

Status of the KLOE-2 experiment

KLOE-2 Workshop on e⁺e⁻ collision physics at 1 GeV

Danilo Domenici - LNF on behalf of the KLOE-2 collaboration

DAφNE at INFN-Frascati National Laboratories the Italian φ-factory

btf

main

rings

kloe-2

dump

ring

electrons positrons both

linac

1 GeV Physics History at Frascati

KLOE experiment has already taken data in 2001-2006:

- 2.5 fb-1 at 1.02 GeV
- 250 pb-1 at 1.00 GeV

DAFNE upgraded in 2008 with Crab-waist interaction scheme:

- Large Piwinski angle
- Compensating Sextupoles

New experiment KLOE-2 started in 2014 to integrate > 5fb⁻¹ in 3÷4 years

- CKM unitarity
- CPT invariance
- CP violation
- ChPT model of QCD
- Hadronic cross-section for muon g-2
- γγ physics
- Hidden sector searches

KLOE-2 Detector

Tracking System

- DC Drift Chamber
- IT Inner Tracker
- Superconductive 0.5T Magnet

Calorimeter System

- EMC Calorimeter
- QCALT Quadrupole Calo
- CCALT Crystal Calo

Tagging System

- LET Low Energy Tagger
- HET High Energy Tagger

Danilo

Drift Chamber and Inner Tracker

4m diameter - 3.7m length - 52k wires He:Iso=90:10 light gas mixture $\sigma_p/p = 0.4\%$ (45° tracks) $\sigma_{hit} = 150\mu m$ in XY and 2mm in Z $\sigma_{vertex} = 1mm$

DC efficiency vs cell layer position

DC residuals vs impact parameter

Drift Chamber and Inner Tracker

First cylidrical GEM detector ever built 4 tracking layers 13cm inner diameter - 70cm active length Ar:Iso=90:10 gas mixture 650µm pitch X strips and V pads readout 1.6k HV channels and 30k FEE channels

Central Calorimeter

Energy res for 510 MeV γ

Barrel + 2 endcaps: 98% solid angle coverage Pb+SciFi sampling – $15X_0$ thickness $\sigma_E/E = 5.7\% / \sqrt{E}$ $\sigma_T = 54ps / \sqrt{E} \oplus 50ps$ PID capabilities using TOF

QCALT – Quadrupole CALorimeter with Tiles CCLAT – Crystal Calorimeter withTiming capabilities

2 structures aside of IT 12 towers surrounding beam-pipe Tungsten+Scintillating tiles+WLS SiPM readout increase hermeticity for γ from K_L neutral decays

2 structures aside of IP 48 LYSO crystals per side SiPM readout extend photon acceptance down to 11° used as luminosity monitor

Low and High Energy Taggers

2 stations inserted in the QCALT \pm 1m from IP 20 LYSO cristals + SiPM readout $\sigma_E/E = 10\%$ for E > 150 MeV 150 \div 400 MeV energy range essential for $2\pi^0$ resonance search 2 stations after the dipoles ± 11m from IP Plastic scintillator hodoscope + PMT readout 400 MeV energy range essential for π⁰ resonance search

KLOE-2 data-taking

Welcome to Run 3

DAFNE performance

DAFNE complex consolidated in 2013 to improve up-time Main characteristics:

- Typical beam currents 1.5A (e^{-}) and 1A (e^{+})
- 105 bunches stored with 2.7 ns spacing
- Top-up injections of e⁻ and e⁺ beams every 10 min
- Average up-time 80%

Best Luminosity achievements in KLOE-2 Data-taking

Max instantaneous: 2.21x10³²cm⁻²s⁻¹ Max hourly: 651.0 nb⁻¹ Max daily delivery: 13.4 pb⁻¹ Max weekly delivered: 76.3 pb⁻¹

Typical hour of operation

Typical Day

top-up injection results in a uniform instantaneous luminosity

L2 trigger rate is about 7 kHz 500 Hz from Φ physics 3 kHz from cosmic muons 2.5 kHz from Bhabha events the rest is background (mostly Touschek scattered particles)

Calorimeter end-caps counters and total current in Drift Chamber are used as benchmarks for evaluating the machine induced background

Beam parameters Monitor

Beam parameters are precisely measured by KLOE and used also as feedback to DAFNE

26/10/2016 - KLOE-2 workshop

Danilo Domenici - LNF

Data Quality Monitor Benchmark Analysis

 $\begin{array}{l} \Phi \rightarrow \eta\gamma \mbox{ with } \eta \rightarrow 3\pi^0 \mbox{ (fully neutral channel)} \\ K_{\rm S} \mbox{ lifetime with } K_{\rm S} \rightarrow \pi^+\pi^- \mbox{ (fully charged channel)} \\ \Phi \rightarrow \eta\gamma \mbox{ with } \eta \rightarrow \gamma\gamma \mbox{ (fully neutral channel)} \\ K_{\rm L} \rightarrow \pi^+\pi^- \mbox{ (fully charged channel)} \end{array}$

K_{S} lifetime with $K_{S} \rightarrow \pi^{+}\pi^{-}$

- Exponential function folded with a triple gaussian
- Time calculated from the projection of the decay length on the K_s momentum direction (negative tail due to resolution)
- Better resolution expected from IT tracking

$\Phi \rightarrow \eta \gamma$ with $\eta \rightarrow 3\pi^0$

- Search for neutral rad with N_{prompt} > 5 clusters
- Background contribution to cluster distribution wrt 2002
- Select $\Phi \rightarrow \eta \gamma$ with $\eta \rightarrow 3\pi^0$ (clean 363 MeV recoil γ)

Conclusions

DAFNE is steadily delivering luminosity at 10 pb⁻¹/day

the same 2001-06 KLOE acquired data amount (2.5 fb⁻¹) has been already taken in 2 years

KLOE-2 detectors are fully operational

data quality of first KLOE-2 data is being analyzed with benchmark channels and found in good agreement with the past