

Towards a dispersive determination of the η and η' transition form factors

Bastian Kubis

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie)

Bethe Center for Theoretical Physics

Universität Bonn, Germany

KLOE-2 Workshop, Frascati, October 27th 2016

Outline

Introduction

 The anomalous magnetic moment of the muon: hadronic light-by-light scattering

Dispersion relations for meson transition form factors

• Ingredients for a data-driven analysis of $\eta, \eta' \to \gamma^* \gamma^{(*)}$

Summary / Outlook

Outline

Introduction

 The anomalous magnetic moment of the muon: hadronic light-by-light scattering

Dispersion relations for meson transition form factors

• Ingredients for a data-driven analysis of $\eta, \eta' \to \gamma^* \gamma^{(*)}$

Colangelo, Hoferichter, BK, Procura, Stoffer 2014

Summary / Outlook

Hadronic light-by-light scattering

• hadronic light-by-light may soon dominate Standard Model uncertainty in $(g-2)_{\mu}$

Hadronic light-by-light scattering

• hadronic light-by-light may soon dominate Standard Model uncertainty in $(g-2)_{\mu}$

• different contributions estimated (in 10^{-11}):

— how to control hadronic modelling?

Jegerlehner, Nyffeler 2009

Hadronic light-by-light scattering

- hadronic light-by-light may soon dominate Standard Model uncertainty in $(g-2)_{\mu}$
- different contributions estimated (in 10^{-11}):

— how to control hadronic modelling?

Jegerlehner, Nyffeler 2009

- dispersive point of view: analytic structure, cuts and poles
 - (on-shell) form factors and scatt. amplitudes from experiment
 - ----- expansion in masses of intermediate states, partial waves

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z - s}$$

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z - s}$$

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z - s}$$

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z - s}$$

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z - s}$$

$$\longrightarrow \frac{1}{2\pi i} \int_{4M_{\pi}^{2}}^{\infty} \frac{\operatorname{disc} T(z)dz}{z - s}$$

$$= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{\operatorname{Im} T(z)dz}{z - s}$$

analyticity & Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z - s}$$

$$\longrightarrow \frac{1}{2\pi i} \int_{4M_{\pi}^{2}}^{\infty} \frac{\operatorname{disc} T(z)dz}{z - s}$$

$$= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{\operatorname{Im} T(z)dz}{z - s}$$

• $\operatorname{disc} T(s) = 2i \operatorname{Im} T(s)$ calculable by "cutting rules":

e.g. if T(s) is a $\pi\pi$ partial wave \longrightarrow

$$\frac{\operatorname{disc} T(s)}{2i} = \operatorname{Im} T(s) = \frac{2q_{\pi}}{\sqrt{s}} \theta(s - 4M_{\pi}^{2}) |T(s)|^{2}$$

analyticity & Cauchy's theorem:

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z - s}$$

$$\longrightarrow \frac{1}{2\pi i} \int_{4M_{\pi}^{2}}^{\infty} \frac{\operatorname{disc} T(z)dz}{z - s}$$

$$= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{\operatorname{Im} T(z)dz}{z - s}$$

• $\operatorname{disc} T(s) = 2i \operatorname{Im} T(s)$ calculable by "cutting rules":

inelastic intermediate states $(K\bar{K}, 4\pi)$ suppressed at low energies

• isospin decomposition:

see also following talk by S. Leupold

$$F_{\pi^0 \gamma^* \gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$
$$F_{\eta \gamma^* \gamma^*}(q_1^2, q_2^2) = F_{vv}(q_1^2, q_2^2) + F_{ss}(q_2^2, q_1^2)$$

• isospin decomposition:

see also following talk by S. Leupold

$$F_{\pi^0 \gamma^* \gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$
$$F_{\eta \gamma^* \gamma^*}(q_1^2, q_2^2) = F_{vv}(q_1^2, q_2^2) + F_{ss}(q_2^2, q_1^2)$$

analyse the leading hadronic intermediate states:

see also Gorchtein, Guo, Szczepaniak 2012

 \propto pion vector form factor \times $\gamma\pi \to \pi\pi$ / $\eta \to \pi\pi\gamma$ all determined in terms of pion–pion P-wave phase shift

• isospin decomposition:

see also following talk by S. Leupold

$$F_{\pi^0 \gamma^* \gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$
$$F_{\eta \gamma^* \gamma^*}(q_1^2, q_2^2) = F_{vv}(q_1^2, q_2^2) + F_{ss}(q_2^2, q_1^2)$$

analyse the leading hadronic intermediate states:

see also Gorchtein, Guo, Szczepaniak 2012

 \propto pion vector form factor \times $\gamma\pi \to \pi\pi$ / $\eta \to \pi\pi\gamma$ all determined in terms of pion—pion P-wave phase shift

• isospin decomposition:

see also following talk by S. Leupold

$$F_{\pi^0 \gamma^* \gamma^*}(q_1^2, q_2^2) = F_{vs}(q_1^2, q_2^2) + F_{vs}(q_2^2, q_1^2)$$
$$F_{\eta \gamma^* \gamma^*}(q_1^2, q_2^2) = F_{vv}(q_1^2, q_2^2) + F_{ss}(q_2^2, q_1^2)$$

analyse the leading hadronic intermediate states:

see also Gorchtein, Guo, Szczepaniak 2012

- - \propto pion vector form factor \times $\gamma\pi \to \pi\pi$ / $\eta \to \pi\pi\gamma$ all determined in terms of pion–pion P-wave phase shift
- \triangleright isoscalar photon: 3 pions \longrightarrow dominated by narrow ω , ϕ $\leftrightarrow \omega/\phi$ transition form factors; very small for the η

Warm-up: pion form factor from dispersion relations

• just two hadrons: form factor, e.g. $e^+e^- \to \pi^+\pi^-$, $\tau^- \to \pi^-\pi^0\nu_{\tau}$

 $\operatorname{Im} F(s) \propto F(s) imes \operatorname{phase space} imes T_{\pi\pi}^*(s)$

 \longrightarrow final-state theorem: phase of F(s) is scattering phase $\delta(s)$ Watson 1954

Warm-up: pion form factor from dispersion relations

• just two hadrons: form factor, e.g. $e^+e^- \to \pi^+\pi^-$, $\tau^- \to \pi^-\pi^0\nu_{\tau}$

 $\operatorname{Im} F(s) \propto F(s) imes \operatorname{phase space} imes T_{\pi\pi}^*(s)$

 \longrightarrow final-state theorem: phase of F(s) is scattering phase $\delta(s)$ Watson 1954

• dispersion relations allow to reconstruct form factor from imaginary part \longrightarrow elastic scattering phase $\delta(s)$:

$$F(s) = P(s)\Omega(s)$$
, $\Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' \frac{\delta(s')}{s'(s'-s)}\right\}$

P(s) polynomial, $\Omega(s)$ Omnès function

Omnès 1958

• today: high-accuracy $\pi\pi$ phase shifts available

Ananthanarayan et al. 2001, García-Martín et al. 2011

Pion vector form factor vs. Omnès representation

• divide $\tau^- \to \pi^- \pi^0 \nu_\tau$ form factor by Omnès function:

Hanhart et al. 2013

- \longrightarrow linear below 1 GeV: $F_\pi^V(s) \approx (1+0.1\,{\rm GeV}^{-2}s)\Omega(s)$
- \longrightarrow above: inelastic resonances ρ' , ρ'' ...

Final-state universality: $\eta,~\eta' ightarrow \pi^+\pi^-\gamma$

- $\eta^{(\prime)} \to \pi^+ \pi^- \gamma$ driven by the chiral anomaly, $\pi^+ \pi^-$ in P-wave \longrightarrow final-state interactions the same as for vector form factor
- ansatz: $\mathcal{F}_{\pi\pi\gamma}^{\eta^{(\prime)}}=A\times P(t)\times\Omega(t)$, $P(t)=1+\alpha^{(\prime)}t$, $t=M_{\pi\pi}^2$

Final-state universality: $\eta,~\eta' ightarrow \pi^+\pi^-\gamma$

- $\eta^{(\prime)} \to \pi^+\pi^-\gamma$ driven by the chiral anomaly, $\pi^+\pi^-$ in P-wave \longrightarrow final-state interactions the same as for vector form factor
- ansatz: $\mathcal{F}_{\pi\pi\gamma}^{\eta^{(\prime)}}=A\times P(t)\times\Omega(t),\ P(t)=1+\alpha^{(\prime)}t,\ t=M_{\pi\pi}^2$
- divide data by pion form factor $\longrightarrow P(t)$

Stollenwerk et al. 2012

 \longrightarrow exp.: $\alpha_{\text{KLOE}} = (1.52 \pm 0.06) \, \text{GeV}^{-2}$

cf. KLOE 2013

Transition form factor $\eta o \gamma^* \gamma$

Hanhart et al. 2013

$$\bar{F}_{\eta\gamma^*\gamma}(q^2, 0) = 1 + \frac{\kappa_{\eta}q^2}{96\pi^2 F_{\pi}^2} \int_{4M_{\pi}^2}^{\infty} ds \sigma(s)^3 P(s) \frac{|F_{\pi}^V(s)|^2}{s - q^2} + \Delta F_{\eta\gamma^*\gamma}^{I=0}(q^2, 0) \left[\longrightarrow \mathsf{VMD} \right]$$

Transition form factor $\eta o \gamma^* \gamma$

Hanhart et al. 2013

$$\bar{F}_{\eta\gamma^*\gamma}(q^2,0) = 1 + \frac{\kappa_{\eta}q^2}{96\pi^2 F_{\pi}^2} \int_{4M_{\pi}^2}^{\infty} ds \sigma(s)^3 P(s) \frac{|F_{\pi}^V(s)|^2}{s - q^2}$$

$$+\Delta F_{\eta\gamma^*\gamma}^{I=0}(q^2,0) \left[\longrightarrow \mathsf{VMD}\right]$$

huge statistical advantage of using hadronic input for $\eta \to \pi^+\pi^-\gamma$ over direct measurement of $\eta \to e^+e^-\gamma$ (rate suppressed by $\alpha_{\rm QFD}^2$)

figure courtesy of C. Hanhart data: NA60 2011, A2 2014

Anomalous decay $\eta o \pi^+\pi^-\gamma$

- $\alpha_{\text{KLOE}} = (1.52 \pm 0.06) \, \text{GeV}^{-2} \, \text{large}$ $\longrightarrow \text{implausible to explain through } \rho', \, \rho'' \dots$
- for large t, expect $P(t) \rightarrow \text{const.}$ rather
- $\eta \to \gamma^* \gamma$ transition form factor:
 - dispersion integral coverslarger energy range

Anomalous decay $\eta o \pi^+\pi^-\gamma$

- $\alpha_{\text{KLOE}} = (1.52 \pm 0.06) \, \text{GeV}^{-2} \, \text{large}$ $\longrightarrow \text{implausible to explain through } \rho', \, \rho'' \dots$
- for large t, expect $P(t) \rightarrow \text{const.}$ rather
- $\eta \to \gamma^* \gamma$ transition form factor:
 - dispersion integral coverslarger energy range

Intriguing observation:

- naive continuation of $\mathcal{F}^{\eta}_{\pi\pi\gamma}=A(1+\alpha t)\Omega(t)$ has zero at $t=-1/\alpha\approx -0.66\,{\rm GeV}^2$
 - \longrightarrow test this in crossed process $\gamma\pi^- \to \pi^-\eta$
 - \longrightarrow "left-hand cuts" in $\pi\eta$ system?

BK, Plenter 2015

Primakoff reaction $\gamma\pi o \pi\eta$

can be measured in Primakoffreaction COMPASS

• $\pi\eta$ S-wave forbidden

P-wave exotic: $J^{PC} = 1^{-+}$

D-wave $a_2(1320)$ first resonance

Primakoff reaction $\gamma\pi o \pi\eta$

- can be measured in Primakoff
 reaction COMPASS
- $\pi\eta$ S-wave forbidden P-wave exotic: $J^{PC}=1^{-+}$ D-wave $a_2(1320)$ first resonance
- include a_2 as left-hand cut in decay couplings fixed from $a_2 \to \pi \eta$, $\pi \gamma$

- compatible with decay data?

$\eta,\,\eta' o\pi^+\pi^-\gamma$ with a_2

KLOE 2013 $\alpha = 1.52 \pm 0.06,\, \chi^2/\mathrm{ndof} = 0.94$

$\eta,\,\eta' o\pi^+\pi^-\gamma$ with a_2

KLOE 2013
$$\alpha = 1.52 \pm 0.06$$
, $\chi^2/\text{ndof} = 0.94$ $\rightarrow \alpha = 1.42 \pm 0.06$, $\chi^2/\text{ndof} = 0.90$

$\eta,\,\eta^\prime ightarrow \pi^+\pi^-\gamma$ with a_2

• equally good—why care? sum rule for $\eta \to \gamma^* \gamma$ transition form factor slope reduced by 7-8% cf. Hanhart et al. 2013

$\eta,\,\eta^\prime ightarrow \pi^+\pi^-\gamma$ with a_2

KLOE 2013
$$\alpha = 1.52 \pm 0.06$$
, $\chi^2/\text{ndof} = 0.94$ $\longrightarrow \alpha = 1.42 \pm 0.06$, $\chi^2/\text{ndof} = 0.90$

Crystal Barrel 1997 $\alpha'=0.6\pm0.2$, $\chi^2/{\rm ndof}=1.2$

• equally good—why care? sum rule for $\eta \to \gamma^* \gamma$ transition form factor slope reduced by 7-8% cf. Hanhart et al. 2013

$\eta,\,\eta' o\pi^+\pi^-\gamma$ with a_2

KLOE 2013 $\alpha = 1.52 \pm 0.06, \chi^2/\text{ndof} = 0.94$ $\rightarrow \alpha = 1.42 \pm 0.06$, $\chi^2/\mathsf{ndof} = 0.90 \longrightarrow \alpha' = 1.4 \pm 0.4$, $\chi^2/\mathsf{ndof} = 1.4$

$$\rightarrow \alpha = 1.42 \pm 0.06, \, \chi^2 / \text{ndof} = 0.90$$

Crystal Barrel 1997

$$\alpha' = 0.6 \pm 0.2$$
, $\chi^2/{\rm ndof} = 1.2$

$$\longrightarrow \alpha' = 1.4 \pm 0.4$$
, $\chi^2/\mathsf{ndof} = 1.4$

- equally good—why care? sum rule for $\eta \to \gamma^* \gamma$ transition form factor slope reduced by 7 - 8%cf. Hanhart et al. 2013
- $\alpha \approx \alpha'$ (large- N_c) better fulfilled including a_2

BK, Plenter 2015

New data on $\eta' o \pi^+\pi^-\gamma$

BESIII preliminary, Fang 2015

New data on $\eta' o \pi^+\pi^-\gamma$

fit to pseudodata after BESIII preliminary

• fit form
$$\left[A(1+\alpha t+\frac{\beta t^2}{m_\omega^2-t-im_\omega\Gamma_\omega}\right]\times\Omega(t)$$

 \longrightarrow curvature $\propto \beta t^2$ essential (smaller than a_2 prediction)

 \longrightarrow even ρ — ω mixing clearly visible

Prediction for η' transition form factor

- isovector: combine high-precision data on $\eta' \to \pi^+\pi^-\gamma$ and $e^+e^- \to \pi^+\pi^-$
- isoscalar: VMD, couplings fixed from $\eta' \to \omega \gamma$ and $\phi \to \eta' \gamma$

Prediction for η' transition form factor

- isovector: combine high-precision data on $\eta' \to \pi^+\pi^-\gamma$ and $e^+e^- \to \pi^+\pi^-$
- isoscalar: VMD, couplings fixed from $\eta' \to \omega \gamma$ and $\phi \to \eta' \gamma$

How to go *doubly* virtual? — $e^+e^- ightarrow \eta \pi^+\pi^-$

• idea (again): beat $\alpha_{\rm QED}^2$ suppression of $e^+e^-\to \eta e^+e^-$ by measuring $e^+e^-\to \eta\pi^+\pi^-$ instead

How to go *doubly* virtual? — $e^+e^- ightarrow \eta \pi^+\pi^-$

• idea (again): beat $\alpha_{\rm QED}^2$ suppression of $e^+e^-\to \eta e^+e^-$ by measuring $e^+e^-\to \eta\pi^+\pi^-$ instead

• test factorisation hypothesis in $e^+e^- \to \eta \pi^+\pi^-$:

$$F_{\eta\pi\pi\gamma^*}(s_{\pi\pi}, Q_2^2) \stackrel{!?}{=} F_{\eta\pi\pi\gamma}(s_{\pi\pi}) \times F_{\eta\gamma\gamma^*}(Q_2^2)$$

- ightharpoonup allow same form for $F_{\eta\pi\pi\gamma}(s_{\pi\pi})$ as in $\eta\to\pi^+\pi^-\gamma$
- ▷ fit subtractions to $\pi^+\pi^-$ distribution in $e^+e^- \to \eta\pi^+\pi^ \longrightarrow$ are they compatible to the ones in $\eta \to \pi^+\pi^-\gamma$?
- \triangleright parametrise $F_{\eta\gamma\gamma^*}(Q_2^2)$ by sum of Breit–Wigners (ρ, ρ')

Xiao et al. (preliminary)

How to go *doubly* virtual? — $e^+e^- ightarrow \eta \pi^+\pi^-$

Xiao et al. (preliminary); data: BaBar 2007

- $d\sigma/d\sqrt{s_{\pi\pi}}$ integrated over 1 GeV $\leq \sqrt{Q_2^2} \leq$ 4.5 GeV
- factorisation seems to work only if a_2 contribution retained
- more differential/binned data highly desirable!

How to go *doubly* virtual? — $\eta' o \pi^+\pi^-\pi^+\pi^-$

• prediction of $\eta' \to 4\pi$ branching ratios based on ChPT + VMD:

How to go *doubly* virtual? — $\eta' o \pi^+\pi^-\pi^+\pi^-$

• prediction of $\eta' \to 4\pi$ branching ratios based on ChPT + VMD:

$$\mathcal{B}(\eta' \to \pi^+ \pi^- \pi^+ \pi^-) = (10 \pm 3) \times 10^{-5} \quad \text{Guo, BK, Wirzba 2012}$$
 exp:
$$\mathcal{B}(\eta' \to \pi^+ \pi^- \pi^+ \pi^-) = (8.5 \pm 0.7 \pm 0.6) \times 10^{-5} \quad \text{BESIII 2014}$$

• start analysis of *doubly* virtual η' transition form factor from here?

 \longrightarrow more differential info on $\eta' \to \pi^+\pi^-\pi^+\pi^-$ highly desirable!

Summary / Outlook

Dispersive analyses of $\eta(')$ transition form factors:

- high-precision data on $\eta \to \pi^+\pi^-\gamma$ KLOE and $\eta' \to \pi^+\pi^-\gamma$ BESIII allow for high-precision dispersive predictions of $\eta(') \to \gamma\gamma^*$
- not discussed here: dispersive continuation of transition form factors to spacelike virtualities see S. Leupold for π^0

Summary / Outlook

Dispersive analyses of $\eta(')$ transition form factors:

- high-precision data on $\eta \to \pi^+\pi^-\gamma$ KLOE and $\eta' \to \pi^+\pi^-\gamma$ BESIII allow for high-precision dispersive predictions of $\eta(') \to \gamma\gamma^*$
- not discussed here: dispersive continuation of transition form factors to spacelike virtualities see S. Leupold for π^0

Further useful experimental input (mainly for doubly virtual):

• Primakoff reaction $\gamma\pi \to \pi\eta$

COMPASS

• $e^+e^- \to \eta \pi^+\pi^-$ differential data

C.-W. Xiao et al.

- given $\eta' \to \pi^+\pi^-\gamma$ can you do $\eta' \to \pi^+\pi^-e^+e^-$ with precision?
- more detailed data on $\eta' \to \pi^+\pi^-\pi^+\pi^-$?

work in progress

 \longrightarrow determine $(g-2)_{\mu}$ contributions with controlled uncertainty

What are left-hand cuts?

Example: pion-pion scattering

• right-hand cut due to unitarity: $s \ge 4M_\pi^2$

What are left-hand cuts?

Example: pion-pion scattering

- right-hand cut due to unitarity: $s \ge 4 M_\pi^2$
- crossing symmetry: cuts also for $t, u \ge 4M_\pi^2$

What are left-hand cuts?

Example: pion-pion scattering

- right-hand cut due to unitarity: $s \ge 4M_\pi^2$
- crossing symmetry: cuts also for $t, u \ge 4M_\pi^2$
- partial-wave projection: $T(s,t)=32\pi\sum_i T_i(s)P_i(\cos\theta)$ $t(s,\cos\theta)=\frac{1-\cos\theta}{2}(4M_\pi^2-s)$

 \longrightarrow cut for $t \ge 4M_\pi^2$ becomes cut for $s \le 0$ in partial wave

Formalism including left-hand cuts

- a₂ + rescattering essential to preserve Watson's theorem
- formally:

$$\mathcal{F}_{\pi\pi\gamma}^{\eta}(s,t,u) = \mathcal{F}(t) + \mathcal{G}_{\mathbf{a_2}}(s,t,u) + \mathcal{G}_{\mathbf{a_2}}(u,t,s)$$
$$\mathcal{F}(t) = \Omega(t) \left\{ A(1+\alpha t) + \frac{t^2}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{dx}{x^2} \frac{\sin \delta(x) \hat{\mathcal{G}}(x)}{|\Omega(x)|(x-t)} \right\}$$

 $\hat{\mathcal{G}}$: t-channel P-wave projection of a_2 exchange graphs

• re-fit subtraction constants A, α

Total cross section $\gamma\pi o \pi\eta$

blue: t-channel dynamics / " ρ " only red: full amplitude

- t-channel dynamics dominate below $\sqrt{s} \approx 1 \, \mathrm{GeV}$
- uncertainty bands: $\Gamma(\eta \to \pi^+\pi^-\gamma)$, α , a_2 couplings BK, Plenter 2015

Differential cross sections $\gamma\pi o \pi\eta$

• amplitude zero visible in differential cross sections:

blue: t-channel dynamics / " ρ " only red: full amplitude

Differential cross sections $\gamma\pi o \pi\eta$

amplitude zero visible in differential cross sections:

blue: t-channel dynamics / " ρ " only

red: full amplitude

- strong P-D-wave interference
- can be expressed as forwardbackward asymmetry

$$A_{\rm FB} = \frac{\sigma(\cos\theta > 0) - \sigma(\cos\theta < 0)}{\sigma_{\rm total}}$$

Summary: processes and unitarity relations for $\pi^0 o \gamma^* \gamma^*$

process	unitarity relations	SC 1	SC 2	Colangelo, Hoferichter,
γ_v^*	γ_v^*		$F_{\pi^0\gamma\gamma}$	BK, Procura, Stoffer 2014
	7/s P	$F_{3\pi}$	$\sigma(\gamma\pi\to\pi\pi)$	$\gamma\pi o \pi\pi$
$\gamma_s^* \qquad \omega_\eta \phi \qquad \qquad \\ \gamma_v^* \qquad $	ω, ϕ γ_v^*		$\Gamma_{\pi^0\gamma}$	$\omega ightarrow 3\pi$, $\phi ightarrow 3\pi$
	ω, ϕ	$\Gamma_{3\pi}$	$\frac{d^2\Gamma}{dsdt}(\omega,\phi\to3\pi)$	$\omega \rightarrow s n, \phi \rightarrow s n$
$\gamma_s^* \qquad \qquad \gamma_v^* \qquad \qquad \gamma_v^*$	γ_s^*		$\sigma(e^+e^-\to\pi^0\gamma)$	
	γ_s^*	$\sigma(e^+e^- \to 3\pi)$	$\sigma(\gamma\pi \to \pi\pi)$ $\frac{d^2\Gamma}{dsdt}(\omega,\phi \to 3\pi)$	$\gamma^* \to 3\pi$
	γ_s^*	$F_{3\pi}$	$\sigma(e^+e^- \to 3\pi)$	common theme: resum $\pi\pi$ rescattering