Search for e⁺e⁻ -> η (958) reaction (at VEPP-2000)

E. Solodov

CMD-3 Collaboration

Why

C-even states can be produced in e⁺e⁻ collision via two-photon reaction.

$$(\pi^0, \eta(547), \eta(958), f_0(980), a_0(980), f_2(1270), f_0(1500)...)$$

Observation of these reactions could help to calculate light-by-light contribution to g-2 of muon.

Theory (n')

In unitarity limit, when two photons are real, the electronic width of C-even state is in α^2 lower, than two-photon width, but for pseudo-scalars there is additional helicity suppression:

$$Br(\eta' \rightarrow e^+ e^-) = Br(\eta' \rightarrow \gamma\gamma) \frac{\alpha^2}{2\beta} \left(\frac{m_e}{m_{\eta'}}\right)^2 \left[\ln\left(\frac{1+\beta}{1-\beta}\right) \right]^2,$$

$$\beta = \sqrt{1 - 4\left(\frac{m_e}{m_{\eta'}}\right)^2} \qquad \text{Br}(\eta' \longrightarrow \gamma \gamma) = 0.0218 \pm 0.0008$$

Unitarity limit
$$B_{unit}(\eta' -> e^+e^-) = 3.75 \times 10^{-11}$$

For
$$\Gamma_{\eta'} = 0.199 \pm 0.009$$
 MeV, $\Gamma_{\text{unit}}(\eta' -> e^+e^-) = 7.5 \times 10^{-6}$ eV

Photons virtuality and form factor can significantly (3-5-10?) increase this number

Previous measurements

Only data from ND at VEPP-2M (1985) are available. No candidate events were found and upper limits:

```
\begin{split} &\Gamma(\eta^{'}(958) -> e^{+}e^{-}) < 0.06 \text{ eV} \\ &\Gamma(f_{0}(980) -> e^{+}e^{-}) < 8.4 \text{ eV} \\ &\Gamma(a_{0}(980) -> e^{+}e^{-}) < 1.5 \text{ eV} \\ &\Gamma(f_{2}(1270) -> e^{+}e^{-}) < 1.7 \text{ eV (updated by SND to } < 0.11 \text{ eV)} \\ &\Gamma(f_{0}(1300) -> e^{+}e^{-}) < 20 \text{ eV} \\ &\Gamma(a_{2}(1320) -> e^{+}e^{-}) < 25 \text{ eV (updated by SND to } < 0.56 \text{ eV)} \end{split}
```

ND (1985) $^{\sim}1\%$ efficiency, $^{\sim}0.7$ pb $^{-1}$ luminocity.

VEPP-2000 Collider (2010-2013)

	VEPP-2M	VEPP-2000	
$\mathbf{E} \ (\mathbf{MeV})$	510	510	900
П (ст)	1788	2235	2235
$\mathcal{I}^+, \mathcal{I}^-$	40	34	200
(mA)			
$\varepsilon \cdot \mathbf{10^5}$	3	0.5	1.6
$(\mathbf{cm} \cdot \mathbf{rad})$			
β_x (cm)	40	6.3	6.3
β_z (cm)	5	6.3	6.3
$\xi_{\mathbf{x}}$	0.016	0.075	0.075
ξz	0.050	0.075	0.075
$\mathcal{L}(\mathbf{cm^{-2}s^{-1}})$	$3\cdot 10^{30}$	$1\cdot 10^{31}$	$1\cdot 10^{32}$

Main idea: Round Beams

reduce beam-beam effects $\xi_{x,y} \ge 0.1$ (x4)

Solenoid 13.0 T at VEPP-2000

Compton backscattering beam energy measurement

 $\lambda 0 = 5.426468 \pm 0.000005 \, \mu m$ Infrared radiation backscattered $\phi = 0$ photons 2012.04.20 (16:21:34 -3000 2000 $E = 993.662 \pm 0.016 \text{ MaB}$ 1700 1750 1650 1800 1850 1900

- E.V. Abakumova et al., Phys. Rev. Lett. 110 (2013) 14, 140402,
 - E.V. Abakumova et al., Nucl. Instrum. Meth. A744 (2014) 35-40

VEPP-2000 experiment (2010-2013)

Energy distribution of collected integrated luminosity of CMD-3 $L = 2.69 \text{ pb}^{-1}$ used for this analysis

VEPP-2000 experiment (2013)

Energy distribution of collected integrated luminosity

Beam energy control

Beam energy was continuously monitored with Laser-Back-Scattering System.

Ec.m. = 957.678 \pm 0.014 MeV, to be compared with m(η') = 957.78 \pm 0.06 MeV Deviations are at the level of beam energy spread.

E_{c.m.} energy spread

For VEPP-2000 collision energy spread is related to longitudinal collision points distribution σ_z and RF voltages on the cavity V_{cav} as

$$\sigma_{E_{c.m.}} = 4.05\sigma_{Z}\sqrt{V_{cav}E_{c.m.}\sin(a\cos(63.2E_{c.m.}^{4}/V_{cav}))} = 0.246 \pm 0.030MeV$$

For this experiment σ_z = 2.3 cm (using BhaBha events) and V_c = 15 kV (monitored).

FWHM = 0.59 MeV is significantly larger, compare to $~\Gamma_{\eta^{'}}$ = 0.199 ± 0.009 MeV , and integrated (over width) cross section is calculated as

$$\sigma_{\rm int}^f = \int_0^{E_{\rm beam}} dE \int_0^1 \frac{1}{\sqrt{2\pi}\sigma_{\rm E_{c.m.}}} e^{-\frac{(\rm E_{c.m.}}{2\sigma_{\rm E_{c.m.}}^2}} \cdot F(x,E) \cdot \sigma^f(E(1-x)) dx$$

where x is fraction of energy taken by soft photons according to radiator function F(x, E), and $\sigma^f(E)$ is a Breit-Wigner for η'

$$\sigma(E) = 4\pi \frac{C\Gamma_{\eta'}\Gamma_{\eta'\to e^+e^-}}{(m_{\eta'}^2 - E^2)^2 + E^2\Gamma_{\eta'}^2}$$

Integrated cross section

$$\sigma_{\text{int}}^{\text{f}}$$
 = (6.38 ± 0.23) • $\Gamma_{\eta' \rightarrow \text{e+e-}}$ (eV) • $B_{\eta' \rightarrow \text{f}}$ nb

For unitarity limit and B_{η '->f} = 1 $\sigma_{int}^{unit} = 4.8 \times 10^{-5} \ \mathrm{nb}$.

If we observe N events, we measure
$$\Gamma_{\eta' \to e^+ e^-} = \frac{N}{6.38 \cdot \epsilon \cdot L} eV.$$

Event selection – CMD-3

We search for the reaction: $e^+e^- \rightarrow \eta(958) \rightarrow \pi^+\pi^-\eta \rightarrow \pi^+\pi^-\gamma\gamma$

- we select events with two "good" tracks and >2 photons
- we perform a kinematic fit in the $e+e--> \pi+\pi-\gamma\gamma$ hypothesis
- if more than 2 photons, the best χ^2 combination is used

Histograms are simulation

Event selection (example)

How $m(\gamma\gamma)$ looks like?

Additional cut on photon pair

|cos(H)| < 0.8 : Efficiency reduced by 20 %

Background from QED

 E_{total} < 1.4 E_{beam} : Efficiency reduced by 13 %

Check with $\pi^+\pi^-\pi^0(\eta)\gamma$

red points - simulation

Green – CMD-2, red – CMD-3 (part of data)

Check with $\pi^+\pi^-\eta \rightarrow \pi^+\pi^-2\gamma$

NO signal at Ec.m. = 958 MeV

Background 1.0 ± 0.5 events

We take N < 2.0 at 90% C.L.

Result

Efficiency for e+e- -> $\eta(958)$ -> $\pi + \pi - \eta$ -> $\pi + \pi - \gamma \gamma$ - 31.1%, L = 2690 nb-1 Systematic unsertainties:

2% - luminosity, 5% - energy instability, 5% - efficiency

Our result is:

$$\Gamma_{\eta' \to e^+ e^-} \mathcal{B}_{\eta' \to \pi^+ \pi^-} \eta \mathcal{B}_{\eta \to \gamma \gamma} < \frac{2.0}{6.38 \cdot 0.311 \cdot 2690} = 0.00037 \text{ eV at } 90\% \text{ C.L.}$$

With systematics

$$\Gamma_{\eta' \to e^+e^-} \mathcal{B}_{\eta' \to \pi^+\pi^-} \eta \mathcal{B}_{\eta \to \gamma\gamma} < 0.00041 \text{ eV at } 90\% \text{ C.L.}$$

Calculate

$$\Gamma_{\eta' \to e^+ e^-} < 0.0024 \text{ eV}$$
 or $\mathcal{B}_{\eta' \to e^+ e^-} < 1.2 \times 10^{-8}$

Compare to old ND: $\Gamma_{n' \rightarrow e+e-} < 0.06 \text{ eV}$

 $Br_{n' \to e^+e^-} < 2.1 \times 10^{-7}$ (ND used ~0.3 MeV B PDG 1985)

Unitarity limit is
$$\Gamma_{\text{unit}}(\eta' -> e^+e^-) = 7.5 \times 10^{-6} \text{ eV} - \text{still } \sim 300 \text{ lower}$$

 $B_{\text{unit}}(\eta' -> e^+e^-) = 3.75 \times 10^{-11}$

Analysis has been published at Phys. Lett. B740(2015) 273.

In our experiment we can also set a limit on the cross section for the process

e+e- $\rightarrow \pi^+\pi^-\eta$ at $E_{c.m.}$ = 957.7 MeV, which is found to be

$$\sigma = N/(\epsilon L) < 6.1 \text{ pb for } 90 \text{ C.L.},$$

where ϵ B(η -> 2γ) = 0.122 is a detection efficiency for this process.

How large it is? KLOE can measure it NOW!

SND analysis (Phys. Rev. D 91, 092010 (2015))

- Same time data taking
- Using five decay chains of $\eta(958)$

$$e^{+}e^{-} -> \eta(958) -> \pi^{+}\pi^{-}\eta -> \pi^{+}\pi^{-}\gamma\gamma$$
 $-> \pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$
 $e^{+}e^{-} -> \eta(958) -> \pi^{0}\pi^{0}\eta -> \pi^{0}\pi^{0}\gamma\gamma$
NO non-resonant background!
 $-> \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$
 $-> \pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$

```
\begin{split} &\Gamma(\eta'\to e^+e^-) < 0.0024 \ eV \ (90\%CL) \ - CMD-3 \\ &\Gamma(\eta'\to e^+e^-) < 0.0020 \ eV \ (90\%CL) \ - SND \\ &B(\eta'\to e^+e^-) < 5.6x10^{-9} \ (90\%CL) \ - SND+CMD-3 \\ &B(\eta'\to e^+e^-) = 3.7x10^{-11} - Theory \ (no\ FF) \end{split}
```

Only DAFNE-KLOE can make it!

η' (958) DECAY MODES	Fraction (Γ_i/Γ)	Confidence le	p evel (MeV/ c)	If ener to VEP	
$\pi^+\pi^-\eta$	(42.9 ±0.7) %)	232		
$ ho^{f 0}\gamma$ (including non-resonant	(29.1 ± 0.5) %		165		
$\pi^+ \pi^- \gamma$)				$\sigma_{\rm int} = 5$	
$\pi^{0}\pi^{0}\eta$	$(22.3 \pm 0.8)\%$		239)	
$\omega\gamma$	$(2.62\pm0.13)\%$	_	159	OSILIE	
$\omega e^+ e^-$	(2.0 \pm 0.4) \times		159	and all	
$\gamma\gamma_{\underline{\ }}$	$(2.21\pm0.08)\%$		479	•	
		C C	1	efficie	
η DECAY MODES	Fraction (Γ_i/Γ)	Scale factor Confidence le	,	ı	
,, 51671 MG515	17400011 (17/17)	Communication to	(1010 0/0)	L _{int} = 1	
N	eutral modes			limit: F	
neutral modes	$(72.12\pm0.34)~\%$	S=	1.2 -		
2γ	$(39.41\pm0.20)~\%$	S=	1.1 274		
$3\pi^{0}$	$(32.68\pm0.23)~\%$	_	1.1 179	~0.5 fb	
$\pi^0 2\gamma$	($2.56\pm0.22)$ $ imes$		257	could	
$2\pi^0 2\gamma$		10^{-3} CL=90	0% 238		
4 γ		10^{-4} CL=90	0% 274	and γγ	
invisible	< 1.0 ×	10^{-4} CL=90	0% -	•	
Charged modes					
charged modes	$(28.10\pm0.34)~\%$	S=	1.2 –	~100 k	
$\pi^+\pi^-\pi^0$	$(22.92\pm0.28)~\%$	S=	1.2 174		
$\pi^+_{\cdot}\pi^-\gamma$	(4.22±0.08) %	S=:	1.1 236		
		^			

If energy spread is similar to VEPP2000:

$$\sigma_{\rm int} = 5.8 \times 10^{-5} \times BR(\eta' -> f) \text{ nb}$$

Using BR(η' -> $\pi^0\pi^0\eta$) = 0.223 and all η decay modes with 50% efficiency (?) we need

 L_{int} = 160 pb-1 to reach unitarity limit: FF~5-10 is expected (?).

~0.5 fb⁻¹ at $E_{c.m.}$ = 958 MeV could also be used for ISR $\pi+\pi-$ and $\gamma\gamma$ physics out of ϕ .

Energy control at the level of ~100 keV is required!