# Dispersion relations for hadronic light-by-light scattering and the muon g-2

## Massimiliano Procura CERN

KLOE-2 Workshop on e+e- collision physics at 1 GeV, Frascati, Oct 26-28, 2016

#### Outline

- \* Introduction: the anomalous magnetic moment of the muon and its hadronic contributions. Dispersive approach to hadronic light-by-light (HLbL) scattering
- \* Lorentz structure of HLbL tensor: gauge invariance and crossing symmetry
- \*\* Master formula for the HLbL contribution to  $(g-2)_{\mu}$
- \* Focus on pion-pole, pion-box and ππ rescattering contributions
- \* Summary and outlook

Colangelo, Hoferichter, Procura, Stoffer, JHEP 1505 (2015) + work in progress
Colangelo, Hoferichter, Procura, Stoffer, JHEP 1409 (2014)
Colangelo, Hoferichter, Kubis, Procura, Stoffer, PLB 738 (2014)

 $\mbox{\#}$  The status of  $a_{\mu}=(g-2)_{\mu}/2$  : BNL E821 experiment vs SM prediction

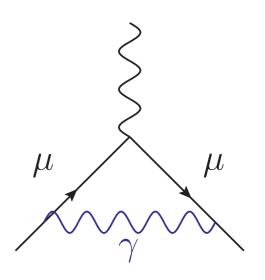
|                                                             | $a_{\mu}igl[10^{-11}igr]$ | $\Delta a_{\mu} [10^{-11}]$ |
|-------------------------------------------------------------|---------------------------|-----------------------------|
| experiment                                                  | 116 592 089.              | 63.                         |
|                                                             |                           |                             |
| $QED\ \mathcal{O}(lpha)$                                    | 116 140 973.21            | 0.03                        |
| QED $\mathcal{O}(\alpha^2)$                                 | 413 217.63                | 0.01                        |
| QED $\mathcal{O}(\alpha^3)$                                 | 30 141.90                 | 0.00                        |
| QED $\mathcal{O}(\alpha^4)$                                 | 381.01                    | 0.02                        |
| QED $\mathcal{O}(lpha^5)$                                   | 5.09                      | 0.01                        |
| QED total                                                   | 116 584 718.95            | 0.04                        |
| electroweak, total                                          | 153.6                     | 1.0                         |
| HVP (LO) [Hagiwara et al. 11]                               | 6 949.                    | 43.                         |
| HVP (NLO) [Hagiwara et al. 11]                              | <b>-98</b> .              | 1.                          |
| HLbL [Jegerlehner-Nyffeler 09]                              | 116.                      | 40.                         |
| HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]            | 12.4                      | 0.1                         |
| HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] | 3.                        | 2.                          |
| theory                                                      | 116 591 855.              | 59.                         |

$$a_{\mu}^{\exp} - a_{\mu}^{SM} \sim 3\,\sigma$$

 $\red{\#}$  The status of  $a_{\mu}=(g-2)_{\mu}/2$  : BNL E821 experiment vs SM prediction

|                                                             | $a_{\mu}igl[10^{-11}igr]$ | $\Delta a_{\mu} [10^{-11}]$ |
|-------------------------------------------------------------|---------------------------|-----------------------------|
| experiment                                                  | 116 592 089.              | 63.                         |
|                                                             |                           |                             |
| $QED\ \mathcal{O}(lpha)$                                    | 116 140 973.21            | 0.03                        |
| QED $\mathcal{O}(\alpha^2)$                                 | 413 217.63                | 0.01                        |
| QED $\mathcal{O}(\alpha^3)$                                 | 30 141.90                 | 0.00                        |
| QED $\mathcal{O}(\alpha^4)$                                 | 381.01                    | 0.02                        |
| QED $\mathcal{O}(\alpha^5)$                                 | 5.09                      | 0.01                        |
| QED total                                                   | 116 584 718.95            | 0.04                        |
| electroweak, total                                          | 153.6                     | 1.0                         |
| HVP (LO) [Hagiwara et al. 11]                               | 6 949.                    | 43.                         |
| HVP (NLO) [Hagiwara et al. 11]                              | <b>-98</b> .              | 1.                          |
| HLbL [Jegerlehner-Nyffeler 09]                              | 116.                      | 40.                         |
| HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]            | 12.4                      | 0.1                         |
| HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] | 3.                        | 2.                          |
| theory                                                      | 116 591 855.              | 59.                         |

$$a_{\mu}^{\mathrm{exp}} - a_{\mu}^{\mathrm{SM}} \sim 3\,\sigma$$

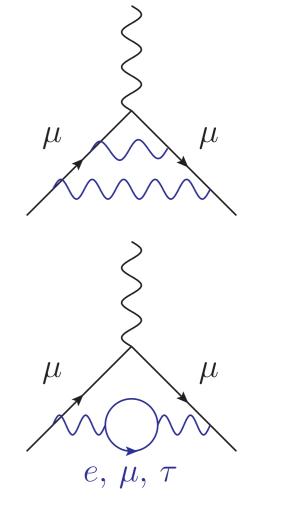


Schwinger 1948

 $\red{*}$  The status of  $a_{\mu}=(g-2)_{\mu}/2$  : BNL E821 experiment vs SM prediction

|                                                             | $a_{\mu}igl[10^{-11}igr]$ | $\Delta a_{\mu} [10^{-11}]$ |
|-------------------------------------------------------------|---------------------------|-----------------------------|
| experiment                                                  | 116 592 089.              | 63.                         |
|                                                             |                           |                             |
| $QED\ \mathcal{O}(\alpha)$                                  | 116 140 973.21            | 0.03                        |
| QED $\mathcal{O}(\alpha^2)$                                 | 413 217.63                | 0.01                        |
| QED $\mathcal{O}(\alpha^3)$                                 | 30 141.90                 | 0.00                        |
| QED $\mathcal{O}(\alpha^4)$                                 | 381.01                    | 0.02                        |
| QED $\mathcal{O}(\alpha^5)$                                 | 5.09                      | 0.01                        |
| QED total                                                   | 116 584 718.95            | 0.04                        |
| electroweak, total                                          | 153.6                     | 1.0                         |
| HVP (LO) [Hagiwara et al. 11]                               | 6 949.                    | 43.                         |
| HVP (NLO) [Hagiwara et al. 11]                              | <b>-98</b> .              | 1.                          |
| HLbL [Jegerlehner-Nyffeler 09]                              | 116.                      | 40.                         |
| HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]            | 12.4                      | 0.1                         |
| HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] | 3.                        | 2.                          |
| theory                                                      | 116 591 855.              | 59.                         |

$$a_{\mu}^{\mathrm{exp}} - a_{\mu}^{\mathrm{SM}} \sim 3\,\sigma$$

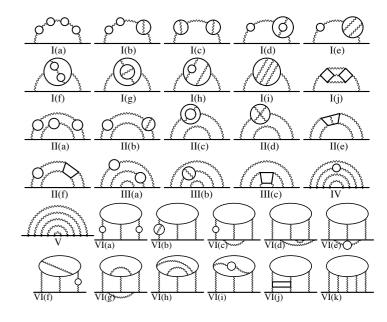


Petermann 1957 Sommerfield 1957

 $\red{\#}$  The status of  $a_{\mu}=(g-2)_{\mu}/2$  : BNL E821 experiment vs SM prediction

|                                                             | $a_{\mu}igl[10^{-11}igr]$ | $\Delta a_{\mu} [10^{-11}]$ |
|-------------------------------------------------------------|---------------------------|-----------------------------|
| experiment                                                  | 116 592 089.              | 63.                         |
|                                                             |                           |                             |
| $QED\ \mathcal{O}(\alpha)$                                  | 116 140 973.21            | 0.03                        |
| QED $\mathcal{O}(\alpha^2)$                                 | 413 217.63                | 0.01                        |
| QED $\mathcal{O}(\alpha^3)$                                 | 30 141.90                 | 0.00                        |
| QED $\mathcal{O}(\alpha^4)$                                 | 381.01                    | 0.02                        |
| QED $\mathcal{O}(\alpha^5)$                                 | 5.09                      | 0.01                        |
| QED total                                                   | 116 584 718.95            | 0.04                        |
| electroweak, total                                          | 153.6                     | 1.0                         |
| HVP (LO) [Hagiwara et al. 11]                               | 6 949.                    | 43.                         |
| HVP (NLO) [Hagiwara et al. 11]                              | <b>-98</b> .              | 1.                          |
| HLbL [Jegerlehner-Nyffeler 09]                              | 116.                      | 40.                         |
| HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]            | 12.4                      | 0.1                         |
| HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] | 3.                        | 2.                          |
| theory                                                      | 116 591 855.              | 59.                         |

$$a_{\mu}^{\mathrm{exp}} - a_{\mu}^{\mathrm{SM}} \sim 3\,\sigma$$



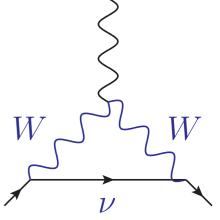
Kinoshita et al. 2012

 $\ref{main}$  The status of  $a_{\mu}=(g-2)_{\mu}/2$  : BNL E821 experiment vs SM prediction

|                                                             | $a_{\mu}igl[10^{-11}igr]$ | $\Delta a_{\mu} [10^{-11}]$ |
|-------------------------------------------------------------|---------------------------|-----------------------------|
| experiment                                                  | 116 592 089.              | 63.                         |
|                                                             |                           |                             |
| $QED\ \mathcal{O}(lpha)$                                    | 116 140 973.21            | 0.03                        |
| QED $\mathcal{O}(\alpha^2)$                                 | 413 217.63                | 0.01                        |
| QED $\mathcal{O}(\alpha^3)$                                 | 30 141.90                 | 0.00                        |
| QED $\mathcal{O}(\alpha^4)$                                 | 381.01                    | 0.02                        |
| QED $\mathcal{O}(\alpha^5)$                                 | 5.09                      | 0.01                        |
| QED total                                                   | 116 584 718.95            | 0.04                        |
| electroweak, total                                          | 153.6                     | 1.0                         |
| HVP (LO) [Hagiwara et al. 11]                               | 6 949.                    | 43.                         |
| HVP (NLO) [Hagiwara et al. 11]                              | <b>-98</b> .              | 1.                          |
| HLbL [Jegerlehner-Nyffeler 09]                              | 116.                      | 40.                         |
| HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]            | 12.4                      | 0.1                         |
| HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] | 3.                        | 2.                          |
| theory                                                      | 116 591 855.              | 59.                         |

$$a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} \sim 3\,\sigma$$

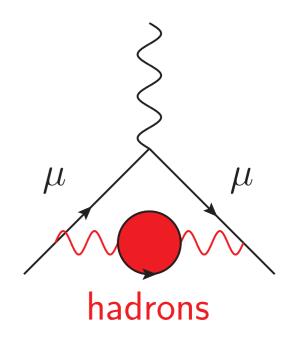




 $rac{l}{rac{l}{R}}$  The status of  $a_{\mu}=(g-2)_{\mu}/2$  : BNL E821 experiment vs SM prediction

|                                                             | $a_{\mu}igl[10^{-11}igr]$ | $\Delta a_{\mu} [10^{-11}]$ |
|-------------------------------------------------------------|---------------------------|-----------------------------|
| experiment                                                  | 116 592 089.              | 63.                         |
|                                                             |                           |                             |
| $QED\ \mathcal{O}(lpha)$                                    | 116 140 973.21            | 0.03                        |
| QED $\mathcal{O}(\alpha^2)$                                 | 413 217.63                | 0.01                        |
| QED $\mathcal{O}(\alpha^3)$                                 | 30 141.90                 | 0.00                        |
| QED $\mathcal{O}(\alpha^4)$                                 | 381.01                    | 0.02                        |
| QED $\mathcal{O}(\alpha^5)$                                 | 5.09                      | 0.01                        |
| QED total                                                   | 116 584 718.95            | 0.04                        |
| electroweak, total                                          | 153.6                     | 1.0                         |
| HVP (LO) [Hagiwara et al. 11]                               | 6 949.                    | 43.                         |
| HVP (NLO) [Hagiwara et al. 11]                              | <b>–98</b> .              | 1.                          |
| HLbL [Jegerlehner-Nyffeler 09]                              | 116.                      | 40.                         |
| HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]            | 12.4                      | 0.1                         |
| HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] | 3.                        | 2.                          |
| theory                                                      | 116 591 855.              | 59.                         |

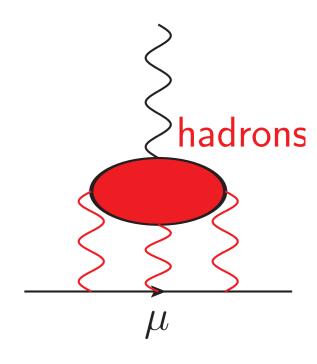
$$a_{\mu}^{\mathrm{exp}} - a_{\mu}^{\mathrm{SM}} \sim 3\,\sigma$$



 $\red{*}$  The status of  $a_{\mu}=(g-2)_{\mu}/2$  : BNL E821 experiment vs SM prediction

| $a_{\mu}igl[10^{-11}igr]$ | $\Delta a_{\mu} [10^{-11}]$                                                                                |
|---------------------------|------------------------------------------------------------------------------------------------------------|
| 116 592 089.              | 63.                                                                                                        |
|                           |                                                                                                            |
| 116 140 973.21            | 0.03                                                                                                       |
| 413 217.63                | 0.01                                                                                                       |
| 30 141.90                 | 0.00                                                                                                       |
| 381.01                    | 0.02                                                                                                       |
| 5.09                      | 0.01                                                                                                       |
| 116 584 718.95            | 0.04                                                                                                       |
| 153.6                     | 1.0                                                                                                        |
| 6 949.                    | 43.                                                                                                        |
| <b>–98</b> .              | 1.                                                                                                         |
| 116.                      | 40.                                                                                                        |
| 12.4                      | 0.1                                                                                                        |
| 3.                        | 2.                                                                                                         |
| 116 591 855.              | 59.                                                                                                        |
|                           | 116 592 089.  116 140 973.21 413 217.63 30 141.90 381.01 5.09 116 584 718.95  153.6  6 94998. 116. 12.4 3. |

$$a_{\mu}^{\mathrm{exp}} - a_{\mu}^{\mathrm{SM}} \sim 3\,\sigma$$



 $rac{l}{rac{l}{R}}$  The status of  $a_{\mu}=(g-2)_{\mu}/2$  : BNL E821 experiment vs SM prediction

|                                                             | $a_{\mu}$ $\left[10^{-11} ight]$ | $\Delta a_{\mu} [10^{-11}]$ |
|-------------------------------------------------------------|----------------------------------|-----------------------------|
| experiment                                                  | 116 592 089.                     | 63.                         |
|                                                             |                                  |                             |
| $QED\ \mathcal{O}(\alpha)$                                  | 116 140 973.21                   | 0.03                        |
| QED $\mathcal{O}(\alpha^2)$                                 | 413 217.63                       | 0.01                        |
| QED $\mathcal{O}(\alpha^3)$                                 | 30 141.90                        | 0.00                        |
| QED $\mathcal{O}(\alpha^4)$                                 | 381.01                           | 0.02                        |
| QED $\mathcal{O}(\alpha^5)$                                 | 5.09                             | 0.01                        |
| QED total                                                   | 116 584 718.95                   | 0.04                        |
| electroweak, total                                          | 153.6                            | 1.0                         |
| HVP (LO) [Hagiwara et al. 11]                               | 6 949.                           | 43.                         |
| HVP (NLO) [Hagiwara et al. 11]                              | <b>-98</b> .                     | 1.                          |
| HLbL [Jegerlehner-Nyffeler 09]                              | 116.                             | 40.                         |
| HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]            | 12.4                             | 0.1                         |
| HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] | 3.                               | 2.                          |
| theory                                                      | 116 591 855.                     | 59.                         |

$$a_{\mu}^{\mathrm{exp}} - a_{\mu}^{\mathrm{SM}} \sim 3\,\sigma$$

- New experiments at FNAL and J-PARC aim at improving the experimental precision
  - important to scrutinize theory predictions and get reliable uncertainties

## Introduction: hadronic vacuum polarization

- \* Limiting factor in the accuracy of SM predictions for  $a_{\mu}=(g-2)_{\mu}$  is control over hadronic contributions, responsible for most of the theory uncertainty
- **\*** HVP is directly related via the optical theorem to  $\sigma_{\text{tot}}(e^+e^- \to \gamma^* \to \text{hadrons})$

Obtained by integrating the R-ratio weighted with a perturbative QED kernel:

$$a_\ell^{\text{HVP-LO}} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{4M_\pi^2}^\infty \frac{dt}{t} K(t) R^{\text{had}}(t)$$
 dominated by the low-energy region

 $\divideontimes$  dedicated  $e^+e^-$  program (BaBar, BESIII, KLOE2 ...) to improve accuracy

## Introduction: hadronic vacuum polarization

- \* Limiting factor in the accuracy of SM predictions for  $a_{\mu}=(g-2)_{\mu}$  is control over hadronic contributions, responsible for most of the theory uncertainty
- **\*** HVP is directly related via the optical theorem to  $\sigma_{\text{tot}}(e^+e^- \to \gamma^* \to \text{hadrons})$

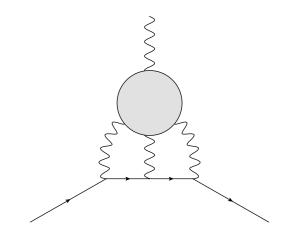
Obtained by integrating the R-ratio weighted with a perturbative QED kernel:

$$a_\ell^{\text{HVP-LO}} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{4M_\pi^2}^\infty \frac{dt}{t} K(t) R^{\text{had}}(t)$$
 dominated by the low-energy region

Lattice QCD determination of the HVP-LO: recent progress

\* Hadronic light-by-light (HLbL) is more problematic: model calculations and some high-energy and low-energy constraints.

Uncontrolled uncertainties



$$a_{\mu}^{\mathrm{HLbL}}$$
 in 10<sup>-11</sup> units

| Contribution                               | BPP            | HKS            | KN    | MV         | BP     | PdRV        | N/JN       |
|--------------------------------------------|----------------|----------------|-------|------------|--------|-------------|------------|
| $\pi^0, \eta, \eta'$                       | 85±13          | 82.7±6.4       | 83±12 | 114±10     | _      | 114±13      | 99±16      |
| $\pi, K$ loops                             | $-19 \pm 13$   | $-4.5 \pm 8.1$ | _     | _          | _      | $-19\pm19$  | $-19\pm13$ |
| $\pi, K$ loops + other subleading in $N_c$ | -              | _              | _     | $0 \pm 10$ | _      | _           | _          |
| axial vectors                              | $2.5{\pm}1.0$  | $1.7 \pm 1.7$  | _     | $22\pm 5$  | _      | $15 \pm 10$ | $22\pm 5$  |
| scalars                                    | $-6.8 \pm 2.0$ | -              | _     | _          | _      | $-7\pm7$    | $-7\pm 2$  |
| quark loops                                | $21\pm3$       | 9.7±11.1       | _     | _          | _      | 2.3         | $21\pm3$   |
| total                                      | 83±32          | 89.6±15.4      | 80±40 | 136±25     | 110±40 | 105±26      | 116±39     |

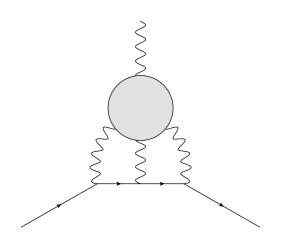
The two global evaluations: Bijnens, Pallante, Prades (1995, 1996) and Hayakawa, Kinoshita, Sanda (1995, 1996)

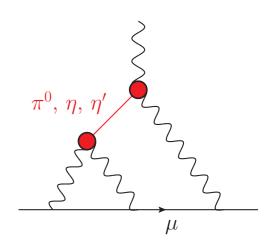
\* Hadronic light-by-light (HLbL) is more problematic: model calculations and some high-energy and low-energy constraints.

Uncontrolled uncertainties



| Contribution                               | BPP            | HKS            | KN    | MV          | BP     | PdRV        | N/JN        |
|--------------------------------------------|----------------|----------------|-------|-------------|--------|-------------|-------------|
| $\boxed{\pi^0,\eta,\eta'}$                 | 85±13          | 82.7±6.4       | 83±12 | 114±10      | _      | 114±13      | 99±16       |
| $\pi, K$ loops                             | $-19\pm13$     | $-4.5 \pm 8.1$ | _     | _           | _      | $-19\pm19$  | $-19\pm13$  |
| $\pi, K$ loops + other subleading in $N_c$ | _              | _              | _     | $0 \pm 10$  | _      | _           | _           |
| axial vectors                              | $2.5{\pm}1.0$  | $1.7 \pm 1.7$  | _     | $22\!\pm 5$ | _      | $15 \pm 10$ | $22\!\pm 5$ |
| scalars                                    | $-6.8 \pm 2.0$ | _              | _     | _           | _      | $-7\pm7$    | $-7\pm 2$   |
| quark loops                                | $21\pm3$       | 9.7±11.1       | _     | _           | _      | 2.3         | 21±3        |
| total                                      | 83±32          | 89.6±15.4      | 80±40 | 136±25      | 110±40 | 105±26      | 116±39      |



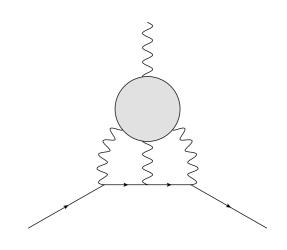


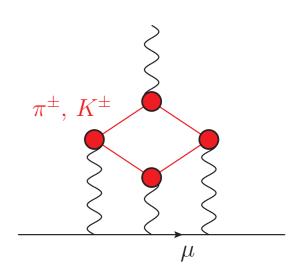
\* Hadronic light-by-light (HLbL) is more problematic: model calculations and some high-energy and low-energy constraints.

Uncontrolled uncertainties



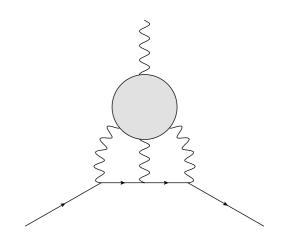
| Contribution                               | BPP            | HKS            | KN    | MV          | BP     | PdRV        | N/JN        |
|--------------------------------------------|----------------|----------------|-------|-------------|--------|-------------|-------------|
| $\pi^0, \eta, \eta'$                       | 85±13          | 82.7±6.4       | 83±12 | 114±10      | _      | 114±13      | 99±16       |
| $\pi, K 	ext{ loops}$                      | $-19\pm13$     | $-4.5 \pm 8.1$ | _     | _           | _      | $-19\pm19$  | $-19\pm13$  |
| $\pi, K$ loops + other subleading in $N_c$ | _              | _              | _     | $0 \pm 10$  | _      | _           | _           |
| axial vectors                              | $2.5{\pm}1.0$  | $1.7 \pm 1.7$  | _     | $22\!\pm 5$ | _      | $15 \pm 10$ | $22\!\pm 5$ |
| scalars                                    | $-6.8 \pm 2.0$ | _              | _     | _           | _      | $-7\pm7$    | $-7\pm2$    |
| quark loops                                | $21\pm3$       | $9.7 \pm 11.1$ | _     | _           | _      | 2.3         | $21\pm3$    |
| total                                      | 83±32          | 89.6±15.4      | 80±40 | 136±25      | 110±40 | 105±26      | 116±39      |





\* Hadronic light-by-light (HLbL) is more problematic: model calculations and some high-energy and low-energy constraints.

Uncontrolled uncertainties

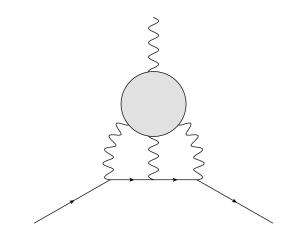


$$a_{\mu}^{\mathrm{HLbL}}$$
 in 10<sup>-11</sup> units

| Contribution                                   | BPP            | HKS            | KN    | MV         | BP     | PdRV         | N/JN               |             |                    |
|------------------------------------------------|----------------|----------------|-------|------------|--------|--------------|--------------------|-------------|--------------------|
| $\pi^0, \eta, \eta'$                           | 85±13          | 82.7±6.4       | 83±12 | 114±10     | _      | 114±13       | 99±16              |             |                    |
| $\pi, K$ loops                                 | $-19 \pm 13$   | $-4.5 \pm 8.1$ | _     | _          | -      | $-19 \pm 19$ | $-19\pm13$         |             | Jegerlehner (2015) |
| $\pi, K$ loops + other subleading in $\Lambda$ | Cc –           | _              | _     | $0 \pm 10$ | _      | _            | _                  |             |                    |
| axial vectors                                  | $2.5 \pm 1.0$  | $1.7 \pm 1.7$  | _     | $22\pm 5$  | _      | 15±10        | $\boxed{22 \pm 5}$ | <del></del> | ≈ 8±3              |
| scalars                                        | $-6.8 \pm 2.0$ | _              | _     | _          | _      | $-7\pm7$     | $-7\pm 2$          |             |                    |
| quark loops                                    | $21\pm3$       | $9.7 \pm 11.1$ | _     | _          | _      | 2.3          | $21\pm3$           |             |                    |
| total                                          | 83±32          | 89.6±15.4      | 80±40 | 136±25     | 110±40 | 105±26       | 116±39             | <b>—</b>    | 102±39             |

The two most often quoted estimates: Prades, de Rafael, Vainshtein (2009) and Jegerlehner, Nyffeler (2009)

\* Hadronic light-by-light (HLbL) is more problematic: model calculations and some high-energy and low-energy constraints. Uncontrolled uncertainties



a reliable uncertainty estimate is still an open issue

- lattice QCD: first computations at physical pion masses with leading disconnected contributions performed

  Blum et al. (2015, 2016)
- dispersion theory to make the evaluation as data driven as possible

## Our strategy for HLbL

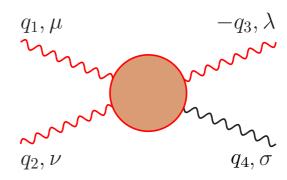
- Exploits fundamental principles :
  - gauge invariance and crossing symmetry
  - unitarity and analyticity
  - to relate HLbL to experimentally accessible quantities
- \* Much more challenging task than for the hadronic vacuum polarization due to the complexity of the HLbL tensor, which is the key object of our analysis
- \* Defines and relates single contributions to HLbL to form factors and cross sections

Alternative: dispersive treatment of the HLbL contribution to Pauli form factor by Pauk and Vanderhaeghen (2014) (so far only single-meson pole contributions)

- \* The HLbL tensor: gauge invariance and crossing symmetry
- \*\* Master formula for the HLbL contribution to  $(g-2)_{\mu}$
- \* Dispersive representation of scalar functions at fixed photon virtualities

#### The HLbL tensor

\* The fully off-shell HLbL tensor:



$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = -i \int d^4x \, d^4y \, d^4z \, e^{-i(q_1 \cdot x + q_2 \cdot y + q_3 \cdot z)} \langle 0 | T\{j_{\rm em}^{\mu}(x) j_{\rm em}^{\nu}(y) j_{\rm em}^{\lambda}(z) j_{\rm em}^{\sigma}(0)\} | 0 \rangle$$

\* Mandelstam variables:

$$s = (q_1 + q_2)^2$$
,  $t = (q_1 + q_3)^2$ ,  $u = (q_2 + q_3)^2$ 

\* Anomalous magnetic moment: Pauli form factor at zero momentum transfer

#### Lorentz structure of HLbL tensor

\*\* Based on Lorentz covariance the HLbL tensor can be decomposed in 138 structures

$$\begin{split} \Pi^{\mu\nu\lambda\sigma} &= g^{\mu\nu}g^{\lambda\sigma}\,\Pi^1 + g^{\mu\lambda}g^{\nu\sigma}\,\Pi^2 + g^{\mu\sigma}g^{\nu\lambda}\,\Pi^3 \\ &+ \sum_{\substack{i=2,3,4\\j=1,3,4}} \sum_{\substack{k=1,2,4\\l=1,2,3}} q_i^\mu q_j^\nu q_k^\lambda q_l^\sigma\,\Pi_{ijkl}^4 \\ &+ \sum_{\substack{i=2,3,4\\j=1,3,4}} g^{\lambda\sigma}q_i^\mu q_j^\nu\,\Pi_{ij}^5 + \sum_{\substack{i=2,3,4\\k=1,2,4}} g^{\nu\sigma}q_i^\mu q_k^\lambda\,\Pi_{ik}^6 + \sum_{\substack{i=2,3,4\\l=1,2,3}} g^{\nu\lambda}q_i^\mu q_l^\sigma\,\Pi_{il}^7 \\ &+ \sum_{\substack{j=1,3,4\\k=1,2,4}} g^{\mu\sigma}q_j^\nu q_k^\lambda\,\Pi_{jk}^8 + \sum_{\substack{j=1,3,4\\l=1,2,3}} g^{\mu\lambda}q_j^\nu q_l^\sigma\,\Pi_{jl}^9 + \sum_{\substack{k=1,2,4\\l=1,2,3}} g^{\mu\nu}q_k^\lambda q_l^\sigma\,\Pi_{kl}^{10} \end{split}$$

\* In 4 space-time dimensions there are 2 linear relations among these 138 structures

Eichmann, Fischer, Heupel, Williams (2014)

- \* Scalar functions encode the hadronic dynamics and depend on 6 kinematic variables
- \* This set of functions is hugely redundant: Ward identities imply 95 linear relations between these scalar functions (kinematic zeros)

#### Lorentz structure of HLbL tensor

\* Following Bardeen and Tung (1968) - "BT"- we contracted the HLBL tensor with

$$I_{12}^{\mu\nu} = g^{\mu\nu} - \frac{q_2^{\mu}q_1^{\nu}}{q_1 \cdot q_2}, \quad I_{34}^{\lambda\sigma} = g^{\lambda\sigma} - \frac{q_4^{\lambda}q_3^{\sigma}}{q_3 \cdot q_4}$$

- > 95 structures project to zero
- $rac{1}{q_1\cdot q_2}$  and  $1/q_3\cdot q_4$  poles eliminated by taking linear combinations of structures
- \*\* This procedure introduces kinematic singularities in the scalar functions : degeneracies in these BT Lorentz structures, e.g. as  $q_1 \cdot q_2 \to 0$ ,  $q_3 \cdot q_4 \to 0$

$$\sum_{k} c_k^i T_k^{\mu\nu\lambda\sigma} = q_1 \cdot q_2 X_i^{\mu\nu\lambda\sigma} + q_3 \cdot q_4 Y_i^{\mu\nu\lambda\sigma}$$

#### Lorentz structure of HLbL tensor

Following Tarrach (1975) we extended BT set to incorporate  $X_i^{\mu\nu\lambda\sigma}$ ,  $Y_i^{\mu\nu\lambda\sigma}$  to obtain a ("BTT") generating set of structures even for  $q_1\cdot q_2\to 0$ ,  $q_3\cdot q_4\to 0$ 

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2)$$

- ► Lorentz structures are manifestly gauge invariant
- crossing symmetry is manifest (only 7 genuinely different structures, the remaining ones being obtained by crossing)
- ► the BTT scalar functions are free of kinematic singularities and zeros: their analytic structure is dictated by dynamics only. This makes them suitable for a dispersive treatment

- \* The HLbL tensor: gauge invariance and crossing symmetry
- \*\* Master formula for the HLbL contribution to  $(g-2)_{\mu}$
- \* Dispersive representation of scalar functions at fixed photon virtualities

imes Differentiating the Ward identity with respect to  $q_4$  ,

$$\Pi_{\mu\nu\lambda\rho}(q_1, q_2, q_4 - q_1 - q_2) = -q_4^{\sigma} \frac{\partial}{\partial q_4^{\rho}} \Pi_{\mu\nu\lambda\sigma}(q_1, q_2, q_4 - q_1 - q_2)$$

one obtains the relation

$$a_{\mu}^{\mathrm{HLbL}} = -\frac{1}{48m_{\mu}} \mathrm{Tr} \left( (\not p + m_{\mu}) [\gamma^{\rho}, \gamma^{\sigma}] (\not p + m_{\mu}) \Gamma_{\rho\sigma}^{\mathrm{HLbL}} (p) \right)$$

where  $p^2=m_\mu^2$  and

$$\Gamma_{\rho\sigma}^{\text{HLbL}}(p) = e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \gamma^{\mu} \frac{(\not p + \not q_{1} + m_{\mu})}{(p + q_{1})^{2} - m_{\mu}^{2}} \gamma^{\lambda} \frac{(\not p - \not q_{2} + m_{\mu})}{(p - q_{2})^{2} - m_{\mu}^{2}} \gamma^{\nu}$$

$$\times \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}} \frac{\partial}{\partial q_{4}^{\rho}} \Pi_{\mu\nu\lambda\sigma}(q_{1}, q_{2}, q_{4} - q_{1} - q_{2}) \Big|_{q_{4} = 0}$$

$$\Pi_{\mu\nu\lambda\rho}(q_1, q_2, q_4 - q_1 - q_2) = -q_4^{\sigma} \frac{\partial}{\partial q_4^{\rho}} \Pi_{\mu\nu\lambda\sigma}(q_1, q_2, q_4 - q_1 - q_2)$$

one obtains the relation

$$a_{\mu}^{\mathrm{HLbL}} = -\frac{1}{48m_{\mu}} \mathrm{Tr} \left( (\not p + m_{\mu}) [\gamma^{\rho}, \gamma^{\sigma}] (\not p + m_{\mu}) \Gamma_{\rho\sigma}^{\mathrm{HLbL}}(p) \right)$$

Since there are no kinematic singularities in the BTT scalar functions,

$$a_{\mu}^{\text{HLbL}} = -\frac{e^{6}}{48m_{\mu}} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2}q_{2}^{2}(q_{1}+q_{2})^{2}} \frac{1}{(p+q_{1})^{2}-m_{\mu}^{2}} \frac{1}{(p-q_{2})^{2}-m_{\mu}^{2}} \times \text{Tr}\left((\not p+m_{\mu})[\gamma^{\rho},\gamma^{\sigma}](\not p+m_{\mu})\gamma^{\mu}(\not p+\not q_{1}+m_{\mu})\gamma^{\lambda}(\not p-\not q_{2}+m_{\mu})\gamma^{\nu}\right) \times \sum_{i=1}^{54} \left(\frac{\partial}{\partial q_{4}^{\rho}} T_{\mu\nu\lambda\sigma}^{i}(q_{1},q_{2},q_{4}-q_{1}-q_{2})\right) \Big|_{q_{4}=0} \Pi_{i}(q_{1},q_{2},-q_{1}-q_{2})$$

lpha Only 12 linear combinations of the scalar functions contribute to  $a_{\mu}^{
m HLbL}$  :

- $\divideontimes$  the functions  $\hat{T}_i$  contain trace and derivative (calculated)
- $\divideontimes$  Wick rotation of  $q_1$  ,  $q_2$  and p (allowed even in the presence of anomalous cuts)
- $st\!\!\!\!\!*$  5 out of 8 integrals can be done analytically, without knowing the scalar functions

\* We obtained a general master formula

$$\mathbf{a}_{\mu}^{\mathsf{HLbL}} = \frac{2\alpha^3}{3\pi^2} \int_0^{\infty} \mathrm{d}Q_1 \int_0^{\infty} \mathrm{d}Q_2 \int_{-1}^1 \mathrm{d}\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)$$

- $R_i^2 = -q_i^2$  are Euclidean momenta and  $Q_1 \cdot Q_2 = |Q_1| |Q_2| au$  : space-like kinematics
- \*\* We determined the integration kernels  $T_i$  . The scalar functions  $\bar{\Pi}_i$  are linear combinations of the BTT  $\Pi_i$
- # Generalization of the formula for the pion pole in Knecht and Nyffeler (2002)
- $\divideontimes$  Our goal: dispersive representation of  $ar{\Pi}_i$  at fixed photon virtualities

- \* The HLbL tensor: gauge invariance and crossing symmetry
- \* Master formula for the HLbL contribution to  $(g-2)_{\mu}$
- \* Dispersive representation of scalar functions at fixed photon virtualities

- \*\* Analytic properties of scalar functions relevant for the evaluation of  $a_{\mu}^{\rm HLbL}$ : right- and left-hand cuts, double spectral regions (box topologies)...
- \* Very complex analytic structure: approximations are required. We order the contributions according to the mass of intermediate states: the lightest states are expected to be the most important (in agreement with model calculations)
- \* Here we consider the 2 lowest-lying contributions: one- and two-pion intermediate states in all channels

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

- \*\* Analytic properties of scalar functions relevant for the evaluation of  $a_{\mu}^{\rm HLbL}$ : right- and left-hand cuts, double spectral regions (box topologies)...
- \* Very complex analytic structure: approximations are required. We order the contributions according to the mass of intermediate states: the lightest states are expected to be the most important (in agreement with model calculations)
- \* Here we consider the 2 lowest-lying contributions: one- and two-pion intermediate states in all channels

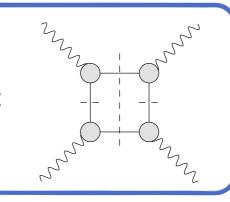
$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

one-pion intermediate state:

- \*\* Analytic properties of scalar functions relevant for the evaluation of  $a_{\mu}^{\rm HLbL}$ : right- and left-hand cuts, double spectral regions (box topologies)...
- \* Very complex analytic structure: approximations are required. We order the contributions according to the mass of intermediate states: the lightest states are expected to be the most important (in agreement with model calculations)
- \* Here we consider the 2 lowest-lying contributions: one- and two-pion intermediate states in all channels

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

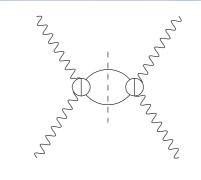
two-pion intermediate state in both channels :



- \*\* Analytic properties of scalar functions relevant for the evaluation of  $a_{\mu}^{\rm HLbL}$ : right- and left-hand cuts, double spectral regions (box topologies)...
- \* Very complex analytic structure: approximations are required. We order the contributions according to the mass of intermediate states: the lightest states are expected to be the most important (in agreement with model calculations)
- # Here we consider the 2 lowest-lying contributions: one- and two-pion intermediate states in all channels

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion intermediate state in the direct channel:



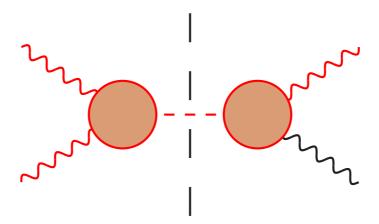
- \*\* Analytic properties of scalar functions relevant for the evaluation of  $a_{\mu}^{\rm HLbL}$ : right- and left-hand cuts, double spectral regions (box topologies)...
- \* Very complex analytic structure: approximations are required. We order the contributions according to the mass of intermediate states: the lightest states are expected to be the most important (in agreement with model calculations)
- \* Here we consider the 2 lowest-lying contributions: one- and two-pion intermediate states in all channels

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

higher intermediate states: neglected here

## The pion-pole contribution

\* From the unitarity relation with only  $\pi^0$  intermediate state, the pole residues in each channel are given by products of doubly-virtual and singly-virtual pion transition form factors ( $\mathcal{F}_{\gamma^*\gamma^*\pi^0}$  and  $\mathcal{F}_{\gamma^*\gamma\pi^0}$ , input for our analysis)



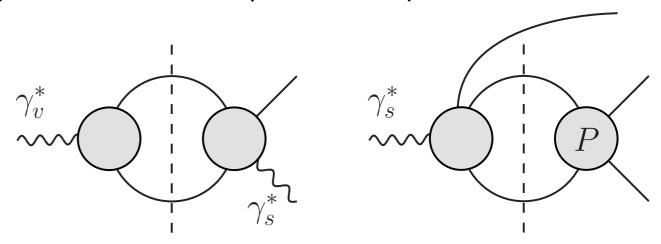
$$a_{\mu}^{\pi^{0}\text{-pole}} = \frac{2\alpha^{3}}{3\pi^{2}} \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \sqrt{1 - \tau^{2}} Q_{1}^{3} Q_{2}^{3} \left( T_{1}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{1}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} + T_{2}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{2}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} \right) dQ_{1} dQ_{2} \int_{-1}^{1} d\tau \sqrt{1 - \tau^{2}} Q_{1}^{3} Q_{2}^{3} \left( T_{1}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{1}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} + T_{2}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{2}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} \right) dQ_{2} dQ_{2} \int_{-1}^{1} d\tau \sqrt{1 - \tau^{2}} Q_{1}^{3} Q_{2}^{3} \left( T_{1}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{1}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} + T_{2}(Q_{1}, Q_{2}, \tau) \overline{\Pi_{2}^{\pi^{0}\text{-pole}}(Q_{1}, Q_{2}, \tau)} \right) dQ_{2} dQ_{2}$$

with

$$\bar{\Pi}_{1}^{\pi^{0}\text{-pole}} = -\frac{\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}\left(-Q_{1}^{2}, -Q_{2}^{2}\right)\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}\left(-Q_{3}^{2}, 0\right)}{Q_{3}^{2} + M_{\pi}^{2}} \qquad \bar{\Pi}_{2}^{\pi^{0}\text{-pole}} = -\frac{\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}\left(-Q_{1}^{2}, -Q_{3}^{2}\right)\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}\left(-Q_{2}^{2}, 0\right)}{Q_{2}^{2} + M_{\pi}^{2}}$$

## The pion-pole contribution

- \* From the unitarity relation with only  $\pi^0$  intermediate state, the pole residues in each channel are given by products of doubly-virtual and singly-virtual pion transition form factors ( $\mathcal{F}_{\gamma^*\gamma^*\pi^0}$  and  $\mathcal{F}_{\gamma^*\gamma\pi^0}$ , input for our analysis)
- \* Data on doubly-virtual pion-photon interaction not available. However, these form factors can be reconstructed dispersively. This requires as input:
  - pion vector form factor
  - $ightharpoonup \gamma^* 
    ightarrow 3\pi$  amplitude
  - $\blacktriangleright$   $\pi\pi$  scattering amplitude



Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

Pseudoscalar poles with higher masses can be treated analogously

#### Pion-box contribution

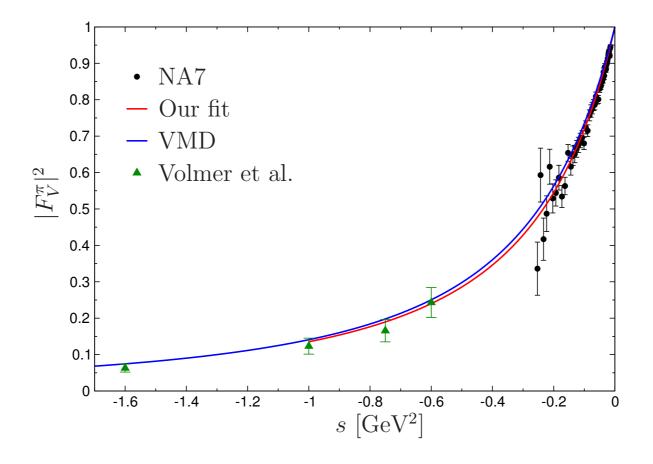
- \* Defined by simultaneous two-pion cuts in two channels
- \* Contribution to scalar functions as dispersive integral of double spectral functions

$$\Pi_i = \frac{1}{\pi^2} \int ds' dt' \frac{\rho_i^{st}(s', t')}{(s' - s)(t' - t)} + (t \leftrightarrow u) + (s \leftrightarrow u)$$

- $\slash\hspace{-0.4em}\#$  Dependence on  $q_i^2$  carried by the pion vector FFs for each off-shell photon
- \*\* sQED loop projected onto the BTT structures fulfills the same Mandelstam representation of the pion box, the only difference being the pion vector FFs:

## Numerics for the pion-box contribution

\* The only input: pion vector form factor in the space-like region

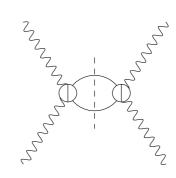


- Preliminary results:  $a_{\mu}^{\pi\text{-box}} = -15.9 \times 10^{-11}, \ a_{\mu}^{\pi\text{-box,VMD}} = -16.4 \times 10^{-11}$ VS  $a_{\mu}^{K\text{-box,VMD}} = -0.5 \times 10^{-11}$
- \*\* Rapid convergence:  $Q_{\text{max}} = \{1, 1.5\} \text{ GeV } \Rightarrow a_{\mu}^{\pi\text{-box}} = \{95, 99\}\% \text{ of full result }$

## The remaining $\pi\pi$ contribution

\*\* Two-pion cut only in the direct channel:

LH cut due to multi-particle intermediate states
in the crossed channel neglected



- \*\* Unitarity relates this contribution to the subprocess  $\gamma^*\gamma^{(*)} \to \pi\pi$
- $\ref{W}$  Our goal is a dispersive reconstruction of helicity partial waves for  $\gamma^*\gamma^* \to \pi\pi$ Colangelo, Hoferichter, MP, Stoffer (2014)

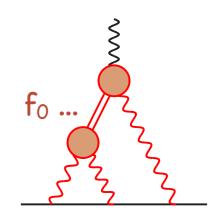
$$\operatorname{Im} h_{++,++}^{J}(s; q_{1}^{2}, q_{2}^{2}; q_{3}^{2}, 0) = \frac{\sigma(s)}{16\pi} h_{J,++}^{*}(s; q_{1}^{2}, q_{2}^{2}) h_{J,++}(s; q_{3}^{2}, 0)$$

then project onto BTT basis and use our master formula. We have recently extended our formalism to arbitrary partial waves.

\* We checked that the PW expansion converges for FsQED (pion box)

## ππ rescattering: preliminary results

- \*\* The framework for a dispersive reconstruction of  $\gamma^*\gamma^* \to \pi\pi$  helicity partial waves : Roy-Steiner equations, respecting analyticity, unitarity and crossing
- \*\* Omnès-type solutions allow for the summation of ππ rescattering effects in the direct channel (effects of resonances coupling to ππ)



- $\redsymbol{\#}$  We solved dispersion relations for  $\gamma^*\gamma^* o \pi\pi$  S-waves taking :
  - pion pole as only LH singularity (pion VFF accounts for the off-shell behavior)
  - $\blacktriangleright$  ππ phase shifts from SU(2) inverse amplitude method (reproduce  $f_0(500)$ )

| $a_{\mu}^{ m HLbL}$ | in $10^{-11}$ | units |
|---------------------|---------------|-------|
|---------------------|---------------|-------|

| ٨            | 1 GeV | 1.5 GeV | 2 GeV | $\infty$ |
|--------------|-------|---------|-------|----------|
| <i>I</i> = 0 | -9.2  | -9.5    | -9.3  | -8.8     |
| <i>l</i> = 2 | 2.0   | 1.3     | 1.1   | 0.9      |

## Summary and Outlook

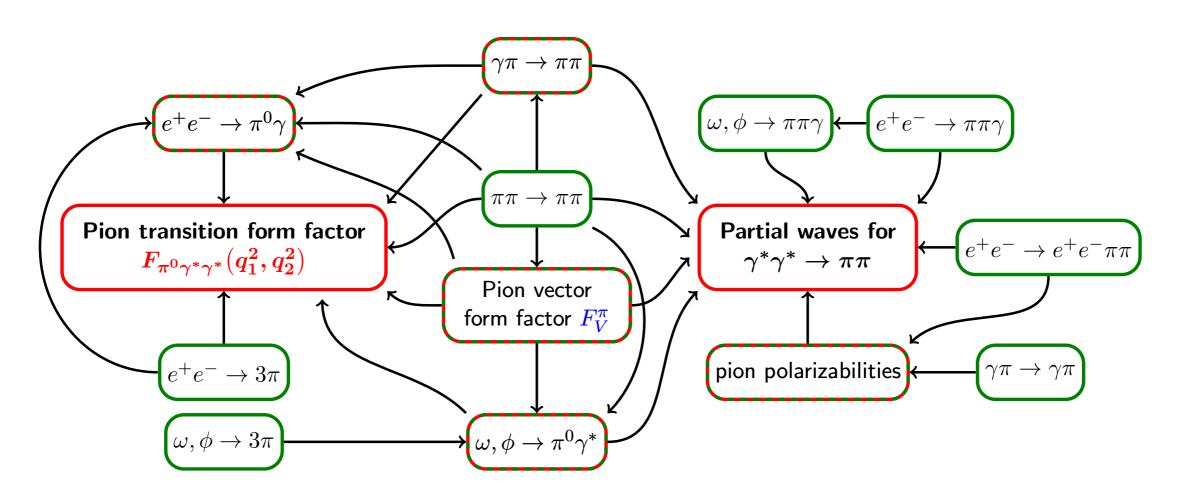
- \* Dispersive approach to HLbL scattering based on general principles: gauge invariance and crossing symmetry, unitarity and analyticity
- \* Derivation of a set of structures according to Bardeen-Tung-Tarrach (BTT) such that the scalar functions are free of kinematic singularities and zeros
- $rac{\#}{}$  Derivation of a general master formula for  $a_{\mu}^{
  m HLbL}$  in terms of BTT functions
- \*\* Single- and double-pion intermediate states are taken into account.

  Results can be extended to other pseudoscalar poles and two-meson states
- \* Preliminary numerical results for pion box and ππ rescattering
- Future work: refined analysis of ππ rescattering, reliable uncertainty estimates, higher intermediate states. Investigate and incorporate pQCD constraints
- \* First step towards a reduction of model dependence of HLbL: within a dispersive framework, relations with experimentally accessible (or dispersively reconstructed) quantities (form factors, scattering amplitudes)

## Additional slides

## A roadmap for HLbL

Colangelo, Hoferichter, Kubis, MP, Stoffer (2014)



Artwork by M. Hoferichter