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Status of (g − 2)µ, experiment vs SM
aµ

[

10−11
]

∆aµ
[

10−11
]

experiment 116 592089. 63.

QED O(α) 116140973.21 0.03
QED O(α2) 413217.63 0.01
QED O(α3) 30141.90 0.00
QED O(α4) 381.01 0.02
QED O(α5) 5.09 0.01
QED total 116 584718.95 0.04

electroweak, total 153.6 1.0
HVP (LO) [Hagiwara et al. 11] 6 949. 43.
HVP (NLO) [Hagiwara et al. 11] −98. 1.
HLbL [Jegerlehner-Nyffeler 09] 116. 40.

HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14] 12.4 0.1
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] 3. 2.

theory 116 591855. 59.

aµ = (g − 2)µ/2

aexp
µ − aSM

µ ∼ 3 σ
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The Standard Model prediction for aµ

aµ [10−11] ∆aµ [10−11]

experiment 116 592 089. 63.

QED O(α) 116 140 973.21 0.03
QED O(α2) 413 217.63 0.01
QED O(α3) 30 141.90 0.00
QED O(α4) 381.01 0.02
QED O(α5) 5.09 0.01
QED total 116 584 718.85 0.04

electroweak 153.2 1.8

had. VP (LO) 6923. 42.
had. VP (NLO) –98. 1.

had. LbL 116. 40.

total 116 591 813. 58.

µ µ

γ

Schwinger 1948
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New experiments at FNAL and J-PARC aim at improving the experimental precision

important to scrutinize theory predictions and get reliable uncertainties

aexp
µ − aSM

µ ∼ 3 σ



Introduction: hadronic vacuum polarization 

HVP is directly related via the optical theorem to 

dedicated        program (BaBar, BESIII, KLOE2 ...) to improve accuracye+e−

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Status of (g − 2)µ Approaches to HLbL

Hadronic light-by-light: irreducible uncertainty?
! Hadronic contributions responsible for most of the theory
uncertainty

! Hadronic vacuum polarization (HVP) can be systematically
improved

! basic principles: unitarity and analyticity
! direct relation to experiment: total hadronic cross section

σtot(e+e− → γ∗ → hadrons)
! dedicated e+e− program (BaBar, Belle, BESIII, CMD3,
KLOE2, SND)
(but going much below 1% is hard – dealing with radiative corrections poses nontrivial problems)

Limiting factor in the accuracy of SM predictions for                    is control 
over hadronic contributions, responsible for most of the theory uncertainty 

aµ = (g − 2)µ

Hadronic vacuum polarization

• how to control hadronic vacuum polarization?
• characteristic scale set by muon mass

−→ this is not a perturbative QCD problem!
• dispersion relations to the rescue:
use the optical theorem!

µ µ

hadrons

Im

hadrons hadrons

2

⇔ ∝ σtot(e+e− → hadrons)
γ γ γ

B. Kubis, Theπ0 and η Transition Form Factors and the Anomalous Magnetic Moment of the Muon – p. 6

Obtained by integrating the R-ratio weighted with a perturbative QED kernel :
• Can be evaluated using available experimental input

aHVP-LO! =
1

3

(α

π

)2
∫

∞

4M2
π

dt

t
K(t)Rhad(t) K(t) =

∫ 1

0
dx

x2(1− x)

x2 + (1− x) t
m2

"

[C. Bouchiat, L. Michel, J. Phys. Radium 22, 121 (1961)]
[L. Durand, Phys. Rev. 128, 441 (1962); Err.-ibid. 129, 2835 (1963)]

[M. Gourdin, E. de Rafael, Nucl. Phys. B 10, 667 (1969)]

−→

• Some orderO(α3) corrections included

- exchange of virtual photons between final state hadrons
- some radiative exclusive modes, e.g. π0γ

aπ
0γ

µ (600 MeV− 1030 MeV) = 4.4(1.9) · 10−10

dominated by the low-energy region
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Lattice QCD determination of the HVP-LO : recent progress
Blum et al., Burger et al., Chakraborty et al., ...
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Introduction: hadronic light-by-light 

1 Introduction

Hadronic light-by-light (HLbL) scattering

• up to now only model calculations

• uncertainty estimate based rather

on consensus than on a systematic

method

• lattice QCD making progress, but

not yet competitive

• will dominate theory error in a few

years

6

The two global evaluations: Bijnens, Pallante, Prades (1995, 1996) and Hayakawa, Kinoshita, Sanda (1995, 1996)

with the photons might occur. According to quark-hadron duality, the (constituent) quark loop also models
the contribution to aµ from the exchanges and loops of heavier resonances, like π′, a′

0, f
′
0, p, n, . . . which have

not been included explicitly so far. It also “absorbs” the remaining cutoff dependences of the low-energy
effective models. This is even true for the modeling of the pion-exchange contribution within the large Nc

inspired approach (LMD+V), since not all QCD short-distance constraints in the 4-point function 〈V V V V 〉
are reproduced with those ansätze. Some estimates for the (dressed) constituent quark loop are given in
Table 12.

Table 12
Results for the (dressed) quark loops.

Model aµ(quarks) × 1011

Point coupling 62(3)

VMD [HKS, HK] [242,245] 9.7(11.1)

ENJL + bare heavy quark [BPP] [243] 21(3)

Bare c-quark only [PdRV] [294] 2.3

We observe again a large, very model-dependent effect of the dressing of the photons. HKS, HK [242,245]
used a simple VMD-dressing for the coupling of the photons to the constituent quarks as it happens for
instance in the ENJL model. On the other hand, BPP [243] employed the ENJL model up to some cutoff
µ and then added a bare quark loop with a constituent quark mass MQ = µ. The latter contribution
simulates the high-momentum component of the quark loop, which is non-negligible. The sum of these two
contributions is rather stable for µ = 0.7, 1, 2 and 4 GeV and gives the value quoted in Table 12. A value of
2 × 10−11 for the c-quark loop is included by BPP [243], but not by HKS [242,245].

Summary
The totals of all contributions to hadronic light-by-light scattering reported in the most recent estimations

are shown in Table 13. We have also included some “guesstimates” for the total value. Note that the number
aLbL;had

µ = (80 ± 40) × 10−11 written in the fourth column in Table 13 under the heading KN was actually
not given in Ref. [17], but represents estimates used mainly by the Marseille group before the appearance
of the paper by MV [257]. Furthermore, we have included in the sixth column the estimate aLbL;had

µ =
(110±40)×10−11 given recently in Refs. [298,41,43]. Note that PdRV [294] (seventh column) do not include
the dressed light quark loops as a separate contribution. They assume them to be already covered by using
the short-distance constraint from MV [257] on the pseudoscalar-pole contribution. PdRV add, however, a
small contribution from the bare c-quark loop.

Table 13
Summary of the most recent results for the various contributions to aLbL;had

µ × 1011. The last column is our estimate based on
our new evaluation for the pseudoscalars and some of the other results.

Contribution BPP HKS KN MV BP PdRV N/JN

π0, η, η′ 85±13 82.7±6.4 83±12 114±10 − 114±13 99±16

π, K loops −19±13 −4.5±8.1 − − − −19±19 −19±13

π, K loops + other subleading in Nc − − − 0±10 − − −

axial vectors 2.5±1.0 1.7±1.7 − 22± 5 − 15±10 22± 5

scalars −6.8±2.0 − − − − −7± 7 −7± 2

quark loops 21± 3 9.7±11.1 − − − 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 110±40 105±26 116±39

77

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π-box π-resc.

Some preliminary numbers for π-rescattering

Based on:

! taking the pion pole as only left-hand singularity

! ⇒ pion vector FF to describe the off-shell behaviour

! ππ phases obtained with the inverse amplitude method
[reasonable low-energy representation + unique and well defined extrapolation to ∞]

! numerical solution of the γ∗γ∗ → ππ dispersion relation

S-wave contributions:

aHLbL
µ in 10−11 units

cutoff(GeV) 1 2 ∞
I = 0 −9.2 −9.4 −8.8
I = 2 2.0 1.0 0.9
total −7.3 −8.4 −7.9

Hadronic light-by-light (HLbL) is more problematic: 
model calculations and some high-energy and 
low-energy constraints.
Uncontrolled uncertainties
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the dressed light quark loops as a separate contribution. They assume them to be already covered by using
the short-distance constraint from MV [257] on the pseudoscalar-pole contribution. PdRV add, however, a
small contribution from the bare c-quark loop.
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Summary of the most recent results for the various contributions to aLbL;had
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a reliable uncertainty estimate is still an open issue

How to reduce model dependence ? Recent strategies for an improved calculation :

lattice QCD: first computations at physical pion masses with leading 
disconnected contributions performed

dispersion theory to make the evaluation as data driven as possible

Blum et al. (2015, 2016)

Hadronic light-by-light (HLbL) is more problematic: 
model calculations and some high-energy and 
low-energy constraints.
Uncontrolled uncertainties



Defines and relates single contributions to HLbL to form factors and cross sections

Exploits fundamental principles : 

Our strategy for HLbL

Alternative: dispersive treatment of the HLbL contribution to Pauli form factor 
by Pauk and Vanderhaeghen (2014)  (so far only single-meson pole contributions)

Much more challenging task than for the hadronic vacuum polarization due to the 
complexity of the HLbL tensor, which is the key object of our analysis

gauge invariance and crossing symmetry

unitarity and analyticity 

to relate HLbL to experimentally accessible quantities



Master formula for the HLbL contribution to (g-2)μ

The HLbL tensor: gauge invariance and crossing symmetry

Dispersive representation of scalar functions at fixed photon virtualities



The fully off-shell HLbL tensor :

The HLbL tensor

Mandelstam variables:

Anomalous magnetic moment: Pauli form factor at zero momentum transfer

Πµνλσ(q1, q2, q3) = −i

�
d4x d4y d4z e−i(q1·x+q2·y+q3·z)�0|T{jµ

em(x)jν
em(y)jλ

em(z)jσ
em(0)}|0�

q1

q2

−q3

k = q4

Figure 3: Kinematics of the light-by-light scattering amplitude.

We find that the pion-pole contribution corresponds exactly to the sQED Born contribution multiplied by

electromagnetic pion form factors for the two off-shell photons.
7

Note that, if we think in terms of unitarity

diagrams, we have now considered the pure pole contribution to the scalar functions. However, in terms of

Feynman diagrams in sQED this corresponds to a sum of two pole diagrams and the seagull diagram.
8

It is

important to be aware of the different meaning of a topology in the sense of unitarity and a Feynman diagram,

see Fig. 2. As will be shown in Sect. 5, it is exactly this distinction that makes the sQED pion loop in HLbL

coincide with box-type unitarity diagrams representing ππ intermediate states with a pion-pole LHC, although,

in terms of Feynman diagrams, it is composed of the sum of box, triangle, and bulb topologies.

3 Lorentz structure of the HLbL tensor

3.1 Definitions
In order to study the contribution of HLbL scattering to the anomalous magnetic moment of the muon, we need

first of all a description of the HLbL tensor. The object in question is the hadronic Green’s function of four

electromagnetic currents, evaluated in pure QCD (i.e. with fine-structure constant α = e
2
/(4π) = 0):

Πµνλσ(q1, q2, q3) = −i

�
d
4
x d

4
y d

4
z e

−i(q1·x+q2·y+q3·z)�0|T{jµ
em(x)jν

em(y)jλ
em(z)jσ

em(0)}|0�. (3.1)

The electromagnetic current includes only the three lightest quarks:

j
µ
em := q̄Qγµ

q, (3.2)

where q = (u, d, s)T
and Q = diag( 2

3 ,− 1
3 ,− 1

3 ).
The contraction of the HLbL tensor with polarization vectors gives the hadronic contribution to the helicity

amplitudes for (off-shell) photon–photon scattering:

Hλ1λ2,λ3λ4 = �λ1
µ (q1)�λ2

ν (q2)�λ3
λ

∗
(−q3)�λ4

σ
∗
(k)Πµνλσ(q1, q2, q3). (3.3)

For notational convenience, we define

q4 := k = q1 + q2 + q3. (3.4)

The kinematics is illustrated in Fig. 3.

We use the following Lorentz scalars as kinematic variables — these are the usual Mandelstam variables:

s := (q1 + q2)2, t := (q1 + q3)2, u := (q2 + q3)2, (3.5)

which fulfill (we will take k
2 = 0 at some later point)

s + t + u =
4�

i=1

q
2
i =: Σ. (3.6)

Gauge invariance requires the HLbL tensor to satisfy the Ward–Takahashi identities

{qµ
1 , q

ν
2 , q

λ
3 , q

σ
4 }Πµνλσ(q1, q2, q3) = 0. (3.7)

7Therefore, the dispersive definition of the pion pole (2.49) coincides with the gauge-invariant pole contribution of the ‘soft-
photon amplitude’ in [43]. We thank S. Scherer for pointing this out.

8The equivalence of the pion pole and the Born term is surprising given the fact that (2.50) contains a term with gµν , while the
imaginary parts (2.46) and (2.47) do not. Tracing the above steps backwards, one sees that in the t- or u-channel imaginary parts
the coefficient of gµν is proportional to (t−M2

π)δ(t−M2
π) or (u−M2

π)δ(u−M2
π) and hence vanishes due to the delta function.
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2 Lorentz Structure of the HLbL Tensor

The HLbL tensor: definitions

• hadronic four-point function:

Πµνλσ(q1, q2, q3)

= −i

�
dxdydze−i(q1x+q2y+q3z)�0|Tjµem(x)jνem(y)jλem(z)jσem(0)|0�

• EM current:
jµem =

�

i=u,d,s

Qiq̄iγ
µqi

• Mandelstam variables:

s = (q1 + q2)2, t = (q1 + q3)2, u = (q2 + q3)2

• for (g − 2)µ, the external photon is on-shell:

q24 = 0, where q4 = q1 + q2 + q3
10

Back to HLbL

BTT for HLbL Colangelo, MH, Procura, Stoffer 2015

43 basis tensors
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Out of 54 only 7 independent ones

2 further redundancies in d = 4
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(
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(
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(
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(
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(
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Based on Lorentz covariance the HLbL tensor can be decomposed in 138 structures 

Lorentz structure of HLbL tensor

In 4 space-time dimensions there are 2 linear relations among these 138 structures

Scalar functions encode the hadronic dynamics and depend on 6 kinematic variables

3.2 Tensor decomposition
In general, the HLbL tensor can be decomposed into 138 Lorentz structures [13, 44, 45]:

Πµνλσ = gµνgλσ Π1 + gµλgνσ Π2 + gµσgνλ Π3

+
�

i=2,3,4
j=1,3,4

�

k=1,2,4
l=1,2,3

qµ
i qν

j qλ
k qσ

l Π4
ijkl

+
�

i=2,3,4
j=1,3,4

gλσqµ
i qν

j Π5
ij +

�

i=2,3,4
k=1,2,4

gνσqµ
i qλ

k Π6
ik +

�

i=2,3,4
l=1,2,3

gνλqµ
i qσ

l Π7
il

+
�

j=1,3,4
k=1,2,4

gµσqν
j qλ

k Π8
jk +

�

j=1,3,4
l=1,2,3

gµλqν
j qσ

l Π9
jl +

�

k=1,2,4
l=1,2,3

gµνqλ
k qσ

l Π10
kl

=:
138�

i=1

Lµνλσ
i Ξi. (3.8)

The 138 scalar functions

{Ξi} := {Π1,Π2,Π3,Π4
ijkl,Π

5
ij ,Π

6
ik,Π7

il,Π
8
jk,Π9

jl,Π
10
kl } (3.9)

depend on six independent kinematic variables, e.g. on two Mandelstam variables s and t and the virtualities q2
1 ,

q2
2 , q2

3 , and q2
4 . They are free of kinematic singularities but contain kinematic zeros, because they have to fulfill

kinematic constraints required by gauge invariance. The Ward identities (3.7) impose 95 linearly independent
relations on the scalar functions, reducing the set to 43 functions.

As we did in Sect. 2.2 for the case of γ∗γ∗ → ππ, we will now construct a set of Lorentz structures and
scalar functions, such that the scalar functions contain neither kinematic singularities nor zeros. Compared to
γ∗γ∗ → ππ, the application of the recipe given by Bardeen, Tung [31], and Tarrach [32] is much more involved.
Again, the recipe by Bardeen and Tung does not lead to a kinematic-free minimal basis (which would consist
here of 43 scalar functions).9 Following Tarrach, we will construct a redundant set of 54 structures, which is
free of kinematic singularities and zeros.

In a first step, we define the two projectors

Iµν
12 := gµν − qµ

2 qν
1

q1 · q2
, Iλσ

34 := gλσ − qλ
4 qσ

3

q3 · q4
, (3.10)

which have the following properties:

qµ
1 I12

µν = 0, qν
2 I12

µν = 0,

qλ
3 I34

λσ = 0, qσ
4 I34

λσ = 0,

Iµµ�

12 Πµ�νλσ = Πµ
νλσ, Iν�ν

12 Πµν�λσ = Πµ
ν

λσ,

Iλλ�

34 Πµνλ�σ = Πµν
λ

σ, Iσ�σ
34 Πµνλσ� = Πµνλ

σ, (3.11)

i.e. the HLbL tensor is invariant under contraction with the projectors, but the contraction of every Lorentz
structure produces a gauge-invariant structure. Hence, we project the tensor

Πµνλσ = Iµµ�

12 Iν�ν
12 Iλλ�

34 Iσ�σ
34 Πµ�ν�λ�σ�

=
138�

i=1

Iµµ�

12 Iν�ν
12 Iλλ�

34 Iσ�σ
34 Li

µ�ν�λ�σ� Ξi

=:
138�

i=1

L̄µνλσ
i Ξi =

43�

j=1

L̄µνλσ
ij

Ξij . (3.12)

Only 43 of the 138 projected structures L̄µνλσ
i are non-zero, i.e. all constraints imposed by gauge invariance

are already manifestly implemented. Since the projected structures are still multiplied by the original scalar
9We use ‘basis’ in a loose terminology: as we will discuss in Sect. 3.3, a basis in the strict mathematical sense consists of 41

elements due to two peculiar redundancies in four space-time dimensions.
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Eichmann, Fischer, Heupel, Williams (2014)

This set of functions is hugely redundant: Ward identities imply 95 linear relations 
between these scalar functions (kinematic zeros) 



Following Bardeen and Tung (1968) - “BT”-  we contracted the HLBL tensor with 

Lorentz structure of HLbL tensor

95 structures project to zero

         and          poles eliminated by taking linear combinations of structures

This procedure introduces kinematic singularities in the scalar functions : 
degeneracies in these BT Lorentz structures, e.g. as          

2 Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

Recipe by Bardeen, Tung (1968) and Tarrach (1975):

• construct gauge projectors:

Iµν12 = gµν − qµ2 q
ν
1

q1 · q2
, Iλσ34 = gλσ − qλ4 q

σ
3

q3 · q4

• gauge invariant themselves, e.g.

qµ1 I
12
µν = 0

• leave HLbL tensor invariant, e.g.

Iµµ
�

12 Πµ�νλσ = Πµ
νλσ
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2 Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

Following Bardeen, Tung (1968):

• apply gauge projectors to the 138 initial structures:

95 immediately project to 0

• remove 1/q1 · q2 and 1/q3 · q4 poles by taking

appropriate linear combinations

• BT basis: degenerate in the limits

q1 · q2 → 0, q3 · q4 → 0
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2 Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

According to Tarrach (1975):

• no kinematic-free ‘basis’ of 43 elements exists

• degeneracies in the limits q1 · q2 → 0, q3 · q4 → 0:

�

k

cikT
µνλσ
k = q1 · q2Xµνλσ

i + q3 · q4Y µνλσ
i

• extend basis by additional structures Xµνλσ
i , Y µνλσ

i

taking care of remaining kinematic singularities

• equivalent: implementing crossing symmetry

16



Following Tarrach (1975) we extended BT set to incorporate                  
to obtain a (“BTT”) generating set of structures even for 

Lorentz structure of HLbL tensor

Lorentz structures are manifestly gauge invariant
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2 Lorentz Structure of the HLbL Tensor

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition:

Πµνλσ(q1, q2, q3) =
54�

i=1

T µνλσ
i Πi(s, t, u; q

2
j )

• Lorentz structures manifestly gauge invariant

• crossing symmetry manifest: only 7 distinct

structures, 47 follow from crossing

• scalar functions Πi free of kinematics

⇒ ideal quantities for a dispersive treatment

17

crossing symmetry is manifest (only 7 genuinely different structures, the 
remaining ones being obtained by crossing)

the BTT scalar functions are free of kinematic singularities and zeros : 
their analytic structure is dictated by dynamics only. This makes them 
suitable for a dispersive treatment
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Following Bardeen, Tung (1968):

• apply gauge projectors to the 138 initial structures:

95 immediately project to 0

• remove 1/q1 · q2 and 1/q3 · q4 poles by taking

appropriate linear combinations

• BT basis: degenerate in the limits

q1 · q2 → 0, q3 · q4 → 0
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Master formula for the HLbL contribution to (g-2)μ

The HLbL tensor: gauge invariance and crossing symmetry

Dispersive representation of scalar functions at fixed photon virtualities



Differentiating the Ward identity with respect to    ,

Master formula for aμHLbLq1

q2

−q3

k = q4

Figure 3: Kinematics of the light-by-light scattering amplitude.

We find that the pion-pole contribution corresponds exactly to the sQED Born contribution multiplied by

electromagnetic pion form factors for the two off-shell photons.
7

Note that, if we think in terms of unitarity

diagrams, we have now considered the pure pole contribution to the scalar functions. However, in terms of

Feynman diagrams in sQED this corresponds to a sum of two pole diagrams and the seagull diagram.
8

It is

important to be aware of the different meaning of a topology in the sense of unitarity and a Feynman diagram,

see Fig. 2. As will be shown in Sect. 5, it is exactly this distinction that makes the sQED pion loop in HLbL

coincide with box-type unitarity diagrams representing ππ intermediate states with a pion-pole LHC, although,

in terms of Feynman diagrams, it is composed of the sum of box, triangle, and bulb topologies.

3 Lorentz structure of the HLbL tensor

3.1 Definitions
In order to study the contribution of HLbL scattering to the anomalous magnetic moment of the muon, we need

first of all a description of the HLbL tensor. The object in question is the hadronic Green’s function of four

electromagnetic currents, evaluated in pure QCD (i.e. with fine-structure constant α = e
2
/(4π) = 0):

Πµνλσ(q1, q2, q3) = −i

�
d
4
x d

4
y d

4
z e

−i(q1·x+q2·y+q3·z)�0|T{jµ
em(x)jν

em(y)jλ
em(z)jσ

em(0)}|0�. (3.1)

The electromagnetic current includes only the three lightest quarks:

j
µ
em := q̄Qγµ

q, (3.2)

where q = (u, d, s)T
and Q = diag( 2

3 ,− 1
3 ,− 1

3 ).
The contraction of the HLbL tensor with polarization vectors gives the hadronic contribution to the helicity

amplitudes for (off-shell) photon–photon scattering:

Hλ1λ2,λ3λ4 = �λ1
µ (q1)�λ2

ν (q2)�λ3
λ

∗
(−q3)�λ4

σ
∗
(k)Πµνλσ(q1, q2, q3). (3.3)

For notational convenience, we define

q4 := k = q1 + q2 + q3. (3.4)

The kinematics is illustrated in Fig. 3.

We use the following Lorentz scalars as kinematic variables — these are the usual Mandelstam variables:

s := (q1 + q2)2, t := (q1 + q3)2, u := (q2 + q3)2, (3.5)

which fulfill (we will take k
2 = 0 at some later point)

s + t + u =
4�

i=1

q
2
i =: Σ. (3.6)

Gauge invariance requires the HLbL tensor to satisfy the Ward–Takahashi identities

{qµ
1 , q

ν
2 , q

λ
3 , q

σ
4 }Πµνλσ(q1, q2, q3) = 0. (3.7)

7Therefore, the dispersive definition of the pion pole (2.49) coincides with the gauge-invariant pole contribution of the ‘soft-
photon amplitude’ in [43]. We thank S. Scherer for pointing this out.

8The equivalence of the pion pole and the Born term is surprising given the fact that (2.50) contains a term with gµν , while the
imaginary parts (2.46) and (2.47) do not. Tracing the above steps backwards, one sees that in the t- or u-channel imaginary parts
the coefficient of gµν is proportional to (t−M2

π)δ(t−M2
π) or (u−M2

π)δ(u−M2
π) and hence vanishes due to the delta function.
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one obtains the relation 

aHLbL

µ = − 1
48mµ

Tr
�
(/p + mµ)[γρ, γσ](/p + mµ)ΓHLbL

ρσ (p)
�

Πµνλρ(q1, q2, q4 − q1 − q2) = −qσ
4

∂

∂qρ
4

Πµνλσ(q1, q2, q4 − q1 − q2)

where           and 

ΓHLbL

ρσ (p) = e6

�
d4q1

(2π)4
d4q2

(2π)4
γµ

(/p + /q
1

+ mµ)
(p + q1)2 −m2

µ

γλ
(/p− /q

2
+ mµ)

(p− q2)2 −m2
µ

γν

× 1
q2

1
q2

2
(q1 + q2)2

∂

∂qρ
4

Πµνλσ(q1, q2, q4 − q1 − q2)
����
q4=0

p2 = m2
µ
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Since there are no kinematic singularities in the BTT scalar functions, 

aHLbL

µ = − e6

48mµ

�
d4q1

(2π)4
d4q2

(2π)4
1

q2

1
q2

2
(q1 + q2)2

1
(p + q1)2 −m2

µ

1
(p− q2)2 −m2

µ

× Tr
�
(/p + mµ)[γρ, γσ](/p + mµ)γµ(/p + /q

1
+ mµ)γλ(/p− /q

2
+ mµ)γν

�

×
54�

i=1

�
∂

∂qρ
4

T i
µνλσ(q1, q2, q4 − q1 − q2)

� ����
q4=0

Πi(q1, q2,−q1 − q2)
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Only 12 linear combinations of the scalar functions contribute to         :

Master formula for aμHLbL

aHLbL

µ3 Master Formula for (g − 2)µ

Master formula: contribution to (g − 2)µ

aHLbL

µ = e6
�

d4q1
(2π)4

d4q2
(2π)4

12�
i=1

T̂i(q1, q2; p)Π̂i(q1, q2,−q1 − q2)

q2
1
q2
2
(q1 + q2)2[(p+ q1)2 −m2

µ][(p− q2)2 −m2
µ]

• T̂i: known integration kernel functions

• five loop integrals can be performed with
Gegenbauer polynomial techniques

• Wick rotation possible even in the presence of
anomalous thresholds

20

the functions    contain trace and derivative (calculated)

Wick rotation of    ,    and   (allowed even in the presence of anomalous cuts)q1 q2 p

5 out of 8 integrals can be done analytically, without knowing the scalar functions

Master formula for aµ

Colangelo, MH, Procura, Stoffer 2015

Master formula for aµ

aHLbL
µ = −e6

∫

d4q1

(2π)4

∫

d4q2

(2π)4

∑12
i=1 T̂i(q1, q2; p)Π̄i (q1, q2,−q1 − q2)

q2
1q2

2 (q1 + q2)2
(

(p + q1)2 − m2
µ

)(

(p − q2)2 − m2
µ

)

T̂i : known kernel functions

Π̄i : linear combinations of Πi

Can perform five integrations with Gegenbauer polynomials

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 16



We obtained a general master formula

Master formula for aμHLbL

3 Master Formula for (g − 2)µ

Master formula: contribution to (g − 2)µ

aHLbL

µ =
2α3

3π2

� ∞

0

dQ1

� ∞

0

dQ2

�
1

−1

dτ
√
1− τ 2Q3

1
Q3

2

×
12�

i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ),

• Ti: known integration kernels

• Π̄i: linear combinations of the scalar functions Πi

• Euclidean momenta: Q2

i = −q2i

• Q2

3
= Q2

1
+Q2

2
+ 2Q1Q2τ

21
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�
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Q3
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Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ),

• Ti: known integration kernels

• Π̄i: linear combinations of the scalar functions Πi

• Euclidean momenta: Q2

i = −q2i

• Q2

3
= Q2

1
+Q2

2
+ 2Q1Q2τ
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             are Euclidean momenta and                       : space-like kinematics

Generalization of the formula for the pion pole in Knecht and Nyffeler (2002)

We determined the integration kernels    . 
The scalar functions     are linear combinations of the BTT     
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where τ = cos θ4, defined by Q1 ·Q2 = |Q1||Q2|τ , is the cosine of the angle between the Euclidean four-momenta
Q1 and Q2, and further

σE
i :=

�

1 +
4m2

µ

Q2

i

, R12 := |Q1||Q2|x, x :=
�

1− τ2,

z :=
|Q1||Q2|

4m2
µ

(1− σE
1

)(1− σE
2

).

(111)

4.3 Master Formula
After using the angular integrals (110), we can perform immediately five of the eight loop integrals by changing
to spherical coordinates in four dimensions. This leads us to a master formula for the HLbL contribution to the
anomalous magnetic moment of the muon:

aHLbL

µ =
2α3

3π2

� ∞

0

dQ1

� ∞

0

dQ2

�
1

−1

dτ
�

1− τ2Q3

1
Q3

2

12�

i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ), (112)

where α = e2/(4π), Q1 := |Q1|, Q2 := |Q2|. The hadronic scalar functions Π̄i are just a subset of the Π̂i and
defined by

Π̄1 = Π1 + q1 · q2Π47,

Π̄2 = Π2 −
1
2

�
q2

1
+ q1 · q2

�
(2Π47 −Π50 −Π51 −Π54) ,

Π̄3 = Π4 +
�
q2

1
+ q1 · q2

�
Π19 +

�
q1 · q2 + q2

2

�
Π20

+
�
q2

1
+ q1 · q2

� �
q1 · q2 + q2

2

�
Π31 −

s

2
(2Π47 −Π50 −Π51) +

1
2

�
q2

1
− q2

2

�
Π54,

Π̄4 = Π5 − q1 · q2Π21 +
1
2

�
q1 · q2 + q2

2

�
(2Π22 − 2q1 · q2Π33 + Π50 + Π51 −Π54)− q2

2
Π47,

Π̄5 = Π7 −Π19 −
�
q1 · q2 + q2

2

�
Π31,

Π̄6 = Π9 −Π22 + q1 · q2Π33,

Π̄7 = Π10 −Π21 −
�
q1 · q2 + q2

2

�
Π33,

Π̄8 = Π16 + Π47 + Π54,

Π̄9 = Π17 + Π47 −Π50 −Π51,

Π̄10 =
1
2

(Π39 + Π40 + Π46) ,

Π̄11 = Π42 −Π47 +
1
2

(Π50 + Π51 + Π54) ,

Π̄12 =
1
2

(Π50 −Π51 + Π54) .

(113)

They have to be evaluated for the reduced kinematics

s = −Q2

3
= −Q2

1
− 2Q1Q2τ −Q2

2
, t = −Q2

2
, u = −Q2

1
,

q2

1
= −Q2

1
, q2

2
= −Q2

2
, q2

3
= −Q2

3
= −Q2

1
− 2Q1Q2τ −Q2

2
, k2 = q2

4
= 0.

(114)

The integral kernels Ti are listed in appendix B.2. The scalar functions Πi parametrise the hadronic content of
the master formula.

Note that (112) is the generalisation of the three-dimensional integral formula for the pion-pole contribution
[1]. It is valid for the whole HLbL contribution and completely generic, i.e. it can be used to compute the HLbL
contribution to the (g − 2)µ given any representation of the HLbL tensor (even a model calculation). If the
HLbL tensor is known, the scalar functions Πi can be obtained by projection and identification of the kinematic
singularities, see appendix C.

As (112) only contains a three-dimensional integral, this formula is also suited for a direct numerical imple-
mentation.

Our main task is the calculation of the scalar functions Πi in a model-independent way by making use of
dispersion relations.

23

Our goal: dispersive representation of     at fixed photon virtualities 
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Master formula for aµ

Colangelo, MH, Procura, Stoffer 2015

Master formula for aµ

aHLbL
µ =

2α3

3π2

∫

∞

0

dQ1

∫

∞

0

dQ2

∫ 1

−1

dτ
√

1 − τ 2Q3
1Q3

2

12
∑

i=1

Ti(Q1, Q2, τ )Π̄i(Q1,Q2, τ )

Ti : known kernel functions

Π̄i : linear combinations of Πi

Can perform five integrations with Gegenbauer polynomials

Wick rotation: all input quantities at space-like kinematics

Decomposition completely general, now dispersion relations for Π̄i

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 16



Master formula for the HLbL contribution to (g-2)μ

Dispersive representation of scalar functions at fixed photon virtualities

The HLbL tensor: gauge invariance and crossing symmetry



Analytic properties of scalar functions relevant for the evaluation of         : 
right- and left-hand cuts, double spectral regions (box topologies)...

Mandelstam representation

Very complex analytic structure: approximations are required. We order the 
contributions according to the mass of intermediate states: the lightest states are 
expected to be the most important (in agreement with model calculations)

aHLbL

µ4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most

two pions

• writing down a double-spectral (Mandelstam)

representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole

µνλσ + Πbox

µνλσ + Π̄µνλσ + . . .

24

Here we consider the 2 lowest-lying contributions: one- and two-pion 
intermediate states in all channels



Mandelstam representation

one-pion intermediate state :

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most

two pions

• writing down a double-spectral (Mandelstam)

representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole

µνλσ

one-pion intermediate state:

+ Πbox

µνλσ + Π̄µνλσ + . . .

24

Very complex analytic structure: approximations are required. We order the 
contributions according to the mass of intermediate states: the lightest states are 
expected to be the most important (in agreement with model calculations)

Here we consider the 2 lowest-lying contributions: one- and two-pion 
intermediate states in all channels
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representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole

µνλσ + Πbox

µνλσ + Π̄µνλσ + . . .

24

Analytic properties of scalar functions relevant for the evaluation of         : 
right- and left-hand cuts, double spectral regions (box topologies)...
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Mandelstam representation

Very complex analytic structure: approximations are required. We order the 
contributions according to the mass of intermediate states: the lightest states are 
expected to be the most important (in agreement with model calculations)

Here we consider the 2 lowest-lying contributions: one- and two-pion 
intermediate states in all channels

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most

two pions

• writing down a double-spectral (Mandelstam)

representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole

µνλσ + Πbox

µνλσ + Π̄µνλσ + . . .

24

Analytic properties of scalar functions relevant for the evaluation of         : 
right- and left-hand cuts, double spectral regions (box topologies)...

aHLbL

µ

two-pion intermediate state in both channels :

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most

two pions

• writing down a double-spectral (Mandelstam)

representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole

µνλσ + Πbox

µνλσ

two-pion intermediate state in both channels:

+ Π̄µνλσ + . . .

24



Mandelstam representation

Very complex analytic structure: approximations are required. We order the 
contributions according to the mass of intermediate states: the lightest states are 
expected to be the most important (in agreement with model calculations)

Here we consider the 2 lowest-lying contributions: one- and two-pion 
intermediate states in all channels

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most

two pions

• writing down a double-spectral (Mandelstam)

representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole

µνλσ + Πbox

µνλσ + Π̄µνλσ + . . .

24

Analytic properties of scalar functions relevant for the evaluation of         : 
right- and left-hand cuts, double spectral regions (box topologies)...

aHLbL

µ

two-pion intermediate state in the direct channel:

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most

two pions

• writing down a double-spectral (Mandelstam)

representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole

µνλσ + Πbox

µνλσ + Π̄µνλσ

two-pion intermediate state in first channel:

+ . . .

24



Mandelstam representation

Very complex analytic structure: approximations are required. We order the 
contributions according to the mass of intermediate states: the lightest states are 
expected to be the most important (in agreement with model calculations)

Here we consider the 2 lowest-lying contributions: one- and two-pion 
intermediate states in all channels

4 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most

two pions

• writing down a double-spectral (Mandelstam)

representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole

µνλσ + Πbox

µνλσ + Π̄µνλσ + . . .

24

Analytic properties of scalar functions relevant for the evaluation of         : 
right- and left-hand cuts, double spectral regions (box topologies)...

aHLbL

µ

higher intermediate states: neglected here



The pion-pole contribution

From the unitarity relation with only π0 intermediate state, the pole residues in 
each channel are given by products of doubly-virtual and singly-virtual pion 
transition form factors (         and          , input for our analysis)

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Setting up the dispersive calculation
We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

Pion pole: known
Projection on the BTT basis: done
Our master formula=explicit expressions in the literature

4 Mandelstam Representation

Pion pole

• input: doubly-virtual and

singly-virtual pion transition form

factors Fγ∗γ∗π0 and Fγ∗γπ0

• dispersive analysis of transition

form factor:

→ Hoferichter et al., EPJC 74 (2014) 3180

25

4 Mandelstam Representation

Pion pole

• input: doubly-virtual and

singly-virtual pion transition form

factors Fγ∗γ∗π0 and Fγ∗γπ0

• dispersive analysis of transition

form factor:

→ Hoferichter et al., EPJC 74 (2014) 3180

25

and the discontinuities of the subtracted integrals are e.g.
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du�
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(t� − tx)(u� − uy)

− 1
π

�
dt�

ρi;st(s�, t�)
(t� − tx)(u� − uy)

,

Ds;u,u
i (s�;ux, uy) :=

1
π

�
du�

ρi;su(s�, u�)
(u� − ux)(u� − uy)

− 1
π

�
dt�

ρi;st(s�, t�)
(u� − ux)(u� − uy)

.

(141)

The signs are determined by the second subtraction.

Note that for the sQED contribution all the discontinuities and the double-spectral densities in (136) and

(139) can be extracted from the loop representation of the basis functions (132). We have checked numerically

for some random kinematic points (below the appearance of anomalous thresholds) that the dispersive repre-

sentations of the functions Π̃i agrees with the loop representation. It turns out that Π̃sQED
39 = Π̃sQED

40 = 0, hence

we can set

ΠsQED
49 = 0, (142)

which also fixes the ambiguity discussed in subsection 3.3.2.

This completes our proof of the uniqueness of the pion-box contribution. The FsQED contribution fulfils the

same double-spectral representation as the pure pion-box topologies in the sense of unitarity. Cutkosky’s rule

tells us that the discontinuities of the FsQED contribution are the same as the ones of the pion-box topologies.

Therefore, the two representations are the same. Unitarity and Mandelstam analyticity define the pion-box

contribution in a unique way.

Let us stress that these calculations are also a strong test of our Lorentz decomposition (50). Apart from

the function Π49, which does not get a contribution from the pion loop, all scalar functions have been shown to

be free of kinematics.

5.4 Contribution to (g − 2)µ

In this subsection, we insert our dispersive representation of the scalar functions into the master formula (112)

to get the contribution to aµ.

5.4.1 Pion-Pole Contribution

With (129) and using the master formula (112), we find the well-known result for the pion-pole contribution to

aµ [12]:

aπ0-pole
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where Q2
3 = Q2

1 + 2Q1Q2τ + Q2
2 and the integral kernels Ti are given in appendix B.2.

5.4.2 Pion-Box Contribution

The single-integral discontinuities and the double-spectral densities in the dispersive representations of the basis

functions (136) and (139) are quantities that can be extracted directly from the projected basis functions Π̃i.

Contrary, the separation of the double-spectral densities ρ̃i into the two contributions from the different scalar

funtions Πi is not unambiguously possible, which reflects just the redundancy (61). However, such a separation

is not necessary: for the calculation of aµ, we need the scalar functions Πi only in the limit k → 0. In this

limit, all the scalar functions Πi appearing in the master formula (113) can be expressed in terms of single-

dispersion integrals, where the discontinuities are directly related to the basis functions Π̃i. All the subtracted

double-spectral integrals, which are not unambiguously defined, drop out in the limit k → 0.
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The signs are determined by the second subtraction.

Note that for the sQED contribution all the discontinuities and the double-spectral densities in (136) and

(139) can be extracted from the loop representation of the basis functions (132). We have checked numerically
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sentations of the functions Π̃i agrees with the loop representation. It turns out that Π̃sQED
39 = Π̃sQED
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Contrary, the separation of the double-spectral densities ρ̃i into the two contributions from the different scalar

funtions Πi is not unambiguously possible, which reflects just the redundancy (61). However, such a separation

is not necessary: for the calculation of aµ, we need the scalar functions Πi only in the limit k → 0. In this

limit, all the scalar functions Πi appearing in the master formula (113) can be expressed in terms of single-
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The signs are determined by the second subtraction.

Note that for the sQED contribution all the discontinuities and the double-spectral densities in (136) and

(139) can be extracted from the loop representation of the basis functions (132). We have checked numerically

for some random kinematic points (below the appearance of anomalous thresholds) that the dispersive repre-

sentations of the functions Π̃i agrees with the loop representation. It turns out that Π̃sQED
39 = Π̃sQED

40 = 0, hence

we can set

ΠsQED
49 = 0, (142)

which also fixes the ambiguity discussed in subsection 3.3.2.

This completes our proof of the uniqueness of the pion-box contribution. The FsQED contribution fulfils the

same double-spectral representation as the pure pion-box topologies in the sense of unitarity. Cutkosky’s rule

tells us that the discontinuities of the FsQED contribution are the same as the ones of the pion-box topologies.

Therefore, the two representations are the same. Unitarity and Mandelstam analyticity define the pion-box

contribution in a unique way.

Let us stress that these calculations are also a strong test of our Lorentz decomposition (50). Apart from

the function Π49, which does not get a contribution from the pion loop, all scalar functions have been shown to
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aµ [12]:

aπ0-pole
µ =

2α3

3π2

� ∞

0
dQ1

� ∞

0
dQ2

� 1

−1
dτ

�
1− τ2Q3

1Q
3
2

·
�
T1(Q1, Q2, τ)Π̄π0-pole

1 (Q1, Q2, τ) + T2(Q1, Q2, τ)Π̄π0-pole
2 (Q1, Q2, τ)

�
,

(143)

with

Π̄π0-pole
1 = −

Fπ0γ∗γ∗
�
−Q2

1,−Q2
2

�
Fπ0γ∗γ∗

�
−Q2

3, 0
�

Q2
3 + M2

π

,

Π̄π0-pole
2 = −

Fπ0γ∗γ∗
�
−Q2

1,−Q2
3

�
Fπ0γ∗γ∗

�
−Q2

2, 0
�

Q2
2 + M2

π

,

(144)

where Q2
3 = Q2

1 + 2Q1Q2τ + Q2
2 and the integral kernels Ti are given in appendix B.2.

5.4.2 Pion-Box Contribution

The single-integral discontinuities and the double-spectral densities in the dispersive representations of the basis

functions (136) and (139) are quantities that can be extracted directly from the projected basis functions Π̃i.

Contrary, the separation of the double-spectral densities ρ̃i into the two contributions from the different scalar

funtions Πi is not unambiguously possible, which reflects just the redundancy (61). However, such a separation

is not necessary: for the calculation of aµ, we need the scalar functions Πi only in the limit k → 0. In this

limit, all the scalar functions Πi appearing in the master formula (113) can be expressed in terms of single-

dispersion integrals, where the discontinuities are directly related to the basis functions Π̃i. All the subtracted

double-spectral integrals, which are not unambiguously defined, drop out in the limit k → 0.
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The signs are determined by the second subtraction.

Note that for the sQED contribution all the discontinuities and the double-spectral densities in (136) and

(139) can be extracted from the loop representation of the basis functions (132). We have checked numerically

for some random kinematic points (below the appearance of anomalous thresholds) that the dispersive repre-

sentations of the functions Π̃i agrees with the loop representation. It turns out that Π̃sQED
39 = Π̃sQED

40 = 0, hence

we can set

ΠsQED
49 = 0, (142)

which also fixes the ambiguity discussed in subsection 3.3.2.

This completes our proof of the uniqueness of the pion-box contribution. The FsQED contribution fulfils the

same double-spectral representation as the pure pion-box topologies in the sense of unitarity. Cutkosky’s rule

tells us that the discontinuities of the FsQED contribution are the same as the ones of the pion-box topologies.

Therefore, the two representations are the same. Unitarity and Mandelstam analyticity define the pion-box

contribution in a unique way.

Let us stress that these calculations are also a strong test of our Lorentz decomposition (50). Apart from

the function Π49, which does not get a contribution from the pion loop, all scalar functions have been shown to

be free of kinematics.
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In this subsection, we insert our dispersive representation of the scalar functions into the master formula (112)

to get the contribution to aµ.
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where Q2
3 = Q2

1 + 2Q1Q2τ + Q2
2 and the integral kernels Ti are given in appendix B.2.

5.4.2 Pion-Box Contribution

The single-integral discontinuities and the double-spectral densities in the dispersive representations of the basis

functions (136) and (139) are quantities that can be extracted directly from the projected basis functions Π̃i.

Contrary, the separation of the double-spectral densities ρ̃i into the two contributions from the different scalar

funtions Πi is not unambiguously possible, which reflects just the redundancy (61). However, such a separation

is not necessary: for the calculation of aµ, we need the scalar functions Πi only in the limit k → 0. In this

limit, all the scalar functions Πi appearing in the master formula (113) can be expressed in terms of single-

dispersion integrals, where the discontinuities are directly related to the basis functions Π̃i. All the subtracted

double-spectral integrals, which are not unambiguously defined, drop out in the limit k → 0.
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The pion-pole contribution

From the unitarity relation with only π0 intermediate state, the pole residues in 
each channel are given by products of doubly-virtual and singly-virtual pion 
transition form factors (         and          , input for our analysis)

4 Mandelstam Representation

Pion pole

• input: doubly-virtual and

singly-virtual pion transition form

factors Fγ∗γ∗π0 and Fγ∗γπ0

• dispersive analysis of transition

form factor:

→ Hoferichter et al., EPJC 74 (2014) 3180

25

4 Mandelstam Representation

Pion pole

• input: doubly-virtual and

singly-virtual pion transition form

factors Fγ∗γ∗π0 and Fγ∗γπ0

• dispersive analysis of transition

form factor:

→ Hoferichter et al., EPJC 74 (2014) 3180

25

Data on doubly-virtual pion-photon interaction not available. However, these 
form factors can be reconstructed dispersively. This requires as input :

pion vector form factor

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersive analysis of the pion transition form factor

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

! To calculate the pion-pole contribution the crucial
ingredient is the pion transition form factor

! a dispersive representation thereof requires as input:
! the pion vector form factor [dispersive repr. well known]
! the γ∗ → 3π amplitude [analyzed dispersively in this work]
! the ππ scattering amplitude [dispersive repr. well known]

γ
∗

v

γ
∗

s

γ∗

s

P

amplitude

scattering amplitude

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersive analysis of the pion transition form factor

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

! To calculate the pion-pole contribution the crucial
ingredient is the pion transition form factor

! a dispersive representation thereof requires as input:
! the pion vector form factor [dispersive repr. well known]
! the γ∗ → 3π amplitude [analyzed dispersively in this work]
! the ππ scattering amplitude [dispersive repr. well known]

γ
∗

v

γ
∗

s

γ∗

s

P

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersive analysis of the pion transition form factor

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

! To calculate the pion-pole contribution the crucial
ingredient is the pion transition form factor

! a dispersive representation thereof requires as input:
! the pion vector form factor [dispersive repr. well known]
! the γ∗ → 3π amplitude [analyzed dispersively in this work]
! the ππ scattering amplitude [dispersive repr. well known]

γ
∗

v

γ
∗

s

γ∗

s

P

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

Pseudoscalar poles with higher masses can be treated analogously



Pion-box contribution

Defined by simultaneous two-pion cuts in two channels

Contribution to scalar functions as dispersive integral of double spectral functions 

4 Mandelstam Representation

Box contributions

• simultaneous two-pion cuts in
two channels

• Mandelstam representation
explicitly constructed

Πi =
1

π2

�
ds�dt�

ρsti (s
�, t�)

(s� − s)(t� − t)
+ (t ↔ u) + (s ↔ u)

• q2-dependence: pion vector form factors F V
π (q2i ) for

each off-shell photon factor out

26

Dependence on     carried by the pion vector FFs for each off-shell photon 

sQED loop projected onto the BTT structures fulfills the same Mandelstam 
representation of the pion box, the only difference being the pion vector FFs :

4 Mandelstam Representation

Box contributions

• sQED loop projected on BTT basis fulfils the same
Mandelstam representation

• only difference are factors of F V
π

• ⇒ box topologies are identical to FsQED:

≡ F V
π (q21)F

V
π (q22)F

V
π (q23)

×



 + +





• model-independent definition of pion loop
27

q2
i

Setting up the dispersive calculation: ππ intermediate states

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

In JHEP 2014 paper

ΠFsQED
µνλσ = F V

π

(

q2
1

)

F V
π

(

q2
2

)

F V
π

(

q2
3

)

×













Separate contribution with two simultaneous cuts

Analytic properties like the box diagram in sQED

Triangle and bulb required by gauge invariance

Multiplication with vector form factor F V
π gives correct q2-dependence ⇒ FsQED

Claim: FsQED is not an approximation Ππ-box
µνλσ = ΠFsQED

µνλσ

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 18

Setting up the dispersive calculation: ππ intermediate states

Πµνλσ = Ππ0-pole
µνλσ + Ππ-box

µνλσ + Π̄µνλσ + · · ·

Now with BTT basis

Constructed a Mandelstam representation for ππ intermediate states with

pion-pole left-hand cut

Checked explicitly that this agrees with FsQED

Proven: FsQED is not an approximation Ππ-box
µνλσ = ΠFsQED

µνλσ

Uniquely defines the notion of a “pion loop”

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 19



Numerics for the pion-box contribution

The only input: pion vector form factor in the space-like region

Preliminary results:                                                    
                        vs                           

Rapid convergence:  

Pion box: numerics

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
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0.6

0.7

0.8

0.9

1

NA7

|F
π V
|2

s [GeV2]

Our fit

Volmer et al.
VMD

Only input space-like pion vector form factor

Preliminary numbers: aπ-box
µ = −15.9 × 10−11, aπ-box,VMD

µ = −16.4 × 10−11

Error estimate in progress, but uncertainties will be tiny
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Pion box: numerics
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Only input space-like pion vector form factor

Preliminary numbers: aπ-box
µ = −15.9 × 10−11, aπ-box,VMD

µ = −16.4 × 10−11

Compare: aK -box,VMD
µ = −0.5 × 10−11
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Pion box: numerics
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Only input space-like pion vector form factor

Preliminary numbers: aπ-box
µ = −15.9 × 10−11, aπ-box,VMD
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Pion box: saturation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2
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0.6

0.8

1

Qmax [GeV]

VMD
Our fit

aπ
-b
o
x
,
c
u
t

µ
/a

π
-b
o
x

µ

Impose cutoff in momenta Qmax (polar-coordinate-type trafo)

Rapid convergence: Qmax = {1, 1.5}GeV ⇒ aπ-box
µ = {95,99}% of full result
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The remaining ππ contribution
4 Mandelstam Representation

Rescattering contribution

• neglect left-hand cut due to
multi-particle intermediate states
in crossed channel

• two-pion cut in only one channel

• expansion into partial waves

• unitarity relates it to the helicity
amplitudes of the subprocess
γ∗γ(∗) → ππ

29

Unitarity relates this contribution to the subprocess               ,                     

4 Mandelstam Representation

Rescattering contribution

• neglect left-hand cut due to
multi-particle intermediate states
in crossed channel

• two-pion cut in only one channel

• expansion into partial waves

• unitarity relates it to the helicity
amplitudes of the subprocess
γ∗γ(∗) → ππ

29Our goal is a dispersive reconstruction of helicity partial waves for    

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations+ partial-wave expansion
+ crossing symmetry+ unitarity+ gauge invariance

! On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

! γ∗γ → ππ Moussallam (13)

! γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)

! Constraints
! Low energy: pion polar., ChPT
! Primakoff: γπ → γπ at
COMPASS, JLAB

! Scattering: e+e− → e+e−ππ,
e+e− → ππγ

! Decays: ω,φ → ππγ

π−

π−

Z

e
+

e
−

π

π

e
+

e
−

π

π

Two-pion cut only in the direct channel:
LH cut due to multi-particle intermediate states
in the crossed channel neglected  

Colangelo, Hoferichter, MP, Stoffer (2014)

ππ intermediate states: rescattering

Dispersion relations for Πi , e.g. fixed-u at u = ub = q2
1

Π1(q
2
1 , q

2
2 , q

2
3) = lim

q2
4
→0

(

1

π

∫ ∞

4M2
π

ds′
Ds;u

1 (s′; ub)

s′ − q2
3

+
1

π

∫ ∞

4M2
π

dt ′
Dt;u

1 (t ′; ub)

t ′ − q2
2

)

Discontinuities from unitarity: diagonal in helicity basis for partial waves, e.g.

Im hJ
++,++

(

s; q2
1 , q

2
2 ; q2

3 , 0
)

=
σ(s)

16π
h∗

J,++

(

s; q2
1 , q

2
2

)

hJ,++

(

s; q2
3 , 0

)
h0,++ h0,++

↪→ need to project onto BTT basis

Solved for S-waves in 2014, now for arbitrary partial waves

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 25

then project onto BTT basis and use our master formula. 
We have recently extended our formalism to arbitrary partial waves.     

We checked that the PW expansion converges for FsQED (pion box)  



ππ rescattering : preliminary results

Omnès-type solutions allow for the summation 
of ππ rescattering effects in the direct 
channel (effects of resonances coupling to ππ)

The framework for a dispersive reconstruction of              helicity partial waves :
Roy-Steiner equations, respecting analyticity, unitarity and crossing  

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations+ partial-wave expansion
+ crossing symmetry+ unitarity+ gauge invariance

! On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

! γ∗γ → ππ Moussallam (13)

! γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)

! Constraints
! Low energy: pion polar., ChPT
! Primakoff: γπ → γπ at
COMPASS, JLAB

! Scattering: e+e− → e+e−ππ,
e+e− → ππγ

! Decays: ω,φ → ππγ

π−

π−

Z

e
+

e
−

π

π

e
+

e
−

π

π

Physics of γ∗γ∗ → ππ

ππ rescattering includes dofs corresponding to

resonances, e.g. f2(1270)

S-wave provides model-independent

implementation of the f0(500) σ, f0, a0

h0,++ h0,++
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Physics of γ∗γ∗ → ππ

ππ rescattering includes dofs corresponding to

resonances, e.g. f2(1270)

S-wave provides model-independent

implementation of the f0(500) σ, f0, a0

h0,++ h0,++
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We solved dispersion relations for              S-waves taking :

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π
0 TFF π-box π-resc.

Dispersion relations for γ∗
γ
∗ → ππ

Roy-Steiner eqs. = Dispersion relations+ partial-wave expansion
+ crossing symmetry+ unitarity+ gauge invariance

! On-shell γγ → ππ: prominent D-wave
reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

! γ∗γ → ππ Moussallam (13)

! γ∗γ∗ → ππ, new feature: anomalous
thresholds Hoferichter, GC, Procura, Stoffer (13)

! Constraints
! Low energy: pion polar., ChPT
! Primakoff: γπ → γπ at
COMPASS, JLAB

! Scattering: e+e− → e+e−ππ,
e+e− → ππγ

! Decays: ω,φ → ππγ

π−

π−

Z

e
+

e
−

π

π

e
+

e
−

π

π

pion pole as only LH singularity (pion VFF accounts for the off-shell behavior) 

ππ phase shifts from SU(2) inverse amplitude method (reproduce f0(500)) 

Preliminary results for ππ rescattering

S-wave contributions

Λ 1 GeV 1.5 GeV 2 GeV ∞

I = 0 −9.2 −9.5 −9.3 −8.8

I = 2 2.0 1.3 1.1 0.9

Check on γ∗γ∗ → ππ: sum rule involving J = 0 (and higher) amplitudes

↪→ fulfilled at better than 10% with S-waves alone

“f0(500) contribution” to aµ around 9 · 10−11

M. Hoferichter (Institute for Nuclear Theory) Towards a data-driven analysis of HLbL scattering Santa Barbara, October 21, 2016 31

Intro HLbL: gauge & crossing HLbL dispersive Conclusions Master Formula Dispersive calc. π-box π-resc.

Some preliminary numbers for π-rescattering

Based on:

! taking the pion pole as only left-hand singularity

! ⇒ pion vector FF to describe the off-shell behaviour

! ππ phases obtained with the inverse amplitude method
[reasonable low-energy representation + unique and well defined extrapolation to ∞]

! numerical solution of the γ∗γ∗ → ππ dispersion relation

S-wave contributions:

aHLbL
µ in 10−11 units

cutoff(GeV) 1 2 ∞
I = 0 −9.2 −9.4 −8.8
I = 2 2.0 1.0 0.9
total −7.3 −8.4 −7.9

f0 ...



Summary and Outlook
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FIG. 12: Comparison of analytical predictions with DEL-

PHI data for both track and calorimeter thrust distributions.

There is good qualitative and quantitative agreement in the

tail region, though as shown in Fig. 3, the theoretical uncer-

tainties at NLL
�
are larger than the experimental ones.
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FIG. 13: Calorimeter and track thrust distributions obtained

from Pythia 8. Apart from deviations in the peak region due

to higher-order non-perturbative corrections, these agree well

with our NLL
�
calculation after the leading power correction

is included (compare to Fig. 3).

of the full non-perturbative corrections, whereas we only
include the leading power correction. Future track thrust
calculations could use a full non-perturbative shape func-
tion for better modeling of the τ̄ � 0 region.

VIII. DISCUSSION

In this paper, we have presented the first calculation of
track thrust in perturbative QCD. Our result is accurate
to O(αs) in a fixed-order expansion while also including
NLL resummation, i.e. NLL� order. By incorporating
both track functions and the leading power correction,
we have accounted for the dominant non-perturbative ef-
fects that determine the track thrust distribution. Our
result is in good agreement with track thrust measure-
ments performed at ALEPH and DELPHI.
One feature seen in the data is a remarkable similarity

between the calorimeter thrust and track thrust distri-
butions. At NLL, we traced this feature to a partial
cancellation between two non-perturbative parameters—
one associated with the gluon track function gL1 , and one
associated with pairs of quark track functions qL. We
conjecture that a similar cancellation should be present
in most (if not all) dimensionless track-based observables.
This should be relatively straightforward to prove for
e+e− dijet event shapes with a thrust-like factorization
theorem, but is likely to persist for more general track-
based observables, including jet shapes relevant for the
LHC such as N -subjettiness ratios [50, 51] or energy cor-
relation functions ratios [52]. It is worth further study
to understand whether this partial cancellation is just an
accident or reflects some deeper property of track func-
tions. Crucially, we have seen that neither higher-order
terms at NLL� nor the leading power correction qualita-
tively spoil the similarity.

The track functions were originally designed to de-
scribe the energy fraction of a parton carried by tracks
(i.e. the large component of the light-cone momentum).
Track thrust essentially measures the small component of
the light-cone momentum carried by tracks, so it is per-
haps surprising that the same track functions can be used
in this context. The reason this works is that the track
thrust distribution can be thought of as arising from mul-
tiple gluon emissions, each of which carries its own track
function. Just as multiple emissions can be exponenti-
ated in the case of calorimeter thrust, multiple emissions
with track functions can also be exponentiated. In our
calculation, this shows up in the fact that the anomalous
dimension of the soft and jet functions depend on the
logarithmic moment of the gluon track function gL1 . We
are confident that similar techniques could be applied to
any track-based observable, as long as the calorimetric
version of that observable has a valid factorization theo-
rem. This motivates future experimental and theoretical
studies of track-based observables.

Acknowledgments

We thank Iain Stewart for discussions. H.C. and
W.W. are supported by the U.S. Department of Energy
(DOE) grant DE-FG02-90ER-40546. M.P. acknowledges
support by the “Innovations- und Kooperationspro-
jekt C-13” of the Schweizerische Universitätskonferenz
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Appendix A: Resummation

For the NLL� distribution in Eq. (50), we need ex-
pressions for the evolution kernels. Apart from the non-

Dispersive approach to HLbL scattering based on general principles: gauge 
invariance and crossing symmetry, unitarity and analyticity 

Derivation of a set of structures according to Bardeen-Tung-Tarrach (BTT) such 
that the scalar functions are free of kinematic singularities and zeros

Derivation of a general master formula for         in terms of BTT functionsaHLbL

µ

Single- and double-pion intermediate states are taken into account. 
Results can be extended to other pseudoscalar poles and two-meson states

First step towards a reduction of model dependence of HLbL: within a dispersive 
framework, relations with experimentally accessible (or dispersively reconstructed) 
quantities (form factors, scattering amplitudes)

Future work: refined analysis of ππ rescattering, reliable uncertainty estimates, 
higher intermediate states. Investigate and incorporate pQCD constraints

Preliminary numerical results for pion box and ππ rescattering
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A roadmap for HLbL

Colangelo, Hoferichter, Kubis, MP, Stoffer (2014)

Intro HLbL: gauge & crossing HLbL dispersive Conclusions

Hadronic light-by-light: a roadmap

GC, Hoferichter, Kubis, Procura, Stoffer arXiv:1408.2517 (PLB ’14)

γπ → ππγπ → ππ

e+e− → π0γe+e− → π0γ ω,φ → ππγ e+e− → ππγ

ππ → ππ

Pion transition form factor

Fπ0γ∗γ∗

(

q2
1
, q2

2

)

Partial waves for

γ∗γ∗
→ ππ e+e− → e+e−ππ

Pion vector

form factor F π
V

Pion vector

form factor F π
V

e+e− → 3π pion polarizabilitiespion polarizabilities γπ → γπ

ω,φ → 3π ω,φ → π0γ∗ω,φ → π0γ∗

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions
by and a collaboration among theorists and experimentalists


