Status of the KLOE-2 high energy taggers

D. Moricciani on behalf of KLOE-2 collaboration

Summary

- Physics motivation
- HET detector
- HET performance
- HET counting rate
- π^{o} preliminary analysis
- Conclusion

10/26/16

Physics Goal : $\pi^0 \rightarrow \gamma\gamma$ case

Physics Goal (2/int=5fb-1)

Eur. Phys. J. C (2012) 72:1917 DOI 10.1140/epjc/s10052-012-1917-1 The European Physical Journal C

Regular Article - Theoretical Physics

On the possibility to measure the $\pi^0 \rightarrow \gamma \gamma$ decay width and the $\gamma^* \gamma \rightarrow \pi^0$ transition form factor with the KLOE-2 experiment

 $a_{\mu} = (g-2)_{\mu}/2$

$a_{\mu}^{\text{Exp}}\text{-}a_{\mu}^{\text{Theo}}\approx$ (27.6±8.7)×10⁻¹⁰ ~ 3.4 σ

$8.7 \approx 5_{HLO} \oplus 3_{LbL} \oplus 6_{Exp}$

Model	Data	$\chi^2/d.o.f.$	$a_{\mu}^{ m LbyL;\pi} imes 10^{11}$
VMD	A 0	6.6/19	(57.2 ± 4.0) _{JN}
VMD	A1	6.6/19	(57.7 ± 2.1) _{JN}
VMD	A2	7.5/27	$(57.3 \pm 1.1)_{JN}$
LMD+V, $h_1 = 0$	A 0	6.5/19	(72.3 ± 3.5) _{JN} *
			(79.8 ± 4.2) _{MV}
LMD+V, $h_1 = 0$	A1	6.6/19	(73.0 ± 1.7) _{JN} *
			(80.5 ± 2.0) _{MV}
LMD+V, $h_1 = 0$	A2	7.5/27	(72.5 ± 0.8) _{JN} *
			(80.0 ± 0.8) _{MV}
LMD+V, $h_1 \neq 0$	A0	6.5/18	(72.4 ± 3.8) _{JN} *
LMD+V, $h_1 \neq 0$	A1	6.5/18	(72.9 ± 2.1) _{JN} *
LMD+V, $h_1 \neq 0$	A2	7.5/26	$(72.4 \pm 1.5)_{JN}$ *
LMD+V, $h_1 \neq 0$	B0	18/35	(71.9 ± 3.4) _{JN} *
LMD+V, $h_1 \neq 0$	B1	18/35	(72.4 ± 1.6) _{JN} *
LMD+V, $h_1 \neq 0$	B2	19/43	(71.8 ± 0.7) _{JN} *

10/26/16

HET Acceptance

Energy of leptons vs Distance from the nominal orbit

HETs angular acceptance

The HET angular acceptance is of the order of 3*Sigma ~ 2.5 mrad

HET Detector

28 plastic scintillator : 5x6x3 mm³ 1 Long Plastic for coincidence HAMATSU PMT R9880U-110 SEL Quantum efficiency ~ 35 %

- Discriminator should provide output signal with a width ~ 2 ns in order to distinguish 2 consecutive bunches in $DA\Phi NE (2.7 ns)$
- TDCV5 use custom logic in order to manage signals from HET-DAΦNE-KLOE

10/26/16

HET DAQ : TDCV5

- Usually DAΦNE is filled with 100 bunches over 120
- We use the "Fiducial", a signal provided by DAΦNE as TDC common start. By definition it is in phase with respect to the first bunch circulating in DAΦNE
- the HET stores information corresponding to N turns of DA Φ NE only when KLOE provides the trigger (T₁ and T₂)
- The two DAQ systems (HET and KLOE) are asynchronous

Time Synchronization HETs - KLOE

- KLOE Trigger T_1 allows us to synchronize both HETs stations
- HETs Long plastic signal allow to synchronize HETs with respect to KLOE

10/26/16

HET performance ...

DADNE "bar-code"

- KLOE events after bhabha selection
- HET is noiseless : no beam = no hit

HET Counting Rate with beam ...

In the HET events we clearly see only two contributions :

- The events due to background/Touschek (I²) events
- The events due to Luminosity (2) of $DA\Phi NE$

HET-Rate = KLOE-Trigger-Rate × ($\alpha_{ele/pos} \checkmark + \beta_{ele/pos} \mathbf{I}_{ele/pos}^2$)

No Collision and Collision run

Criteria for data selection : signal events

Status of the KLOE-2 high energy taggers

10/26/16

How KLOE detect low energy photon ...

Radiative Bhabha scattering events in KLOE:

- 3-clusters, 2 energetic clusters with E > 350 MeV associated to electrons
- Minv_{clus1,2} > 500 MeV
- 2 tracks with an associated vertex
- 250 MeV < |P_{trk}| < 550 MeV
- |P_{trk1,2} | > 500 MeV
- $|ClusterE_{1,2} |P_{trk1,2}| | < 60 \text{ MeV}$
- 60 < E_{miss} < 80 MeV
- |cos(θ_{miss})| < 0.948
- |cos(p_{miss} γ clus)| > 0.95

Low energy photon in KLOE ...

 σ_{E} =16.4±0.2 MeV

σ⊤=283±1 ps

 $\sigma_{P_{7}}=13.2\pm0.3 \text{ MeV}$ $\sigma_{P_{7}}=8.9\pm0.1 \text{ MeV}$

Status of the KLOE-2 high energy taggers

17

KLOE resolution and trigger effects on π^{o} photons

Status of the KLOE-2 high energy taggers

10/26/16

π^{o} search : preselection

• About 500 pb⁻¹ of integrated luminosity have been processed

Double Arm events :

- coincidence between HET stations (± 1 bunch expected from resolution studies, $\Delta T_{bunch} \sim$ 2.7ns , <1% of KLOE triggers)
- control sample of events with -2 \leq $\Delta Te^+e^- \leq$ 7 bunches

Single Arm events :

- in time with KLOE trigger (-3 $\leq \Delta T_{tri-clu} \leq 8$ bunches)
- in time with a bunch with 2 cluster in the barrel 20 < Eclu < 300 MeV
- $|\Delta T_{KLOEclu-HET}| \le 4$ bunches
- A sample of ~330 pb^-1 of Double Arm events is being analyzed to search for π° production almost at rest.

π° search : selections

10/26/16

Conclusion

- HET stations are completely noiseless
- The timeline of the counting rate for electron and positron stations shows only 2 visible contributions : from luminosity and from Touschek intra-bunch scattering particles
- Machine background reaches a maximal relative contribution of 45% for electron and 15% for positron beams
- The total rate dominated by bhabha scattering is at the level of 500-600 kHz. The measured effective cross section of 2 mb(ele) - 2.5 mb(pos) to be validate with montecarlo.
- The rate of uncorrelated time-coincidences between KLOE and HET requires full reconstruction of a large fraction of the KLOE triggers
- We have pre-filtered candidates of single- π^o production from $\gamma\gamma$ scattering. A total of about 330 pb^{-1} are being analyzed
- Work in progress:
 - to optimize the signal selection
 - to accurately measure the background of random coincidences
 - to carry out the analysis of Single Arm events both for bhabha and π^o events