S) and $I(\Delta t)$ in units of $|C|^2 |\eta_{+-}|^2 |\langle \pi^+ \pi^- |K_S \rangle|^4 \tau_S$.

Perspectives for KLOE-2 : Re(ω), Im(ω) \rightarrow 2 x 10⁻⁵

A di Domenico

CPTV & EPR-correlations modification

(Bernabeu, NM and Papavassiliou, hep-ph/0310180 (PRL 92))

If CPT is broken via Quantum Gravity (QG) decoherence effects on $\$ \neq SS^{\dagger}$, then: CPT operator Θ is ILL defined \Rightarrow Antiparticle Hilbert Space INDEPENDENT OF particle Hilbert space.

Neutral mesons K^0 and \overline{K}^0 SHOULD NO LONGER be treated as IDENTICAL PARTICLES. \Rightarrow initial Entangled State in ϕ (B) factories |i> (in terms of mass eigenstates):

$$|i\rangle = \mathcal{N}\left[\left(|K_S(\vec{k}), K_L(-\vec{k})\rangle - |K_L(\vec{k}), K_S(-\vec{k})\rangle\right) + \omega\left(|K_S(\vec{k}), K_S(-\vec{k})\rangle - |K_L(\vec{k}), K_L(-\vec{k})\rangle\right] \qquad \omega = |\omega|e^{i\Omega}$$

NB! K_SK_S or $K_L - K_L$ combinations, due to CPTV ω , important in decay channels. There is contamination of C(odd) state with C(even). Complex ω controls the amount of contamination by the "wrong" (C(even)) symmetry state.

Experimental Tests of ω -Effect in ϕ , B factories... in B-factories: ω -effect \to demise of flavour tagging (Alvarez et al. (PLB607)) Bernabeu, Botella, NEM, Nebot (2016).

NB1: Disentangle ω C-even background effects ($e^+e^- \Rightarrow 2\gamma \Rightarrow K^0\overline{K}^0$): terms of the type K_SK_S (which dominate over K_LK_L) coming from the ϕ -resonance as a result of ω -CPTV can be distinguished from those coming from the C=+ background because they interfere differently with the regular C=- resonant contribution with $\omega=0$.

NB2: Also disentangle ω from non-unitary evolution ($\alpha = \gamma$...) effects (different structures) (Bernabéu, NM, Papavassiliou, Waldron NP B744:180-206,2006)

 Interesting tests of the ω-effect can be performed by looking at the equal-sign dilepton decay channels

a first decay $B \to X\ell^{\pm}$ and a second decay, Δt later, $B \to X'\ell^{\pm}$

$$A_{sl} = \frac{I(\ell^+, \ell^+, \Delta t) - I(\ell^-, \ell^-, \Delta t)}{I(\ell^+, \ell^+, \Delta t) + I(\ell^-, \ell^-, \Delta t)} \bigg|_{\omega = 0} = 4 \frac{Re(\varepsilon)}{1 + |\varepsilon|^2} + \mathcal{O}((Re \ \varepsilon)^2)$$

$$\omega = |\omega|e^{i\Omega}$$
 $I(\ell^{\pm}, \ell^{\pm}, \Delta t = 0) \sim |\omega|^2$

$$I(X\ell^{\pm}, X'\ell^{\pm}, \Delta t) = \frac{1}{8}e^{-\Gamma\Delta t} |A_X|^2 |A_{X'}|^2 \left| \frac{(1+s_{\epsilon}\epsilon)^2 - \delta^2/4}{1-\epsilon^2 + \delta^2/4} \right|^2$$

$$\left\{ \left[\frac{1}{\Gamma} + a_{\omega} \frac{8\Gamma}{4\Gamma^2 + \Delta m^2} Re(\omega) + \frac{1}{\Gamma} |\omega|^2 \right] \cosh\left(\frac{\Delta\Gamma\Delta t}{2}\right) + \left[-\frac{1}{\Gamma} + b_{\omega} \frac{8\Gamma}{4\Gamma^2 + \Delta m^2} Re(\omega) - \frac{\Gamma}{\Gamma^2 + \Delta m^2} |\omega|^2 \right] \cos(\Delta m \Delta t) + \left[d_{\omega} \frac{4\Delta m}{4\Gamma^2 + \Delta m^2} Re(\omega) + \frac{\Delta m}{\Gamma^2 + \Delta m^2} |\omega|^2 \right] \sin(\Delta m \Delta t) \right\},$$

A_{sl} (Δt) asymmetry for short $\Delta t \ll 1/\Gamma$

(a)
$$\Omega = 0$$

(b)
$$\Omega = \frac{3}{2}\pi$$

$$\Delta t_{peak} = \frac{1}{\Gamma} \sqrt{\frac{2}{1 + x_d^2}} |\omega| + \mathcal{O}(\omega^2) \approx \frac{1}{\Gamma} 1.12 |\omega|$$

EXPERIMENTAL LIMITS circa 2005

$$A_{sl}^{exp} = 0.0019 \pm 0.0105$$

$$-0.0084 \le Re(\omega) \le 0.0100$$

A_{sl} (Δt) asymmetry for long $\Delta t > 1/\Gamma$

Region where asymmetry is quasi-independent but ω -effect shifted

Asymmetry plotted in the range including Δm $\Delta t \sim 2\pi \rightarrow$ second peak due to quasi periodicity

$$I(X\ell^{\pm}, X'\ell^{\pm}, \Delta t) = \frac{1}{8}e^{-\Gamma\Delta t} |A_X|^2 |A_{X'}|^2 \left| \frac{(1+s_{\epsilon}\epsilon)^2 - \delta^2/4}{1-\epsilon^2 + \delta^2/4} \right|^2$$

$$\left\{ \left[\frac{1}{\Gamma} + a_{\omega} \frac{8\Gamma}{4\Gamma^2 + \Delta m^2} Re(\omega) + \frac{1}{\Gamma} |\omega|^2 \right] \cosh\left(\frac{\Delta\Gamma\Delta t}{2}\right) + \left[-\frac{1}{\Gamma} + b_{\omega} \frac{8\Gamma}{4\Gamma^2 + \Delta m^2} Re(\omega) - \frac{\Gamma}{\Gamma^2 + \Delta m^2} |\omega|^2 \right] \cos(\Delta m \Delta t) + \left[d_{\omega} \frac{4\Delta m}{4\Gamma^2 + \Delta m^2} Re(\omega) + \frac{\Delta m}{\Gamma^2 + \Delta m^2} |\omega|^2 \right] \sin(\Delta m \Delta t) \right\},$$

Dominant terms for long $\Delta t > 1/\Gamma$

TIME REVERSAL TESTS

INDEPENDENTLY OF CP VIOLATION

IN EPR ENTANGLED STATES

Testing Time Reversal (T) Symmetry independently of CP & CPT in entangled particle states: some ideas for antiprotonic Atoms

Early results from CPLEAR, NA48

Bernabeu,

- + Banuls (99)
- + di Domenico, Villanueva-Perez (13)
- + Botella, Nebot (16)

Direct evidence for T violation: experiment must show it **independently** of violations of CP & potentially CPT

opportunity in **entangled states** of mesons, such as neutral Kaons, B-mesons; **EPR entanglement crucial Observed in B-mesons (Ba-Bar Coll) Phys.Rev.Lett. 109 (2012) 21180**

Experimental Strategy: Use initial (|i>) EPR correlated state for flavour tagging

$$\begin{split} |i\rangle &= \frac{1}{\sqrt{2}}\{|\mathbf{K}^0\rangle|\bar{\mathbf{K}}^0\rangle - |\bar{\mathbf{K}}^0\rangle|\mathbf{K}^0\rangle\} \\ &= \frac{1}{\sqrt{2}}\{|\mathbf{K}_+\rangle|\mathbf{K}_-\rangle - |\mathbf{K}_-\rangle|\mathbf{K}_+\rangle\} \ . \end{split}$$

construct observables by looking at appropriate T violating transitions interchanging in & out states, not simply being T-odd

infer flavour $(K^0 \text{ or } \bar{K}^0)$ by observation of flavour specific decay $(\pi^+\ell^-\bar{\nu} \text{ or } \pi^-\ell^+\nu)$ of the other meson

Hence, in view of recent **T Reversal Violation** measurements exploiting the EPR nature of entangled Kaons we may measure directly **T violation**, independently of **CPT**, and **CP** → novel tests of **CPT** invariance

But there are subtleties associated with ω-effect & EPR: limitations in flavour tagging New bounds on ω-effect from B-Bar systems

Bernabeu, Botella, NEM, Nebot to appear

$$\mathbf{H}|B_H\rangle = \mu_H|B_H\rangle, \quad |B_H\rangle = p_H|B_d^0\rangle + q_H|\bar{B}_d^0\rangle,$$

$$\mathbf{H}|B_L\rangle = \mu_L|B_L\rangle, \quad |B_L\rangle = p_L|B_d^0\rangle - q_L|\bar{B}_d^0\rangle.$$

$$|\Psi_{0}\rangle \propto |B_{L}\rangle|B_{H}\rangle - |B_{H}\rangle|B_{L}\rangle + \omega \left\{\theta \left[|B_{H}\rangle|B_{L}\rangle + |B_{L}\rangle|B_{H}\rangle\right] + (1-\theta)\frac{p_{L}}{p_{H}}|B_{H}\rangle|B_{H}\rangle - (1+\theta)\frac{p_{H}}{p_{L}}|B_{L}\rangle|B_{L}\rangle\right\}$$

ω-effect

Hamiltonian
$$heta=rac{ ext{H}_{22}- ext{H}_{11}}{\mu_H-\mu_L}$$

Part III Decoherence -induced **CPT Violation**

Spin Statistics Theorem

Spin-Statistics Theorem: The pioneers

First formulation

Pauli 1940: More Systematic formulation

His Exclusion Principle (1925) is a consequence of spin-statistics theorem

Schwinger 1950:
More conceptual argument
making clear the underlying assumptions
(discussed in and of relevance to the talk)

Spin-Statistics Theorem: Basic concepts

Spin-Statistics Theorem: The wave function of a system of identical integer-spin particles has the same value when the positions of any two particles are swapped. Particles with wave functions symmetric under exchange are called bosons. The wave function of a system of identical half-integer spin particles changes sign when two particles are swapped. Particles with wave functions antisymmetric under exchange are called fermions.

Consequence: Wavefunction of two identical fermions is zero, hence two identical fermions (i.e. with all quantum numbers the same) cannot occupy the same state- **PAULI EXCLUSION PRINCIPLE (PEP)**.

In quantum field theory, Bosons obey commutation relations, whilst fermions obey anticommutation ones.

Spin-Statistics Theorem: Basic assumptions

The **proof** requires the following **assumptions**:

- (1) The theory has a Lorentz & CPT invariant Lagrangian & relativistic causality.
- (2) The vacuum is Lorentz-invariant (can be weakened).
- (3) The particle is a localized excitation. Microscopically, it is not attached to a string or domain wall.
- (4) The particle is **propagating** (has a **not-infinite** mass).
- (5) The particle is a real excitation, meaning that **states** containing this particle have a **positive-definite norm** & has **positive energy**.

NB: spinless anticommuting fields for instance are not relativistic invariant ghost fields in gauge theories are spinless fermions but they have negative norm. In **2+1 dimensional Chern-Simons** theory has **anyons** (fractional spin) Despite being attached to a confining string, QCD **quarks** can have a **spin-statistics relation** proven at **short distances** (ultraviolet limit) due to asymptotic freedom.

Spin-Statistics Theorem: Basic assumptions

The **proof** requires the following **assumptions**:

- (1) The theory has a Lorentz & CPT invariant La causality.
- Not valid in QG decoherence models where CPT operator is **not well defined** (ω-effect) → **spin-statistics** violation? **PEP violation**?
- (2) The vacuum is Lorentz-invariant (can be weake violation? PEP violation?
- (3) The particle is a localized excitation. Microscopically, it is not attached to a string or domain wall.
- (4) The particle is **propagating** (has a **not-infinite** mass).
- (5) The particle is a real excitation, meaning that **states** containing this particle have a **positive-definite norm &** has **positive energy**.

NB: spinless anticommuting fields for instance are not relativistic invariant ghost fields in gauge theories are spinless fermions but they have negative norm. In **2+1 dimensional Chern-Simons** theory has **anyons** (fractional spin) Despite being attached to a confining string, QCD **quarks** can have a **spin-statistics relation** proven at **short distances** (ultraviolet limit) due to asymptotic freedom.

D3 brane

BULK

String

order of magnitude estimates

hep-th/0606137)

tions of particle-probes with specific space-time defects (e.g. ane theory); Use stationary perturbation theory to describe state - medium effects like MSW ⇒ initial state:

$$,\downarrow\rangle^{(1)}\left|-k,\uparrow\rangle^{(2)}+\xi\left|k,\uparrow\rangle^{(1)}\right|-k,\uparrow\rangle^{(2)}+\xi'\left|k,\downarrow\rangle^{(1)}\left|-k,\downarrow\rangle^{(2)}\right|$$

Composite particle+ space-time stringy defect strings attached, spin-statistics may be affected? $p_i \Delta p_j \neq 0$

$$|\omega|^2 \sim \frac{\zeta^2 k^4}{M_P^2 (m_1 - m_2)^2}$$

nenta of the order of the rest energies $|\omega| \sim 10^{-4} |\zeta|$. For

 $1>\zeta\geq 10^{-2}$ not far below the sensitivity of current facilities, such as DA Φ NE (c.f. Experimental Talk (M. Testa)). Constrain ζ significantly in upgraded facilities.

Perspectives for KLOE-2 at DA Φ NE-2 (A. Di Domenico home page) : $Re(\omega)$, $Im(\omega) \longrightarrow 2 \times 10^{-5}$.

NB: ω -Effect also generated by propagation through the medium, but with time-dependent (sinusoidal) $\omega(t)$ -terms, can be (in principle) disentangled from initial-state ones...

The Violation of Pauli principle Experiment (VIP(2))

C. Curceanu et al. arXiv:1602.00867 Found.Phys. 46 (2016) 263

Pichler et al. arXiv:1602.00867 PoS EPS-HEP2015 (2015) 570

Look for forbidden 2p → 1s spontaneous transition in Copper (for electrons)

Normal (allowed) 2p - 1s transition with an energy of 8.05 keV for copper (left) and non-Paulian (forbidden) transition with an energy of around 7.7 keV for copper (right).

The Violation of Pauli principle Experiment (VIP(2))

C. Curceanu et al. arXiv:1602.00867 Found.Phys. 46 (2016) 263

Pichler et al. arXiv:1602.00867 PoS EPS-HEP2015 (2015) 570

Look for forbidden 2p → 1s spontaneous transition in Copper (for electrons)

VIP result (2010 data) for probability of PEP violation in an atom $\frac{\beta^2}{2}$

$$\frac{\beta^2}{2} \le 4.7 \times 10^{-29}$$

Curceanu, C. et al.: J. Phys. 306, 012036 (2011)

Curceanu, C. et al.: J. Phys. Conf Ser. 361, 012006 (2012)

The parameter " β "

Ignatiev & Kuzmin model creation and destruction operators connect 3 states

- the vacuum state
- the single occupancy state
- the <u>non-standard</u> double-occupancy state

	>

11>

12>

through the following relations:

$$a|0\rangle = 0$$
 $a^+|0\rangle = |1\rangle$

$$a|1\rangle = |0\rangle$$
 $a^{+}|1\rangle = \beta|2\rangle$
 $a|2\rangle = \beta|1\rangle$ $a^{+}|2\rangle = 0$

$$a|2\rangle = \beta|1\rangle$$
 $a^+|2\rangle = 0$

The parameter β quantifies the degree of violation in the transition $|1\rangle \rightarrow |2\rangle$. It is very small and for $\beta \rightarrow 0$ we can have the Fermi -Dirac statistic again.

The Violation of Pauli principle Experiment (VIP(2))

C. Curceanu et al. arXiv:1602.00867 Found.Phys. 46 (2016) 263

Pichler et al. arXiv:1602.00867 PoS EPS-HEP2015 (2015) 570

Look for forbidden 2p → 1s spontaneous transition in Copper (for electrons)

VIP result (2010 data) for probability of PEP violation in an atom $\frac{\beta^2}{2}$

$$\frac{\beta^2}{2} \le 4.7 \times 10^{-29}$$

VIP2: forsee improvement by at least 2 orders of magnitude on this bound: < 10-31

CONCLUSIONS-OUTLOOK

- Quantum Gravity may imply effects beyond SME such as ωeffect on EPR or decoherenceill-defined CPT generator –ω-effect
- Precision Tests in Entangled States of neutral mesons (ongoing)
- Concrete examples of ω-like-effects in string/brane theory → order of magnitude estimates "Quantum Gravity Dressed" composite particles
- ω-effect & spin-statistics violations, PEP violations?
 ...to explore

Outlook CPT Violation in the Lagrangian 8

Microscopic origin of (some of) SME coefficients

Microscopic Origin of SME coefficients?

Several "Geometry-induced" examples:

Non-Commutative Geometries
Axisymmetric Background
Geometries of the Early Universe
Torsionful Geometries (including strings...)

Early Universe T-dependent effects: large @ high T, low values today for coefficients of SME

Microscopic Origin of SME coefficients?

Microscopic Origin of SME coefficients?

```
Several "Geometry-induced" examples:

Non-Commutative Geometries

Axisymmetric Background

Geometries of the Early Universe

Torsionful Geometries (including strings...)

Early Universe T-dependent effects:

large @ high T, low values today

for coefficients of SME
```

STANDARD MODEL EXTENSION

Kostelecky et al.

$$\mathcal{L} = \frac{1}{2} i \bar{\psi} \Gamma^{\nu} \bar{\partial}_{\nu} \psi - \bar{\psi} M \psi, \qquad M \equiv m +$$

$$\mathcal{L} = \frac{1}{2} \mathbf{i} \bar{\psi} \Gamma^{\nu} \bar{\partial}_{\nu} \psi - \bar{\psi} M \psi, \qquad M \equiv m + a_{\mu} \gamma^{\mu} + b_{\mu} \gamma_{5} \gamma^{\mu} + \frac{1}{2} H^{\mu\nu} \sigma_{\mu\nu}$$

$$\mathsf{LV \& CPTV}$$

$$\Gamma^{\nu} \equiv \gamma^{\nu} + c^{\mu\nu}\gamma_{\mu} + d^{\mu\nu}\gamma_{5}\gamma_{\mu} + e^{\nu} + if^{\nu}\gamma_{5} + \frac{1}{2}g^{\lambda\mu\nu}\sigma_{\lambda\mu}$$

In particular, Space-times with

CPTV Effects of different Space-Time-Curvature/ Spin couplings between fermions/antifermions

> B. Mukhopadhyay, U. Debnath, N. Dadhich, M. Sinha Lambiase, Mohanty, NEM, Ellis, Sarkar, de Cesare

$$\mathcal{L} = \sqrt{-g} \left(i \, \bar{\psi} \, \gamma^a D_a \psi - m \, \bar{\psi} \psi \right)$$

$$D_a = \left(\partial_a - rac{i}{4}\omega_{bca}\sigma^{bc}
ight),$$
 Gravitational covariant derivative including spin connection $g_{\mu
u} = e^a_\mu\,\eta_{ab}\,e^b_
u$ $\sigma^{ab} = rac{i}{2}\left[\gamma^a,\gamma^b\right]$ $\omega_{bca} = e_{b\lambda}\left(\partial_a e^\lambda_c + \Gamma^\lambda_{\gamma\mu}e^\gamma_c e^\mu_a
ight).$

$$\sigma^{ab}=rac{i}{2}\left[\gamma^a,\gamma^b
ight]$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} \bar{\psi} \left[(i \gamma^a \partial_a - m) + \gamma^a \gamma^5 B_a \right] \psi,$$

$$B^{d} = \epsilon^{abcd} e_{b\lambda} \left(\partial_{a} e_{c}^{\lambda} + \Gamma_{\alpha\mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu} \right)$$

$$\mathcal{L} = \sqrt{-g} \left(i \, \bar{\psi} \, \gamma^a D_a \psi - m \, \bar{\psi} \psi \right)$$

$$\gamma^a \gamma^b \gamma^c = \eta^{ab} \, \gamma^c + \eta^{bc} \, \gamma^a - \eta^{ac} \, \gamma^b - i \, \epsilon^{dabc} \, \gamma_d \, \gamma^5$$

$$D_a = \left(\partial_a - \frac{i}{4} \omega_{bca} \sigma^{bc} \right),$$
Gravitational covariant derivative including spin connection
$$g_{\mu\nu} = e^a_\mu \, \eta_{ab} \, e^b_\nu$$

$$\omega_{bca} = e_{b\lambda} \left(\partial_a e^\lambda_c + \Gamma^\lambda_{\gamma\mu} e^\gamma_c e^\mu_a \right).$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g}\bar{\psi}\left[(i\gamma^a\partial_a - m) + \gamma^a\gamma^5B_a\right]\psi,$$

$$B^{d} = \epsilon^{abcd} e_{b\lambda} \left(\partial_{a} e_{c}^{\lambda} + \Gamma_{\alpha\mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu} \right)$$

$$g_{\mu\nu} = e^a_\mu \, \eta_{ab} \, e^b_\nu$$

$$\omega_{bca} = e_{b\lambda} \left(\partial_a e_c^{\lambda} + \Gamma_{\gamma\mu}^{\lambda} e_c^{\gamma} e_a^{\mu} \right).$$

$$\sigma^{ab}=rac{i}{2}\left[\gamma^a,\gamma^b
ight]$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} ar{\psi} \left[\left(i \gamma^a \partial_a - m
ight) + \left(\gamma^a \gamma^5 B_a
ight] \psi,
ight)$$

$$B^{d} = \epsilon^{abcd} e_{b\lambda} \left(\partial_{a} e_{c}^{\lambda} + \Gamma_{\alpha\mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu} \right)$$

Standard Model Extension type Lorentz-violating coupling (Kostelecky *et al*.)

$$\mathcal{L} = \sqrt{-g} \left(i \, \bar{\psi} \, \gamma^a D_a \psi - m \, \bar{\psi} \psi \right)$$

$$\begin{split} D_a &= \left(\partial_a - \frac{i}{4}\omega_{bca}\sigma^{bc}\right),\\ g_{\mu\nu} &= e^a_\mu\,\eta_{ab}\,e^b_\nu\\ \omega_{bca} &= e_{b\lambda}\left(\partial_a e^\lambda_c + \Gamma^\lambda_{\gamma\mu}e^\gamma_c e^\mu_a\right). \end{split} \text{Gravitational covariant derivative including spin connection}$$

$$\sigma^{ab}=rac{i}{2}\left[\gamma^a,\gamma^b
ight]$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} \bar{\psi} \left[(i \gamma^a \partial_a - m) + \gamma^a \gamma^b B_a \right] \psi,$$

$$B^{d} = \epsilon^{abcd} e_{b\lambda} \left(\partial_{a} e_{c}^{\lambda} + \Gamma_{\alpha\mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu} \right)$$

For homogeneous and isotropic Friedman-Robertson-Walker geometries the resulting B^{\mu} vanish

$$\mathcal{L} = \sqrt{-g} \left(i \bar{\psi} \gamma^a D_a \psi - m \bar{\psi} \psi \right)$$

$$\begin{split} D_a &= \left(\partial_a - \frac{i}{4}\omega_{bca}\sigma^{bc}\right),\\ g_{\mu\nu} &= e^a_\mu\,\eta_{ab}\,e^b_\nu\\ \omega_{bca} &= e_{b\lambda}\left(\partial_a e^\lambda_c + \Gamma^\lambda_{\gamma\mu}e^\gamma_c e^\mu_a\right). \end{split} \text{Gravitational covariant derivative including spin connection}$$

$$\sigma^{ab}=rac{i}{2}\left[\gamma^a,\gamma^b
ight]$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} ar{\psi} \left[(i \gamma^a \partial_a - m) + \gamma^a \gamma^b B_a
ight] \psi,$$

$$B^{d} = \epsilon^{abcd} e_{b\lambda} \left(\partial_{a} e_{c}^{\lambda} + \Gamma_{\alpha\mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu} \right)$$

Can be constant in a given local frame in Early Universe axisymmetric (Bianchi) cosmologies or near rotating Black holes,

NEM & Sarben Sarkar, arXiv:1211.0968

John Ellis, NEM & Sarkar, arXiv:1304.5433

De Cesare, NEM & Sarkar arXiv:1412.7077

$$\mathcal{L} = \sqrt{-g} \left(i \, \bar{\psi} \, \gamma^a D_a \psi - m \, \bar{\psi} \psi \right)$$

$$egin{aligned} D_a &= \left(\partial_a - rac{i}{4} \omega_{bca} \sigma^{bc}
ight), \ g_{\mu
u} &= e^a_\mu \, \eta_{ab} \, e^b_
u \ \omega_{bca} &= e_{b\lambda} \left(\partial_a e^\lambda_c + \Gamma^\lambda_{\gamma\mu} e^\gamma_c e^\mu_a
ight). \end{aligned}$$

Gravitational covariant derivative including spin connection

$$\sigma^{ab}=rac{i}{2}\left[\gamma^a,\gamma^b
ight]$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} \bar{\psi} \left[(i \gamma^a \partial_a - m) + \gamma^a \gamma^5 B_a \right] \psi,$$

$$B^{d} = \epsilon^{abcd} e_{b\lambda} \left(\partial_{a} e_{c}^{\lambda} + \Gamma_{\alpha\mu}^{\lambda} e_{c}^{\alpha} e_{a}^{\mu} \right)$$

If torsion then $\Gamma_{\mu\nu} \neq \Gamma_{\nu\mu}$ antisymmetric part is the contorsion tensor, contributes

NEM & Sarben Sarkar, arXiv:1211.0968

John Ellis, NEM & Sarkar, arXiv:1304.5433

De Cesare, NEM & Sarkar arXiv:1412.7077

$$\mathcal{L} = \sqrt{-g} \left(i \bar{\psi} \gamma^a D_a \psi - m \bar{\psi} \psi \right)$$

$$egin{aligned} D_a &= \left(\partial_a - rac{i}{4} \omega_{bca} \sigma^{bc}
ight), \ g_{\mu
u} &= e^a_\mu \, \eta_{ab} \, e^b_
u \ \omega_{bca} &= e_{b\lambda} \left(\partial_a e^\lambda_c + \Gamma^\lambda_{\gamma\mu} e^\gamma_c e^\mu_a
ight). \end{aligned}$$

Gravitational covariant derivative including spin connection

$$\sigma^{ab} = rac{i}{2} \left[\gamma^a, \gamma^b
ight]$$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_I = \sqrt{-g} \bar{\psi} \left[(i \gamma^a \partial_a - m) + \gamma^a \gamma^b B_a \right] \psi,$$

$$B^d = \epsilon^{abcd} e_{b\lambda} \left(\partial_a e_c^{\lambda} + \Gamma^{\lambda}_{\alpha\mu} e_c^{\alpha} e_a^{\mu} \right)$$

in string theory models antisymmetric tensor field-strength (H-torsion) cosmological backgrounds lead to constant B⁰ in FRW frame

PART IIIb

COSMOLOGICAL CONSEQUENCES of SME-type CPTV

Matter-antimatter asymmetry in Universe -Lepto(Baryo)genesis

CPT VIOLATION IN THE EARLY UNIVERSE

De Cesare, NEM & Sarkar <u>arXiv:1412.7077</u> (Eur.Phys.J. C75 (2015) 10, 514)

Right-Handed Majorana Neutrinos

Mechanism
For Torsion-BackgroundInduced tree-level
Leptogenesis → Baryogenesis

Through B-L conserving Sphaleron processes In the standard model

physics.indiana.edu

CPTV Thermal Leptogenesis

Early Universe T > 10⁵ GeV

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N_I o H
u, \; ar{H} ar{
u}$$

$$\mathcal{L}=i\overline{N}\partial \hspace{-.08cm}/\hspace{-.08cm}/N-rac{m}{2}(\overline{N^c}N+\overline{N}N^c)-\overline{N}D\hspace{-.08cm}/\hspace{-.08cm}/\hspace{-.08cm}/\gamma^5N-Y_k\overline{L}_k ilde{\phi}N+h.c.$$

Early Universe T > 10⁵ GeV

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N_I o H
u, \; ar{H} ar{
u}$$

$$\mathcal{L} = i \overline{N} \partial \!\!\!/ N - \frac{m}{2} (\overline{N^c} N + \overline{N} N^c) - \overline{N} B \gamma^5 N - Y_k \overline{L}_k \tilde{\phi} N + h.c.$$

Early Universe T > 10⁵ GeV

CPT Violation

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N_I o H
u, \; ar{H} ar{
u}$$

$$\mathcal{L} = i \overline{N} \partial \hspace{-.1cm}/ N - \overline{N} D \overline{N} D - \overline$$

Early Universe T > 10⁵ GeV

CPT Violation

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N_I \to H \nu, \; \bar{H} \bar{\nu}$$

One generation of massive neutrinos N suffices for generating CPTV Leptogenesis; mass m free to be fixed

Early Universe T > 10⁵ GeV

CPT Violation

Constant H-torsion (antisymmetric tensor field strength in string models)

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N_I o H
u, \; ar{H} ar{
u}$$

N

CPTV Thermal
$$\mathcal{L} = i \overline{N} \not \! \partial N - \frac{m}{2} (\overline{N^c} N + \overline{N} N^c) - \overline{N} \gamma^5 N - Y_k \overline{L}_k \tilde{\phi} N + h.c.$$

Early Universe $T > 10^5 \text{ GeV}$

CPT Violation

Constant H-torsion

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N_I o H
u, \; ar{H} ar{
u}$$

Produce Lepton asymmetry

Fukugita, Yanagida,

$$\mathcal{L} = i \overline{N} \partial N - \frac{m}{2} (\overline{N^c} N + \overline{N} N^c) - \overline{N} \partial \gamma^5 N - Y_k \overline{L}_k \tilde{\phi} N + h.c.$$

Early Universe T > 10⁵ GeV

CPT Violation

Constant H-torsion

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N_I o H
u, \; ar{H} ar{
u}$$

$$\mathcal{L} = i \overline{N} \partial \!\!\!/ N - \frac{m}{2} (\overline{N^c} N + \overline{N} N^c) - \overline{N} D \!\!\!\!/ \gamma^5 N - Y_k \overline{L}_k \tilde{\phi} N + h.c.$$

Early Universe T > 10⁵ GeV

CPT Violation

Constant H-torsion B⁰ ≠ 0 background

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N_I o H
u, \; ar{H} ar{
u}$$

$$\frac{\Delta L}{n_{\gamma}} \simeq 10^{-10},$$

$$\frac{B_0}{m} \simeq 10^{-8}$$

etry
$$Y_k \sim 10^{-5}$$
 $m \geq 100 {
m TeV}
ightarrow B^0 \sim 1 {
m MeV}$ $T_D \simeq m \sim 100 {
m TeV}$

$$\mathcal{L}=i\overline{N}\partial \hspace{-.05cm}/\hspace{-.05cm}/N-rac{m}{2}(\overline{N^c}N+\overline{N}N^c)-\overline{N}D\hspace{-.05cm}/\hspace{-.05cm}/\hspace{-.05cm}/\gamma^5N-Y_k\overline{L}_k ilde{\phi}N+h.c.$$

Early Universe T > 10⁵ GeV

CPT Violation

Constant H-torsion B⁰ ≠ 0 background

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N_I o H
u, \; ar{H} ar{
u}$$

$$\frac{B_0}{m} \simeq 10^{-8}$$

$$Y_k \sim 10^{-5}$$
 $m \ge 100 \text{TeV} \rightarrow$
 $B^0 \sim 1 \text{MeV}$

$$T_D \simeq m \sim 100 \text{ TeV}$$

$$\mathcal{L}=i\overline{N}\partial \hspace{-.08cm}/\hspace{-.08cm}/N-rac{m}{2}(\overline{N^c}N+\overline{N}N^c)-\overline{N}D\hspace{-.08cm}/\hspace{-.08cm}/\hspace{-.08cm}/\gamma^5N-Y_k\overline{L}_k ilde{\phi}N+h.c.$$

Early Universe $T > 10^5 \text{ GeV}$

CPT Violation

Constant H-torsion B⁰ ≠ 0 background

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N_I o H
u, \; ar{H} ar{
u}$$

Produce Lepton asymmetry

Equilibrated electroweak B+L violating sphaleron interactions

B-L conserved

Observed Baryon Asymmetry In the Universe (BAU)

$$L = \frac{2}{M} l_L l_L \phi \phi + \text{H.c.}$$

where

$$l_{L} = \begin{bmatrix} v_{e} \\ e \end{bmatrix}_{L}, \begin{bmatrix} v_{\mu} \\ \mu \end{bmatrix}_{L}, \begin{bmatrix} v_{\tau} \\ \tau \end{bmatrix}_{L}$$

Fukugita, Yanagida,

$$\mathcal{L}=i\overline{N}\partial \hspace{-.08cm}/\hspace{-.08cm}/N-rac{m}{2}(\overline{N^c}N+\overline{N}N^c)-\overline{N}D\hspace{-.08cm}/\hspace{-.08cm}/\hspace{-.08cm}/\gamma^5N-Y_k\overline{L}_k ilde{\phi}N+h.c.$$

Early Universe T > 10⁵ GeV

CPT Violation

Constant H-torsion B⁰ ≠ 0 background

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

 $\frac{B_0}{m} \simeq 10^{-8}$

Produce Lepton asymmetry

Equilibrated electroweak B+L violating sphaleron interactions

B-L conserved

 $Y_k \sim 10^{-5}$

 $m \ge 100 \text{TeV} \rightarrow$

 $B^0 \sim 1 \mathrm{MeV}$

Observed Baryon Asymmetry In the Universe (BAU) $T_D \simeq m \sim 100 \text{ TeV}$

Estimate BAU by fixing CPTV background parameters In some models this means fine tuning

$$\mathcal{L} = i \overline{N} \partial \hspace{-.1cm}/ N - \frac{m}{2} (\overline{N^c} N + \overline{N} N^c) - \overline{N} B \gamma^5 N - Y_k \overline{L}_k \tilde{\phi} N + h.c.$$

Early Universe T > 10⁵ GeV

CPT Violation

Constant H-torsion B⁰ ≠ 0 background

Lepton number & CP Violations @ tree-level due to Lorentz/CPTV Background

$$N_I o H
u, \; ar{H} ar{
u}$$

$$\frac{B_0}{m} \simeq 10^{-8}$$

Produce Lepton asymmetry

Equilibrated electroweak B+L violating sphaleron interactions

B-L conserved

$$Y_k \sim 10^{-5}$$
 $m \ge 100 \text{TeV} \rightarrow$

 $B^0 \sim 1 {
m MeV}$

Observed Baryon Asymmetry In the Universe (BAU)

 $T_D \simeq m \sim 100 \text{ TeV}$

Estimate BAU by fixing CPTV background parameters In some models this means fine tuning

e.g. May Require Fine tuning of Vacuum energy

B⁰: (string) theory underwent a phase transition

@
$$T \approx T_d = 10^5$$
 GeV, from $B^0 = \text{const} = 1$ MeV to:

- (i) either $B^0 = 0$
- (ii) or B⁰ small today but non zero

$$B^0 \sim \dot{\bar{b}} \sim 1/a^3(t) \sim T^3$$

$$B_0 = c_0 T^3$$
 $c_0 = 10^{-42} \,\mathrm{meV^{-2}}$

$$B_{0 \text{ today}} = \mathcal{O}\Big(10^{-44}\Big) \text{ meV}$$

Quite safe from stringent Experimental Bounds

$$|B^0| < 10^{-2} \,\text{eV}$$

 $B_i \equiv b_i < 10^{-31} \,\text{GeV}$

IS THIS CPTV ROUTE WORTH FOLLOWING?

CPT Violation

Construct Microscopic (Quantum) Gravity models with strong CPT Violation in Early Universe, but maybe weak today... Fit with all available data... Estimate in this way matter-antimatter asymmetry in Universe.

SPARES

Spin-Statistics Theorem: (Schwinger's) Proof

Object of interest for generic fields:

$$G(x) = \langle 0|\phi(-x)\phi(x)|0\rangle.$$

STEP I: Formulate a quantum field theory in **Euclidean space time** where **path integral makes rigorous sense**, in this case: spatial Lorentz transformations are ordinary rotations, but Boosts become also rotations in imaginary time, and hence **a rotation by** π in (**x (space)** -t (time)) plane in **Euclidean** space-time is a **CPT transformation** in the language of Minkowski spacetime. CPT transformation, **if well defined**, takes states in a path integral into their conjugates so

 $\langle 0|R\phi(x)\phi(-x)|0
angle$

must be positive-definite at x=0 according to positive-norm-state assumption (5) of the spin-statistics theorem. Propagating states, i.e. finite mass, implies that this correlator is non-zero at space-like separations. You need relativity to define space-like intervals of course, hence the Lorentz invariance (LI) assumptions (1) + (2).

STEP III: LI allows fields to be transformed according to their **spin**, and such that:

$$\langle 0|RR\phi(x)R\phi(-x)|0
angle = \pm \langle 0|\phi(-x)R\phi(x)|0
angle$$

where + is for Bosons (integer spin) and – for fermions (half-integer spin).

STEP III: USE CPT INVARIANCE (which is equivalent to also assuming well-defined CPT operator and which in Euclidean space-time is equivalent to rotational invariance) to equate the rotated correlation function to G(x), hence

$$\langle 0|(R\phi(x)\phi(y)-\phi(y)R\phi(x))|0
angle=0$$

for integer spins, and

$$\langle 0|R\phi(x)\phi(y)+\phi(y)R\phi(x)|0
angle=0$$

for half-integer spins.

NB: The theorem essentially implies that: since the operators are spacelike separated, a different order can only create states that differ by a phase. The argument fixes the phase to be −1 or 1 according to the spin. Since it is possible to rotate the space-like separated polarizations independently by local perturbations, the phase should not depend on the polarization in appropriately chosen field coordinates.

STEP III: LI allows fields to be transformed according to their **spin**, and such that:

$$\langle 0|RR\phi(x)R\phi(-x)|0
angle = \pm \langle 0|\phi(-x)R\phi(x)|0
angle$$

where + is for Bosons (integer spin) and

well-defined CPT operator and which in rotational invariance) to equate the rotated

Not valid in QG decoherence models where CPT operator is not well defined (ω-effect) → spin-statistics violation? PEP violation?

ming lent to

$$\langle 0|(R\phi(x)\phi(y)-\phi(y)R\phi(x))|0
angle=0$$

for integer spins, and

$$\langle 0|R\phi(x)\phi(y)+\phi(y)R\phi(x)|0
angle=0$$

for half-integer spins.

NB: The theorem essentially implies that: since the operators are spacelike separated, a different order can only create states that differ by a phase. The argument fixes the phase to be −1 or 1 according to the spin. Since it is possible to rotate the space-like separated polarizations independently by local perturbations, the phase should not depend on the polarization in appropriately chosen field coordinates.

NB ...CPT Violating neutrino-antineutrino Mass difference alone MAY REPRODUCE observed BAU

$$m_i = an\!eta_i \overline{m}_i$$
 $i=1,2,3$ Light v species

Barenboim, Borissov, Lykken, Smirnov (01) PHENOMENOLOGICAL MODELS

$$n_B = n_\nu - n_{\bar{\nu}} \simeq \frac{\mu_\nu T^2}{6}$$

$$\frac{n_B}{s} \sim \frac{\mu_{\nu}}{T} \sim 10^{-11}$$

@ 100 GeV

MINOS Exp. RESULTS ON Potential Neutrino-Antineutrino OSCILLATION PARAMETER DIFFERENCES

http://www-numi.fnal.gov

 $\overline{\overline{v}}_{\mu}$ vs v_{μ} Oscillation parameters

[arXiv:1104.0344] [arXiv1103.0340]

 \overline{V}_{μ} disappearance $\Delta \overline{m}^2 = (2.62 + 0.31 - 0.28 \text{ (stat.)} \pm 0.09 \text{ (syst.)}) \times 10^{-3} \text{ eV}^2$, $\sin^2(2\Theta) = 0.95 + 0.10 - 0.11 \text{ (stat.)} \pm 0.01 \text{ (syst.)}$.

 v_u disappearance: $\Delta m^2 = (2.32 + 0.12 - 0.08) \times 10^{-3} \text{ eV}^2$, $\sin^2(2\Theta) = 1.00 \text{ (sin}^2(2\Theta) > 0.90 @ 90\% CL)$

√u disappearance

√0.31-0.28 (stat.) ±0.09 (syst.))x10⁻³ eV², =0.95 +0.10-0.11 (stat.) ±0.01 (syst.).

 10^{-2} = (2.32+0.12-0.08)x10⁻³ eV², sin²(2 Θ) = 1.00 (sin²(2 Θ) > 0.90 @ 90% CL v_u disappe

Consiste with equality of mass differences between particle/antiparticles

Other beyond Local EFT Effects-QG-induced ecoherence

Quantum Gravity (QG) may induce decoherence and oscillations $K^0 \to \overline{K}^0 \Rightarrow$ could use Lindblad-type approach (one example) (Ellis, Hagelin, Nanopoulos, Srednicki, Lopez, NM):

$$\partial_t \rho = i[\rho, H] + \delta H \rho$$

where

$$H_{\alpha\beta} = \begin{pmatrix} -\Gamma & -\frac{1}{2}\delta\Gamma & -\text{Im}\Gamma_{12} & -\text{Re}\Gamma_{12} \\ -\frac{1}{2}\delta\Gamma & -\Gamma & -2\text{Re}M_{12} & -2\text{Im}M_{12} \\ -\text{Im}\Gamma_{12} & 2\text{Re}M_{12} & -\Gamma & -\delta M \\ -\text{Re}\Gamma_{12} & -2\text{Im}M_{12} & \delta M & -\Gamma \end{pmatrix}$$

and

positivity of ρ requires: $\alpha, \gamma > 0$, $\alpha \gamma > \beta^2$.

 α, β, γ violate CPT (Wald: decoherence) & CP: $CP = \sigma_3 \cos \theta + \sigma_2 \sin \theta$, $[\delta H_{\alpha\beta}, CP] \neq 0$

Neutral Kaon Entangled States

Complete Positivity Different parametrization of Decoherence matrix (Benatti-Floreanini)

(in
$$\alpha, \beta, \gamma$$
 framework: $\alpha = \gamma, \beta = 0$)

FROM DADNE:

KLOE preliminary (A. Di Domenico Home Page, (c.f. Experimental Talk (M. Testa)).) http://www.roma1.infn.it/people/didomenico/roadmap/kaoninterferometry.html

$$\begin{split} \alpha &= \left(-10^{+41}_{-31\mathrm{stat}} \pm 9_{\mathrm{syst}}\right) \times 10^{-17} \ \mathrm{GeV} \ , \\ \beta &= \left(3.7^{+6.9}_{-9.2\mathrm{stat}} \pm 1.8_{\mathrm{syst}}\right) \times 10^{-19} \ \mathrm{GeV} \ , \\ \gamma &= \left(-0.4^{+5.8}_{-5.1\mathrm{stat}} \pm 1.2_{\mathrm{syst}}\right) \times 10^{-21} \ \mathrm{GeV} \ , \end{split}$$

NB: For entangled states, Complete Positivity requires (Benatti, FLoreanini) $\alpha = \gamma$, $\beta = 0$, one independent parameter (which has the greatest experimental sensitivity by the way) γ !

with
$$L=2.5~fb^{-1}$$
: $\gamma \rightarrow \pm 2.2_{stat} \times 10^{-21}~{\rm GeV}$,

$$\gamma \rightarrow \pm 0.2. \times 10^{-21} \text{ GeV}$$

(present best measurement $\gamma = \left(1.3^{+2.8}_{-2.4 \mathrm{stat}} \pm 0.4_{\mathrm{syst}}\right) \cdot 10^{-21} \, \mathrm{GeV}$ (KLOE)