Dispersion relations for hadronic light-by-light scattering and the muon g -2

Massimiliano Procura CERN

KLOE-2 Workshop on ete-collision physics at 1 GeV, Frascati, Oct 26-28, 2016

Outline

Introduction: the anomalous magnetic moment of the muon and its hadronic contributions. Dispersive approach to hadronic light-by-light (HLbL) scattering

Lorentz structure of HLbL tensor: gauge invariance and crossing symmetry

旗 Master formula for the HLbL contribution to (g-2) μ

Focus on pion-pole, pion-box and $\pi \pi$ rescattering contributions

Summary and outlook

Colangelo, Hoferichter, Procura, Stoffer, JHEP 1505 (2015) + work in progress
Colangelo, Hoferichter, Procura, Stoffer, JHEP 1409 (2014) Colangelo, Hoferichter, Kubis, Procura, Stoffer, PLB 738 (2014)

Introduction

The status of $a_{\mu}=(g-2)_{\mu} / 2$: BNL E821 experiment vs SM prediction

	$a_{\mu}\left[10^{-11}\right]$	$\Delta a_{\mu}\left[10^{-11}\right]$			
experiment	116592089.	63.			
QED $\mathcal{O}(\alpha)$					
QED $\mathcal{O}\left(\alpha^{2}\right)$	116140973.21	0.03			
QED $\mathcal{O}\left(\alpha^{3}\right)$	413217.63	0.01			
QED $\mathcal{O}\left(\alpha^{4}\right)$	30141.90	0.00			
QED $\mathcal{O}\left(\alpha^{5}\right)$	381.01	0.02			
QED total	5.09	0.01			
electroweak, total	116584718.95	0.04			
HVP (LO) [Hagiwara et al. 11$]$	153.6	1.0			
HVP (NLO) [Hagiwara et al. 11]	6949.	43.			
HLbL [Jegerlehner-Nyffeler 09]	-98.	1.			
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	116.	40.			
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	12.4	0.1			
theory	3.	2.			
				116591855.	59.

Introduction

The status of $a_{\mu}=(g-2)_{\mu} / 2$: BNL E821 experiment vs SM prediction

	$a_{\mu}\left[10^{-11}\right]$	$\Delta a_{\mu}\left[10^{-11}\right]$
experiment	116592089.	63.
QED $\mathcal{O}(\alpha)$	116140973.21	0.03
QED $\mathcal{O}\left(\alpha^{2}\right)$	413217.63	0.01
QED $\mathcal{O}\left(\alpha^{3}\right)$	30141.90	0.00
QED $\mathcal{O}\left(\alpha^{4}\right)$	381.01	0.02
QED $\mathcal{O}\left(\alpha^{5}\right)$	5.09	0.01
QED total	116584718.95	0.04
electroweak, total	153.6	1.0
HVP (LO) [Hagiwara et al. 11$]$	6949.	43.
HVP (NLO) [Hagiwara et al. 11]	-98.	1.
HLbL [Jegerlehner-Nyffele 09]	116.	40.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	12.4	0.1
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	3.	2.
theory	116591855.	59.

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}} \sim 3 \sigma
$$

Schwinger 1948

Introduction

The status of $a_{\mu}=(g-2)_{\mu} / 2$: BNL E821 experiment vs SM prediction

	$a_{\mu}\left[10^{-11}\right]$	$\Delta a_{\mu}\left[10^{-11}\right]$
experiment	116592089.	63.
QED $\mathcal{O}(\alpha)$	116140973.21	0.03
QED $\mathcal{O}\left(\alpha^{2}\right)$	413217.63	0.01
QED $\mathcal{O}\left(\alpha^{3}\right)$	30141.90	0.00
QED $\mathcal{O}\left(\alpha^{4}\right)$	381.01	0.02
QED $\mathcal{O}\left(\alpha^{5}\right)$	5.09	0.01
QED total	116584718.95	0.04
electroweak, total	153.6	1.0
HVP (LO) [Hagiwara et al. 11]	6949.	43.
HVP (NLO) [Hagiwara etal. 11]	-98.	1.
HLbL [Jegerlehner-Nyffeler 09]	116.	40.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	12.4	0.1
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	3.	2.
theory	116591855.	59.

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}} \sim 3 \sigma
$$

Petermann 1957

Introduction

The status of $a_{\mu}=(g-2)_{\mu} / 2$: BNL E821 experiment vs SM prediction

	$a_{\mu}\left[10^{-11}\right]$	$\Delta a_{\mu}\left[10^{-11}\right]$
experiment	116592089.	63.
QED $\mathcal{O}(\alpha)$		
QED $\mathcal{O}\left(\alpha^{2}\right)$	116140973.21	0.03
QED $\mathcal{O}\left(\alpha^{3}\right)$	413217.63	0.01
QED $\mathcal{O}\left(\alpha^{4}\right)$	30141.90	0.00
QED $\mathcal{O}\left(\alpha^{5}\right)$	381.01	0.02
QED total	5.09	0.01
electroweak, total	116584718.95	0.04
HVP (LO) [Hagiwara et al. 11]	153.6	1.0
HVP (NLO) [Hagiwara etal. 11]	6949.	43.
HLbL [Jegerlehner-Nyffeler 09]	-98.	1.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	116.	40.
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	12.4	0.1
theory	3.	2.

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}} \sim 3 \sigma
$$

Kinoshita et al. 2012

Introduction

The status of $a_{\mu}=(g-2)_{\mu} / 2$: BNL E821 experiment vs SM prediction

	$a_{\mu}\left[10^{-11}\right]$	$\Delta a_{\mu}\left[10^{-11}\right]$
experiment	116592089.	63.
QED $\mathcal{O}(\alpha)$		
QED $\mathcal{O}\left(\alpha^{2}\right)$	116140973.21	0.03
QED $\mathcal{O}\left(\alpha^{3}\right)$	413217.63	0.01
QED $\mathcal{O}\left(\alpha^{4}\right)$	30141.90	0.00
QED $\mathcal{O}\left(\alpha^{5}\right)$	381.01	0.02
QED total	5.09	0.01
electroweak, total	116584718.95	0.04
HVP (LO) [Hagiwara et al. 11$]$	153.6	1.0
HVP (NLO) [Hagiwara et al. 11]	6949.	43.
HLbL [Jegerlehner-Nyffeler 09]	-98.	1.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	116.	40.
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	12.4	0.1
theory	3.	2.

$$
a_{\mu}^{\mathrm{exp}}-a_{\mu}^{\mathrm{SM}} \sim 3 \sigma
$$

Introduction

The status of $a_{\mu}=(g-2)_{\mu} / 2$: BNL E821 experiment vs SM prediction

	$a_{\mu}\left[10^{-11}\right]$	$\Delta a_{\mu}\left[10^{-11}\right]$
experiment	116592089.	63.
QED $\mathcal{O}(\alpha)$		
QED $\mathcal{O}\left(\alpha^{2}\right)$	116140973.21	0.03
QED $\mathcal{O}\left(\alpha^{3}\right)$	413217.63	0.01
QED $\mathcal{O}\left(\alpha^{4}\right)$	30141.90	0.00
QED $\mathcal{O}\left(\alpha^{5}\right)$	381.01	0.02
QED total	5.09	0.01
electroweak, total	116584718.95	0.04
HVP (LO) [Hagiwara et al. 11$]$	153.6	1.0
HVP (NLO) [Hagiwara et al. 11]	6949.	43.
HLbL [Jegerlehner-Nyffeler 09]	-98.	1.
HVP (NNLO) [KKur, Liu, Marquard, Steinhauser 14]	116.	40.
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	12.4	0.1
theory	3.	2.

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}} \sim 3 \sigma
$$

hadrons

Introduction

The status of $a_{\mu}=(g-2)_{\mu} / 2$: BNL E821 experiment vs SM prediction

	$a_{\mu}\left[10^{-11}\right]$	$\Delta a_{\mu}\left[10^{-11}\right]$
experiment	116592089.	63.
QED $\mathcal{O}(\alpha)$		
QED $\mathcal{O}\left(\alpha^{2}\right)$	116140973.21	0.03
QED $\mathcal{O}\left(\alpha^{3}\right)$	413217.63	0.01
QED $\mathcal{O}\left(\alpha^{4}\right)$	30141.90	0.00
QED $\mathcal{O}\left(\alpha^{5}\right)$	381.01	0.02
QED total	5.09	0.01
electroweak, total	116584718.95	0.04
HVP (LO) [Hagiwara et al. 11$]$	153.6	1.0
HVP (NLO) [Hagiwara et al. 11]	6949.	43.
HLbL [Jegerlehner-Nyffeler 09]	-98.	1.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	116.	40.
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	12.4	0.1
theory	3.	2.

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}} \sim 3 \sigma
$$

Introduction

The status of $a_{\mu}=(g-2)_{\mu} / 2:$ BNL E821 experiment vs SM prediction

	$a_{\mu}\left[10^{-11}\right]$	$\Delta a_{\mu}\left[10^{-11}\right]$
experiment	116592089.	63.
QED $\mathcal{O}(\alpha)$	116140973.21	0.03
QED $\mathcal{O}\left(\alpha^{2}\right)$	413217.63	0.01
QED $\mathcal{O}\left(\alpha^{3}\right)$	30141.90	0.00
QED $\mathcal{O}\left(\alpha^{4}\right)$	381.01	0.02
QED $\mathcal{O}\left(\alpha^{5}\right)$	5.09	0.01
QED total	116584718.95	0.04
electroweak, total	153.6	1.0
HVP (LO) [Hagiwara et al. 11]	6949.	43.
HVP (NLO) [Hagiwara et al. 11]	-98.	1.
HLbL [Jegerlehner-Nyffeler 09]	116.	40.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14]	12.4	0.1
HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14]	3.	2.
theory	116591855.	59.

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}} \sim 3 \sigma
$$

筑 New experiments at FNAL and J-PARC aim at improving the experimental precision
Δ important to scrutinize theory predictions and get reliable uncertainties

Introduction: hadronic vacuum polarization

Limiting factor in the accuracy of SM predictions for $a_{\mu}=(g-2)_{\mu}$ is control over hadronic contributions, responsible for most of the theory uncertainty

HVP is directly related via the optical theorem to $\sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow\right.$ hadrons $)$

Obtained by integrating the R-ratio weighted with a perturbative QED kernel :

$$
a_{\ell}^{\mathrm{HVP}-\mathrm{LO}}=\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d t}{t} K(t) R^{\mathrm{had}}(t) \quad \text { dominated by the low-energy region }
$$

旗 dedicated $e^{+} e^{-}$program (BaBar, BESIII, KLOE2 ...) to improve accuracy

Introduction: hadronic vacuum polarization

Limiting factor in the accuracy of SM predictions for $a_{\mu}=(g-2)_{\mu}$ is control over hadronic contributions, responsible for most of the theory uncertainty

旗 HVP is directly related via the optical theorem to $\sigma_{\mathrm{tot}}\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow\right.$ hadrons $)$

Obtained by integrating the R-ratio weighted with a perturbative QED kernel :
$a_{\ell}^{\mathrm{HVP}-\mathrm{LO}}=\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d t}{t} K(t) R^{\mathrm{had}}(t) \quad$ dominated by the low-energy region

Lattice QCD determination of the HVP-LO : recent progress
Blum et al., Burger et al., Chakraborty et al., ...

Introduction: hadronic light-by-light

* Hadronic light-by-light (HLbL) is more problematic: model calculations and some high-energy and low-energy constraints.
Uncontrolled uncertainties

$$
a_{\mu}^{\text {HLbL }} \text { in } 10^{-11} \text { units }
$$

| Contribution | BPP | HKS | KN | MV | BP | PdRV | N/JN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pi^{0}, \eta, \eta^{\prime}$ | 85 ± 13 | 82.7 ± 6.4 | 83 ± 12 | 114 ± 10 | - | 114 ± 13 | 99 ± 16 |
| π, K loops | -19 ± 13 | -4.5 ± 8.1 | - | - | - | -19 ± 19 | -19 ± 13 |
| π, K loops + other subleading in N_{c} | - | - | - | 0 ± 10 | - | - | - |
| axial vectors | 2.5 ± 1.0 | 1.7 ± 1.7 | - | 22 ± 5 | - | 15 ± 10 | 22 ± 5 |
| scalars | -6.8 ± 2.0 | - | - | - | - | -7 ± 7 | -7 ± 2 |
| quark loops | 21 ± 3 | 9.7 ± 11.1 | - | - | - | 2.3 | 21 ± 3 |
| total | 83 ± 32 | 89.6 ± 15.4 | 80 ± 40 | 136 ± 25 | 110 ± 40 | 105 ± 26 | 116 ± 39 |

The two global evaluations: Bijnens, Pallante, Prades $(1995,1996)$ and Hayakawa, Kinoshita, Sanda $(1995,1996)$

Introduction: hadronic light-by-light

* Hadronic light-by-light (HLbL) is more problematic: model calculations and some high-energy and low-energy constraints.
Uncontrolled uncertainties

$$
a_{\mu}^{\mathrm{HLbL}} \text { in } 10^{-11} \text { units }
$$

| Contribution | BPP | HKS | KN | MV | BP | PdRV | N/JN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pi^{0}, \eta, \eta^{\prime}$ | 85 ± 13 | 82.7 ± 6.4 | 83 ± 12 | 114 ± 10 | - | 114 ± 13 | 99 ± 16 |
| π, K loops | -19 ± 13 | -4.5 ± 8.1 | - | - | - | -19 ± 19 | -19 ± 13 |
| π, K loops + other subleading in N_{c} | - | - | - | 0 ± 10 | - | - | - |
| axial vectors | 2.5 ± 1.0 | 1.7 ± 1.7 | - | 22 ± 5 | - | 15 ± 10 | 22 ± 5 |
| scalars | -6.8 ± 2.0 | - | - | - | - | -7 ± 7 | -7 ± 2 |
| quark loops | 21 ± 3 | 9.7 ± 11.1 | - | - | - | 2.3 | 21 ± 3 |
| total | 83 ± 32 | 89.6 ± 15.4 | 80 ± 40 | 136 ± 25 | 110 ± 40 | 105 ± 26 | 116 ± 39 |

Introduction: hadronic light-by-light

* Hadronic light-by-light (HLbL) is more problematic: model calculations and some high-energy and low-energy constraints.
Uncontrolled uncertainties

$$
a_{\mu}^{\text {HLbL }} \text { in } 10^{-11} \text { units }
$$

| Contribution | BPP | HKS | KN | MV | BP | PdRV | N/JN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pi^{0}, \eta, \eta^{\prime}$ | 85 ± 13 | 82.7 ± 6.4 | 83 ± 12 | 114 ± 10 | - | 114 ± 13 | 99 ± 16 |
| π, K loops | -19 ± 13 | -4.5 ± 8.1 | - | - | - | -19 ± 19 | -19 ± 13 |
| π, K loops + other subleading in N_{c} | - | - | - | 0 ± 10 | - | - | - |
| axial vectors | 2.5 ± 1.0 | 1.7 ± 1.7 | - | 22 ± 5 | - | 15 ± 10 | 22 ± 5 |
| scalars | -6.8 ± 2.0 | - | - | - | - | -7 ± 7 | -7 ± 2 |
| quark loops | 21 ± 3 | 9.7 ± 11.1 | - | - | - | 2.3 | 21 ± 3 |
| total | 83 ± 32 | 89.6 ± 15.4 | 80 ± 40 | 136 ± 25 | 110 ± 40 | 105 ± 26 | 116 ± 39 |

Introduction: hadronic light-by-light

* Hadronic light-by-light (HLbL) is more problematic: model calculations and some high-energy and low-energy constraints.
Uncontrolled uncertainties

$$
a_{\mu}^{\mathrm{HLbL}} \text { in } 10^{-11} \text { units }
$$

The two most often quoted estimates: Prades, de Rafael, Vainshtein (2009) and Jegerlehner, Nyffeler (2009)

Introduction: hadronic light-by-light

骎 Hadronic light-by-light (HLbL) is more problematic: model calculations and some high-energy and low-energy constraints.
Uncontrolled uncertainties

- a reliable uncertainty estimate is still an open issue

㐨 How to reduce model dependence? Recent strategies for an improved calculation :

- lattice QCD: first computations at physical pion masses with leading disconnected contributions performed

Blum et al. $(2015,2016)$

- dispersion theory to make the evaluation as data driven as possible

Our strategy for HLbL

*) Exploits fundamental principles :

- gauge invariance and crossing symmetry
- unitarity and analyticity
to relate HLbL to experimentally accessible quantities

Much more challenging task than for the hadronic vacuum polarization due to the complexity of the HLbL tensor, which is the key object of our analysis

瑯 Defines and relates single contributions to HLbL to form factors and cross sections

Alternative: dispersive treatment of the HLbL contribution to Pauli form factor by Pauk and Vanderhaeghen (2014) (so far only single-meson pole contributions)

The HLbL tensor: gauge invariance and crossing symmetry

旗 Master formula for the HLbL contribution to (g-2) μ

Dispersive representation of scalar functions at fixed photon virtualities

The HLbL tensor

The fully off-shell HLbL tensor:

$$
\Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)=-i \int d^{4} x d^{4} y d^{4} z e^{-i\left(q_{1} \cdot x+q_{2} \cdot y+q_{3} \cdot z\right)}\langle 0| T\left\{j_{\mathrm{em}}^{\mu}(x) j_{\mathrm{em}}^{\nu}(y) j_{\mathrm{em}}^{\lambda}(z) j_{\mathrm{em}}^{\sigma}(0)\right\}|0\rangle
$$

Mandelstam variables:

$$
s=\left(q_{1}+q_{2}\right)^{2}, t=\left(q_{1}+q_{3}\right)^{2}, u=\left(q_{2}+q_{3}\right)^{2}
$$

楽 Anomalous magnetic moment: Pauli form factor at zero momentum transfer

Lorentz structure of HLbL tensor

Based on Lorentz covariance the HLbL tensor can be decomposed in 138 structures

$$
\begin{aligned}
\Pi^{\mu \nu \lambda \sigma} & =g^{\mu \nu} g^{\lambda \sigma} \Pi^{1}+g^{\mu \lambda} g^{\nu \sigma} \Pi^{2}+g^{\mu \sigma} g^{\nu \lambda} \Pi^{3} \\
& +\sum_{\substack{i=2,3,4 \\
j=1,3,4}} \sum_{k=1,2,4} q_{i}^{\mu} q_{j}^{\nu} q_{k}^{\lambda} q_{l}^{\sigma} \Pi_{i j k l}^{4} \\
& +\sum_{\substack{i=2,3,4 \\
j=1,3,4}} g^{\lambda \sigma} q_{i}^{\mu} q_{j}^{\nu} \Pi_{i j}^{5}+\sum_{\substack{i=2,3,4 \\
k=1,2,4}} g^{\nu \sigma} q_{i}^{\mu} q_{k}^{\lambda} \Pi_{i k}^{6}+\sum_{\substack{i=2,3,4 \\
l=1,2,3}} g^{\nu \lambda} q_{i}^{\mu} q_{l}^{\sigma} \Pi_{i l}^{7} \\
& +\sum_{\substack{j=1,3,4 \\
k=1,2,4}} g^{\mu \sigma} q_{j}^{\nu} q_{k}^{\lambda} \Pi_{j k}^{8}+\sum_{\substack{j=1,3,4 \\
l=1,2,3}} g^{\mu \lambda} q_{j}^{\nu} q_{l}^{\sigma} \Pi_{j l}^{9}+\sum_{\substack{k=1,2,4 \\
l=1,2,3}} g^{\mu \nu} q_{k}^{\lambda} q_{l}^{\sigma} \Pi_{k l}^{10}
\end{aligned}
$$

㴆 In 4 space－time dimensions there are 2 linear relations among these 138 structures
Eichmann，Fischer，Heupel，Williams（2014）

陆 Scalar functions encode the hadronic dynamics and depend on 6 kinematic variables

测 This set of functions is hugely redundant：Ward identities imply 95 linear relations between these scalar functions（kinematic zeros）

Lorentz structure of HLbL tensor

Following Bardeen and Tung (1968) - "BT" - we contracted the HLBL tensor with

$$
I_{12}^{\mu \nu}=g^{\mu \nu}-\frac{q_{2}^{\mu} q_{1}^{\nu}}{q_{1} \cdot q_{2}}, \quad I_{34}^{\lambda \sigma}=g^{\lambda \sigma}-\frac{q_{4}^{\lambda} q_{3}^{\sigma}}{q_{3} \cdot q_{4}}
$$

- 95 structures project to zero

潮 $1 / q_{2}$ and $1 / q_{3} \cdot q_{4}$ poles eliminated by taking linear combinations of structures

传 This procedure introduces kinematic singularities in the scalar functions: degeneracies in these BT Lorentz structures, e.g. as $q_{1} \cdot q_{2} \rightarrow 0, q_{3} \cdot q_{4} \rightarrow 0$

$$
\sum_{k} c_{k}^{i} T_{k}^{\mu \nu \lambda \sigma}=q_{1} \cdot q_{2} X_{i}^{\mu \nu \lambda \sigma}+q_{3} \cdot q_{4} Y_{i}^{\mu \nu \lambda \sigma}
$$

Lorentz structure of HLbL tensor

Following Tarrach (1975) we extended BT set to incorporate $X_{i}^{\mu \nu \lambda \sigma}, Y_{i}^{\mu \nu \lambda \sigma}$ to obtain a ("BTT") generating set of structures even for $q_{1} \cdot q_{2} \rightarrow 0, q_{3} \cdot q_{4} \rightarrow 0$

$$
\Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)=\sum_{i=1}^{54} T_{i}^{\mu \nu \lambda \sigma} \Pi_{i}\left(s, t, u ; q_{j}^{2}\right)
$$

- Lorentz structures are manifestly gauge invariant
- crossing symmetry is manifest (only 7 genuinely different structures, the remaining ones being obtained by crossing)
- the BTT scalar functions are free of kinematic singularities and zeros: their analytic structure is dictated by dynamics only. This makes them suitable for a dispersive treatment

The HLbL tensor: gauge invariance and crossing symmetry

Master formula for the HLbL contribution to $(\mathrm{g}-2)_{\mu}$

Dispersive representation of scalar functions at fixed photon virtualities

Master formula for $a_{\mu}{ }^{\text {HLbL }}$

Differentiating the Ward identity with respect to q_{4},

$$
\Pi_{\mu \nu \lambda \rho}\left(q_{1}, q_{2}, q_{4}-q_{1}-q_{2}\right)=-q_{4}^{\sigma} \frac{\partial}{\partial q_{4}^{\rho}} \Pi_{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{4}-q_{1}-q_{2}\right)
$$

one obtains the relation

$$
a_{\mu}^{\mathrm{HLbL}}=-\frac{1}{48 m_{\mu}} \operatorname{Tr}\left(\left(\not p+m_{\mu}\right)\left[\gamma^{\rho}, \gamma^{\sigma}\right]\left(\not p+m_{\mu}\right) \Gamma_{\rho \sigma}^{\mathrm{HLbL}}(p)\right)
$$

where $p^{2}=m_{\mu}^{2}$ and

$$
\begin{aligned}
\Gamma_{\rho \sigma}^{\mathrm{HLbL}}(p)= & e^{6} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \frac{d^{4} q_{2}}{(2 \pi)^{4}} \gamma^{\mu} \frac{\left(\not p+\not q_{1}+m_{\mu}\right)}{\left(p+q_{1}\right)^{2}-m_{\mu}^{2}} \gamma^{\lambda} \frac{\left(\not p-\not q_{2}+m_{\mu}\right)}{\left(p-q_{2}\right)^{2}-m_{\mu}^{2}} \gamma^{\nu} \\
& \times\left.\frac{1}{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}} \frac{\partial}{\partial q_{4}^{\rho}} \Pi_{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{4}-q_{1}-q_{2}\right)\right|_{q_{4}=0}
\end{aligned}
$$

Master formula for $a_{\mu}{ }^{\text {HLbL }}$

Differentiating the Ward identity with respect to q_{4},

$$
\Pi_{\mu \nu \lambda \rho}\left(q_{1}, q_{2}, q_{4}-q_{1}-q_{2}\right)=-q_{4}^{\sigma} \frac{\partial}{\partial q_{4}^{\rho}} \Pi_{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{4}-q_{1}-q_{2}\right)
$$

one obtains the relation

$$
a_{\mu}^{\mathrm{HLbL}}=-\frac{1}{48 m_{\mu}} \operatorname{Tr}\left(\left(\not p+m_{\mu}\right)\left[\gamma^{\rho}, \gamma^{\sigma}\right]\left(\not p+m_{\mu}\right) \Gamma_{\rho \sigma}^{\mathrm{HLbL}}(p)\right)
$$

* Since there are no kinematic singularities in the BTT scalar functions,

$$
\begin{aligned}
a_{\mu}^{\mathrm{HLbL}}= & -\frac{e^{6}}{48 m_{\mu}} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{1}{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}} \frac{1}{\left(p+q_{1}\right)^{2}-m_{\mu}^{2}} \frac{1}{\left(p-q_{2}\right)^{2}-m_{\mu}^{2}} \\
& \times \operatorname{Tr}\left(\left(\not p+m_{\mu}\right)\left[\gamma^{\rho}, \gamma^{\sigma}\right]\left(\not p+m_{\mu}\right) \gamma^{\mu}\left(\not p+\not q_{1}+m_{\mu}\right) \gamma^{\lambda}\left(\not p-\not q_{2}+m_{\mu}\right) \gamma^{\nu}\right) \\
& \times\left.\sum_{i=1}^{54}\left(\frac{\partial}{\partial q_{4}^{\rho}} T_{\mu \nu \lambda \sigma}^{i}\left(q_{1}, q_{2}, q_{4}-q_{1}-q_{2}\right)\right)\right|_{q_{4}=0} \Pi_{i}\left(q_{1}, q_{2},-q_{1}-q_{2}\right)
\end{aligned}
$$

Master formula for $a_{u}{ }^{\text {HLbL }}$

Only 12 linear combinations of the scalar functions contribute to $a_{\mu}^{\text {HLbL }}$:

$$
a_{\mu}^{\mathrm{HLbL}}=-e^{6} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \int \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}\left(q_{1}, q_{2} ; p\right) \bar{\Pi}_{i}\left(q_{1}, q_{2},-q_{1}-q_{2}\right)}{q_{1}^{2} q_{2}^{2}\left(q_{1}+q_{2}\right)^{2}\left(\left(p+q_{1}\right)^{2}-m_{\mu}^{2}\right)\left(\left(p-q_{2}\right)^{2}-m_{\mu}^{2}\right)}
$$

数 the functions \hat{T}_{i} contain trace and derivative (calculated)

Wick rotation of q_{1}, q_{2} and p (allowed even in the presence of anomalous cuts)

5 out of 8 integrals can be done analytically, without knowing the scalar functions

Master formula for a_{u} HLbL

We obtained a general master formula

$$
a_{\mu}^{H L b L}=\frac{2 \alpha^{3}}{3 \pi^{2}} \int_{0}^{\infty} \mathrm{d} Q_{1} \int_{0}^{\infty} \mathrm{d} Q_{2} \int_{-1}^{1} \mathrm{~d} \tau \sqrt{1-\tau^{2}} Q_{1}^{3} Q_{2}^{3} \sum_{i=1}^{12} T_{i}\left(Q_{1}, Q_{2}, \tau\right) \bar{\Pi}_{i}\left(Q_{1}, Q_{2}, \tau\right)
$$

$Q_{i}^{2}=-q_{i}^{2}$ are Euclidean momenta and $Q_{1} \cdot Q_{2}=\left|Q_{1}\right|\left|Q_{2}\right| \tau:$ space-like kinematics

* We determined the integration kernels T_{i}. The scalar functions Π_{i} are linear combinations of the BTT Π_{i}

Generalization of the formula for the pion pole in Knecht and Nyffeler (2002)

* Our goal: dispersive representation of $\bar{\Pi}_{i}$ at fixed photon virtualities

The HLbL tensor: gauge invariance and crossing symmetry

旗 Master formula for the HLbL contribution to (g-2) μ

Dispersive representation of scalar functions at fixed photon virtualities

Mandelstam representation

Analytic properties of scalar functions relevant for the evaluation of a_{μ}^{HLbL} : right- and left-hand cuts, double spectral regions (box topologies)...

Very complex analytic structure: approximations are required. We order the contributions according to the mass of intermediate states: the lightest states are expected to be the most important (in agreement with model calculations)

带 Here we consider the 2 lowest-lying contributions: one- and two-pion intermediate states in all channels

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\ldots
$$

Mandelstam representation

* Analytic properties of scalar functions relevant for the evaluation of a_{μ}^{HLbL} : right- and left-hand cuts, double spectral regions (box topologies)...

洮 Very complex analytic structure: approximations are required. We order the contributions according to the mass of intermediate states: the lightest states are expected to be the most important (in agreement with model calculations)

* Here we consider the 2 lowest-lying contributions: one- and two-pion intermediate states in all channels

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0}-\mathrm{pole}}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\ldots
$$

one-pion intermediate state :

Mandelstam representation

* Analytic properties of scalar functions relevant for the evaluation of a_{μ}^{HLbL} : right- and left-hand cuts, double spectral regions (box topologies)...

洮 Very complex analytic structure: approximations are required. We order the contributions according to the mass of intermediate states: the lightest states are expected to be the most important (in agreement with model calculations)

旗 Here we consider the 2 lowest-lying contributions: one- and two-pion intermediate states in all channels

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0}-\mathrm{pole}}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\ldots
$$

two-pion intermediate state in both channels:

Mandelstam representation

* Analytic properties of scalar functions relevant for the evaluation of a_{μ}^{HLbL} : right- and left-hand cuts, double spectral regions (box topologies)...

洮 Very complex analytic structure: approximations are required. We order the contributions according to the mass of intermediate states: the lightest states are expected to be the most important (in agreement with model calculations)

旗 Here we consider the 2 lowest-lying contributions: one- and two-pion intermediate states in all channels

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\ldots
$$

two-pion intermediate state in the direct channel:

Mandelstam representation

* Analytic properties of scalar functions relevant for the evaluation of a_{μ}^{HLbL} : right- and left-hand cuts, double spectral regions (box topologies)...

洮 Very complex analytic structure: approximations are required. We order the contributions according to the mass of intermediate states: the lightest states are expected to be the most important (in agreement with model calculations)

旗 Here we consider the 2 lowest-lying contributions: one- and two-pion intermediate states in all channels

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0}-\mathrm{pole}}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\ldots
$$

higher intermediate states: neglected here

The pion-pole contribution

From the unitarity relation with only π^{0} intermediate state, the pole residues in each channel are given by products of doubly-virtual and singly-virtual pion transition form factors ($\mathcal{F}_{\gamma^{*} \gamma^{*} \pi^{0}}$ and $\mathcal{F}_{\gamma^{*} \gamma \pi^{0}}$, input for our analysis)

$$
a_{\mu}^{\pi^{0} \text {-pole }}=\frac{2 \alpha^{3}}{3 \pi^{2}} \int_{0}^{\infty} d Q_{1} \int_{0}^{\infty} d Q_{2} \int_{-1}^{1} d \tau \sqrt{1-\tau^{2}} Q_{1}^{3} Q_{2}^{3}\left(T_{1}\left(Q_{1}, Q_{2}, \tau\right) \bar{\Pi}_{1}^{0^{0} \text {-pole }}\left(Q_{1}, Q_{2}, \tau\right)+T_{2}\left(Q_{1}, Q_{2}, \tau\right) \bar{\Pi}_{2}^{\pi^{0} \text {-pole }}\left(Q_{1}, Q_{2}, \tau\right)\right)
$$

with

$$
\bar{\Pi}_{1}^{\overline{0}^{0} \text {-pole }}=-\frac{\mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(-Q_{1}^{2},-Q_{2}^{2}\right) \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(-Q_{3}^{2}, 0\right)}{Q_{3}^{2}+M_{\pi}^{2}} \quad \bar{\Pi}_{2}^{\pi^{0}-\text { pole }}=-\frac{\mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(-Q_{1}^{2},-Q_{3}^{2}\right) \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(-Q_{2}^{2}, 0\right)}{Q_{2}^{2}+M_{\pi}^{2}}
$$

The pion-pole contribution

From the unitarity relation with only π^{0} intermediate state, the pole residues in each channel are given by products of doubly-virtual and singly-virtual pion transition form factors ($\mathcal{F}_{\gamma^{*} \gamma^{*} \pi^{0}}$ and $\mathcal{F}_{\gamma^{*} \gamma \pi^{0}}$, input for our analysis)

* Data on doubly-virtual pion-photon interaction not available. However, these form factors can be reconstructed dispersively. This requires as input :

D pion vector form factor

- $\gamma^{*} \rightarrow 3 \pi$ amplitude
- $\pi \pi$ scattering amplitude

Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

Pseudoscalar poles with higher masses can be treated analogously

Pion-box contribution

Defined by simultaneous two-pion cuts in two channels

浾 Contribution to scalar functions as dispersive integral of double spectral functions

$$
\Pi_{i}=\frac{1}{\pi^{2}} \int d s^{\prime} d t^{\prime} \frac{\rho_{i}^{s t}\left(s^{\prime}, t^{\prime}\right)}{\left(s^{\prime}-s\right)\left(t^{\prime}-t\right)}+(t \leftrightarrow u)+(s \leftrightarrow u)
$$

涵 Dependence on q_{i}^{2} carried by the pion vector FFs for each off-shell photon
sQED Ioop projected onto the BTT structures fulfills the same Mandelstam representation of the pion box, the only difference being the pion vector FFs :

Numerics for the pion-box contribution

The only input: pion vector form factor in the space-like region

Preliminary results: $a_{\mu}^{\pi-\text {-box }}=-15.9 \times 10^{-11}, a_{\mu}^{\pi-\text { box, }, V M D}=-16.4 \times 10^{-11}$ vs $a_{\mu}^{K-\text { box }, V M D}=-0.5 \times 10^{-11}$

Rapid convergence: $Q_{\max }=\{1,1.5\} \mathrm{GeV} \Rightarrow a_{\mu}^{\pi-\text { box }}=\{95,99\} \%$ of full result

The remaining $\pi \pi$ contribution

Two-pion cut only in the direct channel:
LH cut due to multi-particle intermediate states in the crossed channel neglected

Unitarity relates this contribution to the subprocess $\gamma^{*} \gamma^{(*)} \rightarrow \pi \pi$

Our goal is a dispersive reconstruction of helicity partial waves for $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$
Colangelo, Hoferichter, MP, Stoffer (2014)

$$
\operatorname{Im} h_{++,++}^{J}\left(s ; q_{1}^{2}, q_{2}^{2} ; q_{3}^{2}, 0\right)=\frac{\sigma(s)}{16 \pi} h_{J,++}^{*}\left(s ; q_{1}^{2}, q_{2}^{2}\right) h_{J,++}\left(s ; q_{3}^{2}, 0\right)
$$

then project onto BTT basis and use our master formula.
We have recently extended our formalism to arbitrary partial waves.
We checked that the PW expansion converges for FsQED (pion box)

III rescattering : preliminary results

The framework for a dispersive reconstruction of $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$ helicity partial waves : Roy-Steiner equations, respecting analyticity, unitarity and crossing

Omnès-type solutions allow for the summation of $\pi \pi$ rescattering effects in the direct channel (effects of resonances coupling to $\pi \pi$)

We solved dispersion relations for $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$ S-waves taking :
Δ pion pole as only LH singularity (pion VFF accounts for the off-shell behavior)
$\Delta \pi \pi$ phase shifts from $S U(2)$ inverse amplitude method (reproduce $f_{0}(500)$)

Λ	1 GeV	1.5 GeV	2 GeV	∞
$I=0$	-9.2	-9.5	-9.3	-8.8
$I=2$	2.0	1.3	1.1	0.9

Summary and Outlook

Dispersive approach to HLbL scattering based on general principles: gauge invariance and crossing symmetry, unitarity and analyticity

Derivation of a set of structures according to Bardeen-Tung-Tarrach (BTT) such that the scalar functions are free of kinematic singularities and zeros

Derivation of a general master formula for a_{μ}^{HLbL} in terms of BTT functions
Single- and double-pion intermediate states are taken into account.
Results can be extended to other pseudoscalar poles and two-meson states
Preliminary numerical results for pion box and $\pi \pi$ rescattering
Future work: refined analysis of $\pi \pi$ rescattering, reliable uncertainty estimates, higher intermediate states. Investigate and incorporate PQCD constraints

First step towards a reduction of model dependence of HLbL: within a dispersive framework, relations with experimentally accessible (or dispersively reconstructed) quantities (form factors, scattering amplitudes)

Additional slides

A roadmap for HLbL

Colangelo, Hoferichter, Kubis, MP, Stoffer (2014)

Artwork by M. Hoferichter

