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J€ The status of a, = (g9 — 2),/2 : BNL E821 experiment vs SM prediction

a,[107"]  Aa,[107]
experiment 116592 089. 63.
QED O(a) 116 140 973.21 0.03
QED O(a?) 413217.63 0.01
QED O(a?) 30141.90 0.00
QED O(a*) 381.01 0.02
QED O(ab) 5.09 0.01
QED total 116584 718.95 0.04
electroweak, total 153.6 1.0
HVP (LO) [Hagiwara et al. 11] 6 949. 43.
HVP (NLO) [Hagiwara et al. 11] —98. 1.
HLbL [Jegerlehner-Nyffeler 09] 1 16 40
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14] 12.4 0.1
HLbL (N LO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] 3 2
theory 116591 855. 59.
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J€ The status of a, = (g9 — 2),/2 : BNL E821 experiment vs SM prediction

a,[107"]  Aa,[1071] a®P _ SM 34
experiment 116592 089. 63. H H

QED O(«) 116140 973.21 0.03

QED O(a?) 413217.63 0.01

QED O(ca?) 30141.90 0.00

QED O(o*) 381.01 0.02

QED O(a5) 5.09 0.01

QED total 116584 718.95 0.04

electroweak, total 153.6 1.0

HVP (LO) [Hagiwara et al. 11] 6 949. 43.
HVP (NLO) [Hagiwara et al. 11] —98. 1.
HLbL [Jegerlehner-Nyffeler 09] 11 6 40
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14] 12.4 0.1
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] 3. 2.
theory 116591 855. 99.

3¢ New experiments at FNAL and J-PARC aim at improving the experimental precision

P> important to scrutinize theory predictions and get reliable uncertainties



Introduction: hadronic vacuum polarization

# Limiting factor in the accuracy of SM predictions for a, = (g — 2), is control
over hadronic contributions, responsible for most of the theory uncertainty

3€ HVP is directly related via the optical theorem to o (e*e~ — v* — hadrons)

2

Y Y Y
Im wv‘mm = W\E X a-tot(e+e_ — hadrons)
hadrons hadrons

Obtained by integrating the R-ratio weighted with a perturbative QED kernel :

2 (©.@)
a VPO — ! (2) / e (t)R"9(t)  dominated by the low-energy region
3 A 4M7% t

3 dedicated eTe” program (BaBar, BESIII, KLOE2 ...) to improve accuracy
Prog P
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# Limiting factor in the accuracy of SM predictions for a, = (g — 2), is control
over hadronic contributions, responsible for most of the theory uncertainty

3€ HVP is directly related via the optical theorem to o (e*e~ — v* — hadrons)

2

Y Y Y
Im wv‘m = W\E X a-tot(e+e_ — hadrons)
hadrons hadrons

Obtained by integrating the R-ratio weighted with a perturbative QED kernel :

2 (©.@)
a VPO — ! (2) / e (t)R"9(t)  dominated by the low-energy region
3 A 4M7% t

3¢ Lattice QCD determination of the HVP-LO : recent progress

Blum et al., Burger et al., Chakraborty et al., ..



Introduction: hadronic light-by-light
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3§ Hadronic light-by-light (HLbL) is more problematic:
model calculations and some high-energy and
low-energy constraints.

Uncontrolled uncertainties

aﬁLbL in 10— 1" units

Contribution BPP HKS KN MV BP PdRV ~ N/JN
w0 n,n 85+13  82.7+6.4 83+12 114410 — 114413  99+16
7, K loops —19+13 —4.548.1 - — - —19419 —19413
7, K loops + other subleading in N, — — — 0+10 — — —
axial vectors 2.5+1.0 1.7£1.7 — 2245 — 15+£10 2245
scalars —6.8+2.0 — — — — —7+7 —-T7£2
quark loops 21+ 3 9.7f£11.1 — — — 2.3 21+ 3
total 83+32  89.64+15.4 | 80+40 136+25 110+40 1054+26 116+39

_J

The two global evaluations: Bijnens, Pallante, Prades (1995, 1996) and Hayakawa, Kinoshita, Sanda (1995, 1996)
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3§ Hadronic light-by-light (HLbL) is more problematic:
model calculations and some high-energy and
low-energy constraints.

Uncontrolled uncertainties

aﬁLbL in 10— 1" units

Contribution BPP HKS KN MV PdRV N/JN
7r0, n,n 85+13 82.71+6.4 83+12 114+10 — 1144+13 99416
7, K loops —19+13 —4.5+8.1 — — — —19+19 —19+13 Jegerlehner (2015)
7, K loops + other subleading in N, — — — 0+10 — — —
axial vectors 2.5+1.0 1.7+1.7 — 22+ 5 — 154+10 @ — =~ 843
scalars —6.81+2.0 — — — — —T+£7 —=T7%2
quark loops 21+ 3 9.7f£11.1 — — — 2.3 21+ 3
total 83+32 89.6+15.4  80+40 136425 110140‘ 105+26 <« 102139

The two most often quoted estimates: Prades, de Rafael, Vainshtein (2009) and Jegerlehner, Nyffeler (2009)
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3§ Hadronic light-by-light (HLbL) is more problematic:
model calculations and some high-energy and
low-energy constraints.

Uncontrolled uncertainties

P> a reliable uncertainty estimate is still an open issue

3€ How to reduce model dependence ? Recent strategies for an improved calculation :

P lattice QCD: first computations at physical pion masses with leading

disconnected contributions performed Blum et al. (2015, 2016)

P> dispersion theory to make the evaluation as data driven as possible



Our strategy for HLbL

R

J€ Exploits fundamental principles :

P> gauge invariance and crossing symmetry

P> unitarity and analyticity

to relate HLbL to experimentally accessible quantities

J Much more challenging task than for the hadronic vacuum polarization due to the
complexity of the HLbL tensor, which is the key object of our analysis

J€ Defines and relates single contributions to HLbL to form factors and cross sections

Alternative: dispersive treatment of the HLbL contfribution to Pauli form factor
by Pauk and Vanderhaeghen (2014) (so far only single-meson pole contributions)



The HLbL tensor: gauge invariance and crossing symmetry

Master formula for the HLbL contribution to (g-2),

Dispersive representation of scalar functions at fixed photon virtualities



The HLbL tensor

W
3¢ The fully off-shell HLbL tensor : . g A

1427 (q1, g2, g3) = —i / d'z dydiz em et vt e 2 (O (L (2) 6 (y) o (2)m (0)}0)

3 Mandelstam variables:

s=(p+@)t=(@+qg) u=(0p+qg)

3€ Anomalous magnetic moment: Pauli form factor at zero momentum transfer



Lorentz structure of HLbL tensor

W—-—————
3€ Based on Lorentz covariance the HLbL tensor can be decomposed in 138 structures

H,LU/AU — g,tu/gAa Hl T g,uAgl/a H2 4+ g,uagl/A H3

A o114
+ :E: a4 05 aral Wi
i=2,3,4 k=1,2,4
=1,3,4 1=1,2,3
- PTG+ Y g7 g TIG, + Z g} qf T
i=2,3 4 =

2,3, =
1,2 =1

1=
k=

,4
+ Y PRI+ > Mgl T + Z 9" qraf T}
1,3,4 —1,3.4
1,24 1,23

NN

1,3,

yoy

J
k

3¢ In 4 space-time dimensions there are 2 linear relations among these 138 structures

Eichmann, Fischer, Heupel, Williams (2014)

3¢ Scalar functions encode the hadronic dynamics and depend on 6 kinematic variables

3¢ This set of functions is hugely redundant: Ward identities imply 95 linear relations
between these scalar functions (kinematic zeros)



Lorentz structure of HLbL tensor
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J€ Following Bardeen and Tung (1968) - "BT”- we contracted the HLBL tensor with

w_v A O
I,uy 71 42 41 ])\O‘ _ Ao 4493
12 — 49 ; 34 —

d1 - 42 43 - 44

P> 95 structures project to zero
3 1/¢1-¢ and 1/¢s - ¢4 poles eliminated by taking linear combinations of structures

¢ This procedure introduces kinematic singularities in the scalar functions :
degeneracies in these BT Lorentz structures, e.g. as ¢; - ¢ — 0, ¢3¢ — 0

Z qu,'chiw)\a = q - q2XZ{.LV)\O' + g3 - q4Y;’uV>‘J
k



Lorentz structure of HLbL tensor
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¥ Following Tarrach (1975) we extended BT set to incorporate X!/,
to obtain a ("BTT") generating set of structures even for ¢ -¢ —0,¢3-q1 — 0

UVAT
Y,

1" (g1, g2, q3) ZTW/\U S, 1, u; CIJ)

V.

P> Lorentz structures are manifestly gauge invariant

B crossing symmetry is manifest (only 7 genuinely different structures, the
remaining ones being obtained by crossing)

B> the BTT scalar functions are free of kinematic singularities and zeros :
their analytic structure is dictated by dynamics only. This makes them
suitable for a dispersive treatment



The HLbL tensor: gauge invariance and crossing symmetry

Master formula for the HLbL contribution to (g-2),

Dispersive representation of scalar functions at fixed photon virtualities



Master formula for a,Htel
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3¢ Differentiating the Ward identity with respect to qu,

, 0
g (q1,92,94 — @1 — @2) = —qj4 0e" 00 (91,92, 94 — g1 — G2)
4

one obtains the relation

HLbL _ _
H 48m,,

0 Tr ((p + my) 0", 771 + m)T ™ ()

where p* = m’, and

HLbL () _ 6 d'q d*qp PHd, +mu)  (P—d,+mu)
Lo (P) = /(27T)4 et pra)?—mz ' (p—a—mp’

1 0

X IL,oa0(q1,92,94 — q1 — @2
?q3(q1 + q2)2 0 1" o )

qs=0



Master formula for a,Htel
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3¢ Differentiating the Ward identity with respect to g4,

, 0
g (q1,92,94 — @1 — @2) = —qj4 0e" 00 (91,92, 94 — g1 — G2)
4

one obtains the relation

P = o T (4 m) BN T )

3¢ Since there are no kinematic singularities in the BTT scalar functions,

HLbL _ e’ / d*qr d*qe 1 1 1
8 8m,, J (2m)* 2m)* ¢fas(qr +q2)* (P +@1)? —mi (p— q2)* —m,

X T ((p + 1) 2,7 (B + M)y (B + gy + )7 (B =y + )y

XZ(@ 2 /,LI/)\O' QI QQ7Q4_Q1_Q2)>

I1;(q1, 92, —q1 — q2)
q4=0




Master formula for a,Htel
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HLbL |,

#€ Only 12 linear combinations of the scalar functions contribute to a,,

HLbL 6 d* gy d* g S22 Ti(ar, g2 P)Ni(G1, G2, —q1 — Qo)

s (2m)* J (27)* g505(q1 + )2 ((P+ q1)2 — m2) ((p — G2)2 — m2))

a

¥ the functions 7, contain trace and derivative (calculated)

3 Wick rotation of q1,92 and p (allowed even in the presence of anomalous cuts)

3¢ 5 out of 8 integrals can be done analytically, without knowing the scalar functions



Master formula for a,Htel
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3 We obtained a general master formula

, . 1 12 .
HLbL / dQ; / sz/ dr/1 — 7-2@1303 E Ti(Qy, Qo, 7)N;(Qy, Qo, T)
i—1

¥ @ = —¢ are Euclidean momenta and Q1-Q2 = |Q1]|Q2|7 : space-like kinematics

¥ We determined the integration kernels T
The scalar functions 1I; are linear combinations of the BTT II,

3¢ Generalization of the formula for the pion pole in Knecht and Nyffeler (2002)

J€ Our goal: dispersive representation of II; at fixed photon virtualities



The HLbL tensor: gauge invariance and crossing symmetry

Master formula for the HLbL contribution to (g-2),

Dispersive representation of scalar functions at fixed photon virtualities



Mandelstam representation
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€ Analytic properties of scalar functions relevant for the evaluation of a
right- and left-hand cuts, double spectral regions (box topologies)...

HLbL .
L :

3¢ Very complex analytic structure: approximations are required. We order the
contributions according to the mass of intermediate states: the lightest states are
expected to be the most important (in agreement with model calculations)

3 Here we consider the 2 lowest-lying contributions: one- and two-pion
infermediate states in all channels

__ 1y°-pole box B
HMV)\U o H,Lu/)\a + H,LU/)\U + HMVAU T
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€ Analytic properties of scalar functions relevant for the evaluation of a
right- and left-hand cuts, double spectral regions (box topologies)...

HLbL .
L :

3¢ Very complex analytic structure: approximations are required. We order the
contributions according to the mass of intermediate states: the lightest states are
expected to be the most important (in agreement with model calculations)

3 Here we consider the 2 lowest-lying contributions: one- and two-pion
infermediate states in all channels

70- =
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UV AT UV IO
4 - T

one-pion intermediate state :




Mandelstam representation
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€ Analytic properties of scalar functions relevant for the evaluation of a
right- and left-hand cuts, double spectral regions (box topologies)...

HLbL .
L :

3¢ Very complex analytic structure: approximations are required. We order the
contributions according to the mass of intermediate states: the lightest states are
expected to be the most important (in agreement with model calculations)

3 Here we consider the 2 lowest-lying contributions: one- and two-pion
infermediate states in all channels

__ 1y°-pole box B
HMV)\U o H,Lu/)\a + H,LU/)\U + HMVAU T

\

two-pion intermediate state in both channels :




Mandelstam representation
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€ Analytic properties of scalar functions relevant for the evaluation of a
right- and left-hand cuts, double spectral regions (box topologies)...

HLbL .
L :

3¢ Very complex analytic structure: approximations are required. We order the
contributions according to the mass of intermediate states: the lightest states are
expected to be the most important (in agreement with model calculations)

3 Here we consider the 2 lowest-lying contributions: one- and two-pion
infermediate states in all channels

__ 1y°-pole box B
HMV)\U o H,Lu/)\a + H,LU/)\U + HMVAU T

/

two-pion intermediate state in the direct channel:




Mandelstam representation
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€ Analytic properties of scalar functions relevant for the evaluation of a
right- and left-hand cuts, double spectral regions (box topologies)...

HLbL .
L :

3¢ Very complex analytic structure: approximations are required. We order the
contributions according to the mass of intermediate states: the lightest states are
expected to be the most important (in agreement with model calculations)

3 Here we consider the 2 lowest-lying contributions: one- and two-pion
infermediate states in all channels

70- =
H,uy)\a — I pole —+ TTPoX -+ H/W)\J -+ ...

UV AT UV IO /

higher intermediate states: neglected here




The pion-pole contribution
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3 From the unitarity relation with only n° intermediate state, the pole residues in
each channel are given by products of doubly-virtual and singly-virtual pion
transition form factors ( Fy=y<r0 and Fy«yr0 , input for our analysis)

203

00 00 1
ar’Pele — _2/ dQ1/ dQQ/ drv/1—12Q7Q;5 <T1(Q1,Q2,T)f[7f POQ1, Q2,T) + To(Q1, Qa, 7)II] _p01e(Q1>Q277)>
31 Jo 0 -1

with

Fno-pole _ Fromens (—QF, —Q3) Froyers (—Q3,0) Fn®-pole _ Fromens (—QF, =Q3) Froperys (—Q3,0)

1 - Q%-I—M% 2 Q%"'M%




The pion-pole contribution
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3 From the unitarity relation with only n° intermediate state, the pole residues in
each channel are given by products of doubly-virtual and singly-virtual pion
transition form factors ( Fy=y<r0 and Fy«yr0 , input for our analysis)

3¢ Data on doubly-virtual pion-photon interaction not available. However, these
form factors can be reconstructed dispersively. This requires as input :

B> pion vector form factor

Yo s
» ~+* — 37 amplitude ‘ ‘ ‘ e
%

P 77 scattering amplitude

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

3¢ Pseudoscalar poles with higher masses can be treated analogously



Pion-box contribution

R —————

3 Defined by simultaneous two-pion cuts in two channels

3¢ Contribution to scalar functions as dispersive integral of double spectral functions

:_/ ds'dt’ S_SS t/) )+(tHu)—|—(sHu)

3¢ Dependence on q,L-2 carried by the pion vector FFs for each off-shell photon

3¢ SQED loop projected onto the BTT structures fulfills the same Mandelstam
representation of the pion box, the only difference being the pion vector FFs :

|
|
| | 1 |\‘\| _I_
>< 1 1 1 S~ S RN
— === - =1
! I ! - R
! | ! oA T
i |
|
L | -




Numerics for the pion-box contribution

s —

3¢ The only input: pion vector form factor in the space-like region

1

0.9

« NAT
08— Our fit
07— VMD
~_ 06 4 Volmer et al.
e |
= o5t

0.4r
0.3
0.2

0.1

o - | s | s | s | s | s | s | s | s
16 14 12 1 08 06 04 02 0

s [GeV?]

¥ Preliminary results: a7 = -159x 107", g, °"MP = _16.4 x 10~ "

Vs g Mo = 0.5 x 10"

3¢ Rapid convergence: Qmax = {1,1.5}GeV = a7 = {95,99}% of full result



The remaining 1rm contribution

e ————

J€ Two-pion cut only in the direct channel:
LH cut due to multi-particle intermediate states
in the crossed channel neglected

#€ Unitarity relates this contribution to the subprocess 7*v*) — 7

3¢ Our goal is a dispersive reconstruction of helicity partial waves fory*y* — 7
Colangelo, Hoferichter, MP, Stoffer (2014)
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then project onto BTT basis and use our master formula.
We have recently extended our formalism to arbitrary partial waves.

3€ We checked that the PW expansion converges for FSQED (pion box)



T rescattering : preliminary results
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3¢ The framework for a dispersive reconstruction of *y* — nr helicity partial waves :
Roy-Steiner equations, respecting analyticity, unitarity and crossing

J€ Omnes-type solutions allow for the summation
of mm rescattering effects in the direct
channel (effects of resonances coupling to )

3 We solved dispersion relations for v*v* — mm S-waves taking :

B> pion pole as only LH singularity (pion VFF accounts for the off-shell behavior)

B> 1 phase shifts from SU(2) inverse amplitude method (reproduce fo(500))

A 1 GeV 1.5GeV 2GeV &%)

HLbL in 10—11

1 units /=0 —9.2 —9.5 —9.3 —8.8

=2 2.0 1.3 1.1 0.9

a




Summary and Outlook
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3¢ Dispersive approach to HLbL scattering based on general principles: gauge
invariance and crossing symmetry, unitarity and analyticity

3¢ Derivation of a set of structures according to Bardeen-Tung-Tarrach (BTT) such
that the scalar functions are free of kinematic singularities and zeros

¥ Derivation of a general master formula for a..*®" in terms of BTT functions
9 w

3 Single- and double-pion intermediate states are taken into account.
Results can be extended to other pseudoscalar poles and two-meson states

J€ Preliminary numerical results for pion box and mm rescattering

¢ Fufure work: refined analysis of mmm rescattering, reliable uncertainty estimates,
higher intermediate states. Investigate and incorporate pQCD constraints

J€ First step towards a reduction of model dependence of HLbL: within a dispersive
framework, relations with experimentally accessible (or dispersively reconstructed)
quantities (form factors, scattering amplitudes)



Additional slides
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A roadmap for HLbL

Colangelo, Hoferichter, Kubis, MP, Stoffer (2014)
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