Recent results on $\eta \rightarrow 3 \pi$

Emilie Passemar
 Indiana University/Jefferson Laboratory

KLOE-II Workshop
LNF-Frascati, Oct. 26-28, 2016

In collaboration with G. Colangelo, S. Lanz
and H. Leutwyler (ITP-Bern)
ArXiv:1610.03494 + in preparation

Outline :

1. Introduction and Motivation
2. Dispersive analysis
3. Results
4. Conclusion and outlook
5. Introduction and Motivation

1.1 Decays of the η

- η decay from PDG:

η DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Scale factor/ Confidence level
	Neutral modes		
Γ_{1}	neutral modes	$(72.12 \pm 0.34) \%$	$\mathrm{~S}=1.2$
Γ_{2}	2γ	$(39.41 \pm 0.20) \%$	$\mathrm{~S}=1.1$
Γ_{3}	$3 \pi^{0}$	$(32.68 \pm 0.23) \%$	$\mathrm{~S}=1.1$
		Charged modes	
Γ_{8}	charged modes	$(28.10 \pm 0.34) \%$	$\mathrm{~S}=1.2$
Γ_{9}	$\pi^{+} \pi^{-} \pi^{0}$	$(22.92 \pm 0.28) \%$	$\mathrm{~S}=1.2$
Γ_{10}	$\pi^{+} \pi^{-} \gamma$	$(4.22 \pm 0.08) \%$	$\mathrm{~S}=1.1$

1.2 Definitions

- Mandelstam variables $s=\left(p_{\pi^{+}}+p_{\pi^{-}}\right)^{2}, t=\left(p_{\pi^{-}}+p_{\pi^{0}}\right)^{2}, u=\left(p_{\pi^{0}}+p_{\pi^{+}}\right)^{2}$
\Rightarrow only two independent variables

$$
s+t+u=M_{\eta}^{2}+M_{\pi^{0}}^{2}+2 M_{\pi^{+}}^{2} \equiv 3 s_{0}
$$

- 3 body decay

Dalitz plot
$|A(s, t, u)|^{2}=N\left(1+a Y+b Y^{2}+d X^{2}+f Y^{3}+\ldots\right)$
Expansion around $\mathrm{X}=\mathrm{Y}=0$

$$
\begin{aligned}
& \quad X=\sqrt{3} \frac{T_{+}-T_{-}}{Q_{c}}=\frac{\sqrt{3}}{2 M_{\eta} Q_{c}}(u-t) \\
& Y=\frac{3 T_{0}}{Q_{c}}-1=\frac{3}{2 M_{\eta} Q_{c}}\left(\left(M_{\eta}-M_{\pi^{0}}\right)^{2}-s\right)-1 \\
& \text { e Passemar } \\
& Q_{c} \equiv M_{\eta}-2 M_{\pi^{+}}-M_{\pi^{0}}
\end{aligned}
$$

1.3 Why is it interesting to study $\eta \rightarrow 3 \pi$?

- Decay forbidden by isospin symmetry

$$
\Rightarrow A=\left(m_{u}-m_{d}\right) A_{1}+\alpha_{e n} A_{2}
$$

- $\boldsymbol{\alpha}_{e m}$ effects are small

Sutherland'66, Bell \& Sutherland'68
Baur, Kambor, Wyler'96, Ditsche, Kubis, Meissner'09

- Decay rate measures the size of isospin breaking $\left(m_{u}-m_{d}\right)$ in the SM:

$$
L_{Q C D} \rightarrow L_{I B}=-\frac{m_{u}-m_{d}}{2}(\bar{u} u-\bar{d} d)
$$

\Rightarrow Unique access to $\left(m_{u}-m_{d}\right)$

1.4 Quark mass ratios

- Instead of $\left(m_{u}-m_{d}\right)$ of estimate quark mass ratio Q (or R):

$$
\begin{aligned}
A(s, t, u) \propto B_{0}\left(m_{u}-m_{d}\right) & =\frac{1}{Q^{2}} \frac{M_{K}^{2}\left(M_{K}^{2}-M_{\pi}^{2}\right)}{M_{\pi}^{2}}+O\left(M^{3}\right) \\
& =-\frac{1}{R}\left(M_{K}^{2}-M_{\pi}^{2}\right)+O\left(M^{2}\right)
\end{aligned}
$$

- $\boldsymbol{Q}^{2} \equiv \frac{\boldsymbol{m}_{s}^{2}-\hat{\boldsymbol{m}}^{2}}{\boldsymbol{m}_{d}^{2}-\boldsymbol{m}_{u}^{2}}$ or

$$
R \equiv \frac{m_{s}-\hat{m}}{m_{d}-m_{u}}
$$

$$
\left[\widehat{m} \equiv \frac{m_{d}+m_{u}}{2}\right]
$$

1.4 Quark mass ratios

- Instead of $\left(m_{u}-m_{d}\right)$ of estimate quark mass ratio Q (or R):

$$
A(s, t, u) \propto B_{0}\left(m_{u}-m_{d}\right)=\frac{1}{Q^{2}} \frac{M_{K}^{2}\left(M_{K}^{2}-M_{\pi}^{2}\right)}{M_{\pi}^{2}}+O\left(M^{3}\right)
$$

$$
=-\frac{1}{R}\left(M_{K}^{2}-M_{\pi}^{2}\right)+O\left(M^{2}\right)
$$

- $\boldsymbol{Q}^{2} \equiv \frac{\boldsymbol{m}_{s}^{2}-\hat{\boldsymbol{m}}^{2}}{\boldsymbol{m}_{d}^{2}-\boldsymbol{m}_{u}^{2}}$ or

$$
R \equiv \frac{m_{s}-\hat{m}}{m_{d}-m_{u}}
$$

$$
\left[\widehat{m} \equiv \frac{m_{d}+m_{u}}{2}\right]
$$

- Normalized Amplitude:

$$
A(s, t, u)=-\frac{1}{Q^{2}} \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{3 \sqrt{3} F_{\pi}^{2}} M(s, t, u)
$$

1.4 Quark mass ratios

- In the following, extraction of Q from $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

$$
\Gamma_{\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}}=\frac{1}{Q^{4}} \frac{M_{K}^{4}}{M_{\pi}^{4}} \frac{\left(M_{K}^{2}-M_{\pi}^{2}\right)^{2}}{6912 \pi^{3} F_{\pi}^{4} M_{\eta}^{3}} \int_{s_{\min }}^{s_{\max }} d s \int_{u_{-}(s)}^{u_{+}(s)} d u|M(s, t, u)|^{2}
$$

1.4 Quark mass ratios

- In the following, extraction of Q from $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$

> Fit to
> Dalitz distr.

- Aim: Compute M(s,t,u) with the best accuracy

1.5 Computation of the amplitude

- What do we know?
- Compute the amplitude using ChPT :

$$
\Gamma_{\eta \rightarrow 3 \pi}=(\underset{\text { LO }}{(66+94+\ldots+\ldots)} \mathrm{NLO} \mathrm{NNLO}
$$

LO: Osborn, Wallace'70
NLO: Gasser \& Leutwyler' 85 NNLO: Bijnens \& Ghorbani'07

The Chiral series has convergence problems \square Large $\pi \pi$ final state interactions
 Roiesnel \& Truong'81

Anisovich \& Leutwyler'96

1.5 Computation of the amplitude

- What do we know?
- The amplitude has an Adler zero: soft pion theorem

Adler'85

 \square Amplitude has a zero for :$$
\begin{array}{lll}
p_{\pi^{+}} \rightarrow 0 \\
p_{\pi^{-}} \rightarrow 0 & \triangleleft s=u=0, t=M_{\eta}^{2} & M_{\pi} \neq 0
\end{array} s=u=\frac{4}{3} M_{\pi}^{2}, t=M_{\eta}^{2}+\frac{M_{\pi}^{2}}{3} .
$$

SU(2) corrections

1.6 Neutral channel

- What do we know?
- We can relate charged and neutral channel

$$
\bar{A}(s, t, u)=A(s, t, u)+A(t, u, s)+A(u, s, t)
$$

\square Consistency check

- Ratio of decay width precisely measured

$$
r=\frac{\Gamma\left(\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}\right)}{\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)}=\mathbf{1 . 4 2 6} \pm \mathbf{0 . 0 2 6}
$$

1.6 Neutral Channel : $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$

- Decay amplitude $\Gamma_{\eta \rightarrow 3 \pi} \propto|\bar{A}|^{2} \propto 1+2 \alpha Z$ with $Z=\frac{2}{3} \sum_{i=1}^{3}\left(\frac{3 T_{i}}{Q_{n}}-1\right)^{2}$

$$
Q_{n} \equiv M_{n}-3 M_{n^{0}}
$$

Important discrepancy between ChPT and experiment!
2. Dispersive Analysis of $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

2.1 Why a new dispersive analysis?

- Large $\pi \pi$ final state interactions
\square call for a dispersive treatment :
- analyticity, unitarity and crossing symmetry
- Take into account all the rescattering effects
- Several new ingredients:
- New inputs available: extraction $\pi \pi$ phase shifts has improved

Ananthanarayan et al'01, Colangelo et al'01
 Descotes-Genon et al'01
 Kaminsky et al'01, Garcia-Martin et al'09

- New experimental programs, precise Dalitz plot measurements

$$
\begin{aligned}
& \text { TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) } \\
& \text { CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) } \\
& \text { BES III (Beijing) } \\
& \square \text { see talks by S. Giovannella } \\
& \text { S. Fang }
\end{aligned}
$$

2.1 Why a new dispersive analysis?

- Large $\pi \pi$ final state interactions
\square call for a dispersive treatment :
- analyticity, unitarity and crossing symmetry
- Take into account all the rescattering effects
- Several new ingredients:
- Possible improvements:
- Electromagnetic effects, complete analysis of $\mathcal{O}\left(e^{2} m\right)$ effects

Ditsche, Kubis, Meissner’09

- Isospin breaking effects

Gullstrom, Kupsc, Rusetsky'09, Schneider, Kubis, Ditsche'11

- Inelasticities

Albaladejo \& Moussallam'15

- Match to ChPT amplitude to obtain Q from rates \square see later

2.2 Method: Representation of the amplitude

- Consider the s channel \square Partial wave expansion of $M(s, t, u)$ and isospin projection:

$$
M(s, t, u)=f_{0}^{0}(s)+f_{1}^{1}(s) \cos \theta+\ldots
$$

- Elastic unitarity:

$$
\begin{gathered}
\operatorname{disc}\left[f_{\ell}^{I}(s)\right] \propto t_{\ell}^{I *}(s) f_{\ell}^{I}(s) \\
\text { with } t_{\ell}^{I}(s) \text { partial wave } \\
\text { of elastic } \pi \pi \text { scattering }
\end{gathered}
$$

Watson's theorem

- $\mathrm{M}(\mathrm{s}, \mathrm{t}, \mathrm{u})$ right-hand branch cut in the complex s-plane starting at the $\pi \pi$ threshold
- Left-hand cut present due to crossing
- Same situation in the t- and u-channel

2.2 Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

Fuchs, Sazdjian \& Stern'93
$>\boldsymbol{M}_{I}$ isospin / rescattering in two particles
Anisovich \& Leutwyler'96
$>$ Amplitude in terms of S and P waves \Rightarrow exact up to $\operatorname{NNLO}\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
$>$ Main two body rescattering corrections inside M_{l}

2.2 Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

Fuchs, Sazdjian \& Stern'93
$>\boldsymbol{M}_{I}$ isospin / rescattering in two particles
Anisovich \& Leutwyler'96
$>$ Amplitude in terms of S and P waves \Rightarrow exact up to $\operatorname{NNLO}\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
> Main two body rescattering corrections inside M_{1}

- Functions of only one variable with only right-hand cut of the partial wave Elastic unitarity

$$
\operatorname{disc}\left[M_{I}(s)\right] \equiv \operatorname{disc}\left[f_{\ell}^{I}(s)\right] \quad \square \quad \operatorname{disc}\left[f_{1}^{I}(s)\right] \propto t_{1}^{*}(s) f_{1}^{I}(s)
$$

2.3 Unitarity relation for the $\mathrm{M}_{\mathrm{I}}(\mathrm{s})$

- Elastic Unitarity

$$
[\ell=1 \text { for } I=1, \ell=0 \text { otherwise }]
$$

$\boldsymbol{\delta}_{1}^{I}$ phase of the partial wave $\boldsymbol{f}_{1}^{I}(\boldsymbol{s})$
$\pi \pi$ phase shift
\square Watson theorem: elastic $\pi \pi$ scattering phase shifts

2.4 Dispersion relations for $\mathrm{M}_{\mathrm{I}}(\mathrm{s})$

- Knowing the discontinuity of $\boldsymbol{M}_{I} \triangleleft$ write a dispersion relation for it
- Cauchy Theorem and Schwarz reflection principle

$$
\begin{aligned}
M_{I}(s) & =\frac{1}{\pi} \oint_{C} d z \frac{M_{I}(z)}{z-s} \\
& =\frac{1}{2 i \pi} \int_{S_{M_{m}}-4 M_{\pi}^{2}}^{\Lambda^{2}} d z \frac{d i s c\left[M_{I}(z)\right]}{z-s-i \varepsilon}+\frac{1}{2 i \pi} \int_{| |=\Lambda^{2}} d z \frac{M_{I}(z)}{z-s} \\
\Rightarrow & M_{I}(s)=\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\operatorname{disc}\left[M_{I}(z)\right]}{z-s-i \varepsilon} d z
\end{aligned}
$$

\boldsymbol{M}_{I} can be reconstructed everywhere from the knowledge of $\operatorname{disc}\left[\boldsymbol{M}_{\boldsymbol{I}}(s)\right]$

- If \boldsymbol{M}_{I} doesn' t converge fast enough for $|\boldsymbol{s}| \rightarrow \infty \Rightarrow$ subtract the dispersion relation

$$
M_{I}(s)=P_{n-1}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\operatorname{disc}\left[M_{I}\left(s^{\prime}\right)\right]}{\left(s^{\prime}-s-i \varepsilon\right)}
$$

$$
P_{n-1}(s) \text { polynomial }
$$

2.4 Dispersion relations for $\mathrm{M}_{\mathrm{I}}(\mathrm{s})$

$$
\operatorname{disc}\left[M_{I}\right]=\operatorname{disc}\left[f_{\ell}^{I}(s)\right]=\theta\left(s-4 M_{\pi}^{2}\right)\left[M_{I}(s)+\hat{M}_{I}(s)\right] \sin \delta_{\ell}^{I}(s) e^{-i \delta_{\ell}^{I}(s)}
$$

- Write a dispersion relation for $\frac{M_{I}(s)}{\Omega_{I}(s)}$:

$$
M_{0}(s)=\Omega_{0}(s)\left(\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3}+\frac{s^{2}}{\left.\pi_{4 M_{\pi}^{2}}^{\infty} \int_{N^{\prime}}^{\infty} \frac{d s^{\prime}}{s^{\prime 2}} \frac{\sin \delta_{0}^{0}\left(s^{\prime}\right) \hat{M}_{0}\left(s^{\prime}\right)}{\Omega_{0}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)}\right.
$$

Omnès function
Similarly for M_{1} and M_{2}

$$
\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{1}^{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

2.4 Dispersion relations for $\mathrm{M}_{\mathrm{I}}(\mathrm{s})$

$$
\operatorname{disc}\left[M_{I}\right]=\operatorname{disc}\left[f_{\ell}^{I}(s)\right]=\theta\left(s-4 M_{\pi}^{2}\right)\left[M_{I}(s)+\hat{M}_{I}(s)\right] \sin \delta_{\ell}^{I}(s) e^{-i \delta_{\ell}^{I}(s)}
$$

- Write a dispersion relation for $\frac{M_{I}(s)}{\Omega_{I}(s)}$:

$$
\begin{aligned}
& \begin{array}{l}
\left.M_{0}(s)=\Omega_{0}(s)\left(\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3}+\frac{s^{2}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 2}} \frac{\sin \delta_{0}^{0}\left(s^{\prime}\right) \hat{M}_{0}\left(s^{\prime}\right)}{\left[\Omega_{0}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)\right.}\right)\right] \\
\quad \text { Omnès function } \\
\text { Similarly for } M_{1} \text { and } \mathrm{M}_{2}
\end{array} \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{\ell}^{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
\end{aligned}
$$

- Inputs needed : S and P-wave phase shifts of $\pi \pi$ scattering

2.4 Dispersion relations for $\mathrm{M}_{\mathrm{I}}(\mathrm{s})$

$$
\operatorname{disc}\left[M_{I}\right]=\operatorname{disc}\left[f_{\ell}^{I}(s)\right]=\theta\left(s-4 M_{\pi}^{2}\right)\left[M_{I}(s)+\hat{M}_{I}(s)\right] \sin \delta_{\ell}^{I}(s) e^{-i \delta_{\ell}^{I}(s)}
$$

- Write a dispersion relation for $\frac{M_{I}(s)}{\Omega_{I}(s)}$:

$$
\begin{aligned}
& \begin{array}{l}
\left.M_{0}(s)=\Omega_{0}(s)\left(\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3}+\frac{s^{2}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 2}} \frac{\sin \delta_{0}^{0}\left(s^{\prime}\right) \hat{M}_{0}\left(s^{\prime}\right)}{\Omega_{0}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)\right] \\
\text { Omnès function } \\
\text { Similarly for } \mathrm{M}_{1} \text { and } \mathrm{M}_{2}
\end{array} \quad\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{\ell}^{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
\end{aligned}
$$

- Inputs needed : S and P-wave phase shifts of $\pi \pi$ scattering
- $\hat{M}_{I}(s)$: singularities in the t and u channels, depend on the other $\boldsymbol{M}_{I}(s)$ subtract $M_{I}(s)$ from the partial wave projection of $M(s, t, u)$
\square Angular averages of the other functions \square Coupled equations

Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

$>\boldsymbol{M}_{\boldsymbol{I}}$ isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves \Rightarrow exact up to $\operatorname{NNLO}\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
> Main two body rescattering corrections inside M_{l}

- Dispersion relation for the M,'s

$$
M_{I}(s)=\Omega_{I}(s)\left(P_{I}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\sin \delta_{I}\left(s^{\prime}\right) \hat{M}_{I}\left(s^{\prime}\right)}{\Omega_{I}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)
$$

$$
\left[\Omega_{I}(s)=\exp \left(\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{I}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s-i \varepsilon\right)}\right)\right]
$$

Omnès function

- Solution depends on subtraction constants only \Rightarrow solve by iterative procedure

2.5 Iterative Procedure

- Solution linear in the subtraction constants
$\boldsymbol{M}(\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{u})=\alpha_{0} M_{\alpha_{0}}(\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{u})+\boldsymbol{\beta}_{0} M_{\beta_{0}}(\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{u})+\ldots \Rightarrow$ makes the fit much easier

2.6 Subtraction constants

- Extension of the numbers of parameters compared to Anisovich \& Leutwyler'96

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}
\end{aligned}
$$

- In the work of Anisovich \& Leutwyler'96 matching to one loop ChPT Use of the $\operatorname{SU}(2) \times \operatorname{SU}(2)$ chiral theorem
\Rightarrow The amplitude has an Adler zero along the line $\mathrm{s}=\mathrm{u}$
- Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III \Rightarrow Use the data to directly fit the subtraction constants
- However normalization to be fixed to ChPT!

2.7 Subtraction constants

- The subtraction constants are

$$
\begin{aligned}
& P_{0}(s)=\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\delta_{0} s^{3} \\
& P_{1}(s)=\alpha_{1}+\beta_{1} s+\gamma_{1} s^{2} \\
& P_{2}(s)=\alpha_{2}+\beta_{2} s+\gamma_{2} s^{2}+\delta_{0} s^{3}
\end{aligned}
$$

Only 6 coefficients are of physical relevance

- They are determined from combining ChPT with a fit to KLOE Dalitz plot
- Taylor expand the dispersive M_{1} Subtraction constants \Leftrightarrow Taylor coefficients

$$
\begin{aligned}
& M_{0}(s)=A_{0}+B_{0} s+C_{0} s^{2}+D_{0} s^{3}+\ldots \\
& M_{1}(s)=A_{1}+B_{1} s+C_{1} s^{2}+\ldots \\
& M_{2}(s)=A_{2}+B_{2} s+C_{2} s^{2}+D_{2} s^{3}+
\end{aligned}
$$

- Gauge freedom in the decomposition of $\mathrm{M}(\mathrm{s}, \mathrm{t}, \mathrm{u})$

2.7 Subtraction constants

- Build some gauge independent combinations of Taylor coefficients

$$
\begin{array}{ll}
H_{0}=A_{0}+\frac{4}{3} A_{2}+s_{0}\left(B_{0}+\frac{4}{3} B_{2}\right) \\
H_{1}=A_{1}+\frac{1}{9}\left(3 B_{0}-5 B_{2}\right)-3 C_{2} s_{0} \\
H_{2}=C_{0}+\frac{4}{3} C_{2}, \quad H_{3}=B_{1}+C_{2} & \boldsymbol{H}_{\mathbf{0}}^{\text {ChIT }}=\mathbf{1}+\mathbf{0 . 1 7 6}+\boldsymbol{O}\left(\boldsymbol{p}^{4}\right) \\
H_{4}=D_{0}+\frac{4}{3} D_{2}, \quad H_{5}=C_{1}-3 D_{2} & \boldsymbol{h}_{\mathbf{1}}^{\text {ChIT }}=\frac{\mathbf{1}}{\Delta_{\eta \pi}}\left(\mathbf{1}-\mathbf{0 . 2 1}+\boldsymbol{O}\left(\boldsymbol{p}^{4}\right)\right) \\
\Delta_{\eta \pi}^{2} & \boldsymbol{h}_{3}^{\text {ChIT }}=\frac{\mathbf{1}}{\Delta_{\eta \pi}^{2}}\left(\mathbf{1 . 3}+\boldsymbol{O}\left(\boldsymbol{p}^{4}\right)\right) \\
\left.\Rightarrow \boldsymbol{h}_{\boldsymbol{i}} \equiv \frac{\boldsymbol{H}_{i}}{\boldsymbol{H}_{\mathbf{0}}}\right] \\
\boldsymbol{\chi}_{\text {the }}^{\mathbf{2}}=\sum_{i=1}^{\mathbf{3}}\left(\frac{\boldsymbol{h}_{\boldsymbol{i}}-\boldsymbol{h}_{\boldsymbol{i}}^{\text {ChIT }}}{\boldsymbol{\sigma}_{\boldsymbol{h}_{\boldsymbol{i}}}^{\text {ChiT }}}\right)^{2} & \boldsymbol{\sigma}_{\boldsymbol{h}_{i}^{\text {Chr }}=\mathbf{0 . 3} \mid \boldsymbol{h}_{i}^{\text {NL }}-\boldsymbol{h}_{i}^{\text {LO }}}
\end{array}
$$

2.8 Fitting procedure

- Fit of $h_{1,2,3,4,5}$ using KLOE data and NLO ChPT

$$
\chi_{\exp }^{2}=\sum_{\text {bins }=(376)}\left(\frac{N_{\text {events }}-N_{\text {theory }}}{\sigma_{\text {Nevents }}}\right)^{2}
$$

KLOE'16

$$
\chi^{2}=\chi_{\text {theo }}^{2}+\chi_{\exp }^{2} \Rightarrow \text { Very good fit } \chi_{\exp }^{2}=\mathbf{3 8 0 . 2} \text { for } 371 \text { data points }
$$

3. Results

3.1 Isospin breaking corrections

- Dispersive calculations in the isospin limit \Rightarrow to fit to data one has to include isospin breaking corrections
- $M_{c / n}(s, t, u)=M_{d i s p}(s, t, u) \frac{M_{D K M}(s, t, u)}{\tilde{M}_{G L}(s, t, u)}$

$$
Y_{n}=\frac{3 T_{3}}{Q_{n}}-1
$$

Neutral channel

with $M_{\text {DKM }}$: amplitude at one loop with $\mathcal{O}\left(e^{2} m\right)$ effects
$M_{G L}$: amplitude at one loop in the isospin limit

Gasser \& Leutwyler' 85

Kinematic map: isospin symmetric boundaries
\Rightarrow physical boundaries

$$
M_{G L} \rightarrow \tilde{M}_{G L}
$$

$Q_{n} \equiv M_{\eta}-3 M_{n^{0}}$

3.2 Amplitude for $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

- The amplitude along the line $\mathrm{s}=\mathrm{u}$:

3.2 Amplitude for $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decays

- The amplitude along the line $t=u$:

3.3 Z distribution for $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays

- The amplitude squared in the neutral channel is

3.3 Z distribution for $\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$ decays

- The amplitude squared in the neutral channel is

3.4 Extraction of \mathbf{Q} and α

- Determination of Q from the dispersive approach :

$$
\begin{aligned}
& \Gamma_{\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}}=\frac{1}{Q^{4}} \frac{M_{K}^{4}}{M_{\pi}^{4}} \frac{\left(M_{K}^{2}-M_{\pi}^{2}\right)^{2}}{6912 \pi^{3} F_{\pi}^{4} M_{\eta}^{3}} \int_{s_{\min }}^{s_{\max }} d s \int_{u_{-}(s)}^{u_{+}(s)} d u|M(s, t, u)|^{2} \\
& \Gamma_{\eta \rightarrow 3 \pi}=300 \pm \mathbf{1 2} \mathbf{e V} \quad P D G^{\prime} 14 \\
& \left(Q^{2} \equiv \frac{\boldsymbol{m}_{s}^{2}-\hat{\boldsymbol{m}}^{2}}{\boldsymbol{m}_{d}^{2}-\boldsymbol{m}_{u}^{2}}\right)
\end{aligned}
$$

- Determination of α

$$
A_{n}(s, t, u)^{2}=N(1+2 \alpha Z)
$$

3.5 Comparison of results for Q

3.6 Comparison of results for α

3.7 Light quark masses

Courtesy of H.Leutwyler

- Smaller values for $\mathrm{Q} \Rightarrow$ smaller values for $\mathrm{ms} / \mathrm{md}$ and $\mathrm{mu} / \mathrm{md}$ than LO ChPT

3.7 Light quark masses

4. Conclusion and outlook

4.1 Conclusion

- $\eta \rightarrow 3 \pi$ decays represent a very clean source of information on the quark mass ratio Q
- A reliable extraction of Q requires having the strong rescattering effects in the final state under control
- This is possible thanks to dispersion relations
\square need to determine unknown subtraction constants
- This was done up to now relying exclusively on ChPT but precise measurements have become available
> In the charged channel: KLOE, WASA and BES III
> In the neutral channel: MAMI-B, MAMI-C, WASA
> More results are expected: CLAS and GlueX (Jlab)
\square very interesting to get a reliable extraction of Q
- At the level of accuracy need to take the e.m. corrections into account
- Combine ChPT and the data in the optimal way

4.2 Outlook

- Our results give a consistent picture between
$>$ the KLOE'16 Dalitz plot charged measurement
$>$ the measurement in the neutral channel
$>$ theoretical requirements: e.g. Adler zero
- Extract very reliably Q with careful estimate of all uncertainties
- Outlook:
$>$ Estimate the experimental systematic on $\mathrm{Q} \square$ collaboration with experimentalists
> Perform our analysis with other experimental results: WASA, BES III etc..
$>$ Assume the subtraction constants real \square investigate relaxing this condition
> Matching to NNLO ChPT
\Rightarrow Constraints from experiment: possible insights on $\boldsymbol{C}_{\boldsymbol{i}}$ values

5. Back-up

4.3 Hat functions

- Discontinuity of M_{I} : by definition $\operatorname{disc}\left[M_{I}(s)\right] \equiv \operatorname{disc}\left[f_{1}^{I}(s)\right]$

$$
\Rightarrow \quad f_{1}^{I}(s)=M_{I}(s)+\hat{M}_{I}(s)
$$

with $\hat{M}_{I}(s)$ real on the right-hand cut

- The left-hand cut is contained in $\hat{M}_{I}(s)$
- Determination of $\hat{\boldsymbol{M}}_{I}(s)$: subtract \boldsymbol{M}_{I} from the partial wave projection of $\boldsymbol{M}(\boldsymbol{s}, \boldsymbol{t}, \boldsymbol{u})$ $M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+\ldots$
- $\quad \hat{\boldsymbol{M}}_{I}(s)$ singularities in the t and u channels, depend on the other \boldsymbol{M}_{I} Angular averages of the other functions \Rightarrow Coupled equations

4.3 Hat functions

- Ex: $\hat{M}_{0}(s)=\frac{2}{3}\left\langle M_{0}\right\rangle+2\left(s-s_{0}\right)\left\langle M_{1}\right\rangle+\frac{20}{9}\left\langle M_{2}\right\rangle+\frac{2}{3} \kappa(s)\left\langle z M_{1}\right\rangle$
where $\left\langle z^{n} M_{I}\right\rangle(s)=\frac{1}{2} \int_{-1}^{1} d z z^{n} M_{I}(t(s, z))$,
$\boldsymbol{z}=\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$ scattering angle
Non trivial angular averages \Rightarrow need to deform the integration path to avoid crossing cuts

3.3 Different recent analyses

1. Schneider, Kubis, Ditsche 2011: 2-loop NREFT approach

- allows investigation of isospin-violating corrections
- relations between charged and neutral Dalitz plots

2. Kampf, Knecht, Novotny, Zdrahal 2011: Analytic dispersive approach

- Amplitudes involve 6 parameters (subtraction constants)
- Fit to Dalitz plot distribution (KLOE 2008: $\eta \rightarrow \pi+\pi-\pi 0)$
- Predict Dalitz plot parameter α (neutral decay mode)
- Match to absorptive part of NNLO chiral amplitude where differences between NLO and NNLO are small $\square \mathrm{R}(\mathrm{Q})$
Problem: do not reproduce the Adler's zero

3.3 Different recent analyses

3. Guo et al. 2015: JPAC analysis, Khuri Treiman equations solved numerically using Pasquier inversion techniques

- Madrid/Cracow mm phase shifts, 3 subtraction constants
- Fit experimental Dalitz plot (WASA/COSY 2014: $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$, KLOE 2016) \Rightarrow predict Dalitz plot parameter α
- Match to NLO ChPT near Adler zero \square

Discontinuities of the $M_{I}(s)$

- Ex: $\hat{M}_{0}(s)=\frac{2}{3}\left\langle M_{0}\right\rangle+2\left(s-s_{0}\right)\left\langle M_{1}\right\rangle+\frac{20}{9}\left\langle M_{2}\right\rangle+\frac{2}{3} \kappa(s)\left\langle z M_{1}\right\rangle$ where $\left\langle z^{n} M_{I}\right\rangle(s)=\frac{1}{2} \int_{-1}^{1} d z z^{n} M_{I}(t(s, z)), z=\cos \theta$ scattering angle

Non trivial angular averages \Rightarrow need to deform the integration path to avoid crossing cuts

Discontinuities of the $M_{I}(s)$

- Ex: $\hat{M}_{0}(s)=\frac{2}{3}\left\langle M_{0}\right\rangle+2\left(s-s_{0}\right)\left\langle M_{1}\right\rangle+\frac{20}{9}\left\langle M_{2}\right\rangle+\frac{2}{3} \kappa(s)\left\langle z M_{1}\right\rangle$ where $\left\langle z^{n} M_{I}\right\rangle(s)=\frac{1}{2} \int_{-1}^{1} d z z^{n} M_{I}(t(s, z)), z=\cos \theta$ scattering angle

Non trivial angular averages \Rightarrow need to deform the integration path to avoid crossing cuts

Anisovich \& Anselm'66

3.7 Comparison of values of \mathbf{Q}

\square Fair agreement with the determination from meson masses

Comparison with \mathbf{Q} from meson mass splitting

- $\boldsymbol{Q}^{2}=\frac{\boldsymbol{M}_{K}^{2}}{\boldsymbol{M}_{\pi}^{2}} \frac{\boldsymbol{M}_{\boldsymbol{K}}^{2}-\boldsymbol{M}_{\pi}^{2}}{\boldsymbol{M}_{\boldsymbol{K}^{0}}^{2}-\boldsymbol{M}_{\boldsymbol{K}^{+}}^{2}}\left[\mathbf{1}+\boldsymbol{O}\left(\boldsymbol{m}_{q}^{2}\right)\right]$ is only valid for e=0
- Including the electromagnetic corrections, one has

$$
Q_{D}^{2} \equiv \frac{\left(M_{K^{0}}^{2}+M_{K^{+}}^{2}-M_{\pi^{+}}^{2}+M_{\pi^{0}}^{2}\right)\left(M_{K^{0}}^{2}+M_{K^{+}}^{2}-M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)}{4 M_{\pi^{0}}^{2}\left(M_{K^{0}}^{2}-M_{K^{+}}^{2}+M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)}
$$

$\Rightarrow Q_{D}=24.2$

- Corrections to the Dashen's theorem \Rightarrow The corrections can be large due to $\mathrm{e}^{2} \mathrm{~m}_{\mathrm{s}}$ corrections:

$$
\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)_{\mathrm{em}}^{2}-\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)_{\mathrm{em}}=e^{2} M_{K}^{2}\left(A_{1}+A_{2}+A_{3}\right)+O\left(e^{2} M_{\pi}^{2}\right)
$$

3.6 Corrections to Dashen's theorem

- Dashen's Theorem

$$
\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)_{\mathrm{em}}=\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)_{\mathrm{em}} \Rightarrow\left(M_{K^{+}}-M_{K^{0}}\right)_{\mathrm{em}}=1.3 \mathrm{MeV}
$$

- With higher order corrections
- Lattice : $\quad\left(\boldsymbol{M}_{\mathbf{K}^{+}}-\boldsymbol{M}_{\mathbf{K}^{0}}\right)_{\mathrm{em}}=\mathbf{1 . 9} \mathbf{M e V}, \boldsymbol{Q}=\mathbf{2 2 . 8} \quad$ Ducan et al.'96
- ENJL model. $\left(\boldsymbol{M}_{\boldsymbol{K}^{+}}-\boldsymbol{M}_{\mathbf{K}^{\circ}}\right)_{\mathrm{em}}=\mathbf{2 . 3} \mathbf{~ M e V}, \boldsymbol{Q}=\mathbf{2 2}$ Bijnens \& Prades'97
- VMD:
$\left(M_{K^{+}}-M_{K^{0}}\right)_{\mathrm{em}}=2.6 \mathrm{MeV}, \boldsymbol{Q}=\mathbf{2 1 . 5} \quad$ Donoghue \& Perez'97
- Sum Rules: $\left(\boldsymbol{M}_{K^{+}}-\boldsymbol{M}_{K^{\circ}}\right)_{\mathrm{em}}=3.2 \mathrm{MeV}, \boldsymbol{Q}=\mathbf{2 0 . 7}$ Anant \& Moussallam'04 Update $\Rightarrow Q=\mathbf{2 0 . 7} \pm \mathbf{1 . 2}$ Kastner \& Neufeld'07

4.2 Method: Representation of the amplitude

- Decomposition of the amplitude as a function of isospin states

$$
M(s, t, u)=M_{0}(s)+(s-u) M_{1}(t)+(s-t) M_{1}(u)+M_{2}(t)+M_{2}(u)-\frac{2}{3} M_{2}(s)
$$

Fuchs, Sazdjian \& Stern'93
Anisovich \& Leutwyler'96
$>\boldsymbol{M}_{\boldsymbol{I}}$ isospin / rescattering in two particles
$>$ Amplitude in terms of S and P waves \square exact up to NNLO $\left(\mathcal{O}\left(\mathrm{p}^{6}\right)\right)$
$>$ Main two body rescattering corrections inside M_{1}

- Functions of only one variable with only right-hand cut of the partial wave $\breve{ } \quad \operatorname{disc}\left[M_{I}(s)\right] \equiv \operatorname{disc}\left[f_{1}^{I}(s)\right]$
- Elastic unitarity Watson's theorem

$$
\operatorname{disc}\left[f_{1}^{I}(s)\right] \propto t_{1}^{*}(s) f_{1}^{I}(s) \quad \begin{aligned}
& \text { with } t_{1}(s) \text { partial wave of elastic } \pi \pi \\
& \text { scattering }
\end{aligned}
$$

4.2 Method: Representation of the amplitude

- Knowing the discontinuity of $\boldsymbol{M I}_{I} \square$ write a dispersion relation for it
- Cauchy Theorem and Schwarz reflection principle
$\Rightarrow M_{I}(s)=\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\operatorname{disc}\left[M_{I}\left(s^{\prime}\right)\right]}{s^{\prime}-s-i \varepsilon} d s^{\prime}$
\boldsymbol{M}_{I} can be reconstructed everywhere from the knowledge of $\operatorname{disc}\left[M_{I}(s)\right]$

- If $\boldsymbol{M}_{\boldsymbol{I}}$ doesn' t converge fast enought for $|\boldsymbol{s}| \rightarrow \infty \Rightarrow$ subtract the dispersion relation

$$
M_{I}(s)=P_{n-1}(s)+\frac{s^{n}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime n}} \frac{\operatorname{disc} c\left[M_{I}\left(s^{\prime}\right)\right]}{\left(s^{\prime}-s-i \varepsilon\right)} \quad \mathrm{P}_{\mathrm{n}-1}(\mathrm{~s}) \text { polynomial }
$$

4.4 Dispersion Relations for the $\mathbf{M}_{\mathrm{I}}(\mathrm{s})$

- $M_{0}(s)=\Omega_{0}(s)\left(\alpha_{0}+\beta_{0} s+\gamma_{0} s^{2}+\frac{s^{3}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 3}} \frac{\sin \delta_{0}^{0}\left(s^{\prime}\right) \hat{M}_{0}\left(s^{\prime}\right)}{\Omega_{0}\left(s^{\prime}\right) \mid\left(s^{\prime}-s-i \varepsilon\right)}\right)$

Omnès function
Similarly for M_{1} and M_{2}

- Four subtraction constants to be determined: $\alpha_{0}, \beta_{0}, \gamma_{0}$ and one more in $\mathrm{M}_{1}\left(\beta_{1}\right)$
- Inputs needed for these and for the $\pi \pi$ phase shifts $\boldsymbol{\delta}_{1}^{I}$
- M_{0} : $\pi \pi$ scattering, $\ell=0, I=0$
$-M_{1}: \pi \pi$ scattering, $\ell=1, I=1$
$-M_{2}: \pi \pi$ scattering, $\ell=0, I=2$
- Solve dispersion relations numerically by an iterative procedure

5.4 Comparison with KKNZ

- Adler zero not reproduced!

1.5 Quark mass ratios

- Mass formulae to second chiral order

$$
\begin{aligned}
& \frac{M_{K}^{2}}{M_{\pi}^{2}}=\frac{m_{s}+\hat{m}}{2 \hat{m}}\left[1+\Delta_{M}+\mathcal{O}\left(m^{2}\right)\right] \\
& \frac{M_{K^{0}}^{2}-M_{K^{+}}^{2}}{M_{K}^{2}-M_{\pi}^{2}}=\frac{m_{d}-m_{u}}{m_{s}-\hat{m}}\left[1+\Delta_{M}+\mathcal{O}\left(m^{2}\right)\right] \\
& \text { with } \Delta_{M}=\frac{8\left(M_{K}^{2}-M_{\pi}^{2}\right)}{F_{\pi}^{2}}\left(2 L_{8}-L_{5}\right)+\chi \text {-logs }
\end{aligned}
$$

- The same $O(m)$ correction appears in both ratios

$$
\left[\widehat{m} \equiv \frac{m_{d}+m_{u}}{2}\right]
$$

\square Take the double ratio

$$
Q^{2} \equiv \frac{m_{s}^{2}-\hat{m}^{2}}{m_{d}^{2}-m_{u}^{2}}=\frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2}-M_{\pi}^{2}}{\left(M_{K^{0}}^{2}-M_{K^{+}}^{2}\right)_{Q C D}}\left[1+O\left(m_{q}^{2}, e^{2}\right)\right]
$$

Very Interesting quantity to determine since Q^{2} does not receive any correction at NLO!

