universitätbonn

Towards a dispersive determination of the η and η^{\prime} transition form factors

Bastian Kubis
Helmholtz-Institut für Strahlen- und Kernphysik (Theorie)
Bethe Center for Theoretical Physics
Universität Bonn, Germany
KLOE-2 Workshop, Frascati, October 27th 2016

Outline

Introduction

- The anomalous magnetic moment of the muon: hadronic light-by-light scattering

Dispersion relations for meson transition form factors

- Ingredients for a data-driven analysis of $\eta, \eta^{\prime} \rightarrow \gamma^{*} \gamma^{(*)}$

Outline

Introduction

- The anomalous magnetic moment of the muon: hadronic light-by-light scattering

Dispersion relations for meson transition form factors

- Ingredients for a data-driven analysis of $\eta, \eta^{\prime} \rightarrow \gamma^{*} \gamma^{(*)}$

Colangelo, Hoferichter, BK, Procura, Stoffer 2014

Summary / Outlook

Hadronic light-by-light scattering

- hadronic light-by-light may soon dominate Standard Model uncertainty in $(g-2)_{\mu}$

Hadronic light-by-light scattering

- hadronic light-by-light may soon dominate Standard Model uncertainty in $(g-2)_{\mu}$
- different contributions estimated (in 10^{-11}):

99 ± 16
-19 ± 13

15 ± 7

\longrightarrow how to control hadronic modelling?
Jegerlehner, Nyffeler 2009

Hadronic light-by-light scattering

- hadronic light-by-light may soon dominate Standard Model uncertainty in $(g-2)_{\mu}$
- different contributions estimated (in 10^{-11}):

99 ± 16

-19 ± 13

\longrightarrow how to control hadronic modelling?
Jegerlehner, Nyffeler 2009
- dispersive point of view: analytic structure, cuts and poles \longrightarrow (on-shell) form factors and scatt. amplitudes from experiment \longrightarrow expansion in masses of intermediate states, partial waves

Dispersion relations for pedestrians

analyticity \& Cauchy's theorem:

$$
T(s)=\frac{1}{2 \pi i} \oint_{\partial \Omega} \frac{T(z) d z}{z-s}
$$

Dispersion relations for pedestrians

analyticity \& Cauchy's theorem:

$$
T(s)=\frac{1}{2 \pi i} \oint_{\partial \Omega} \frac{T(z) d z}{z-s}
$$

Dispersion relations for pedestrians

analyticity \& Cauchy's theorem:

$$
T(s)=\frac{1}{2 \pi i} \oint_{\partial \Omega} \frac{T(z) d z}{z-s}
$$

Dispersion relations for pedestrians

analyticity \& Cauchy's theorem:

$$
T(s)=\frac{1}{2 \pi i} \oint_{\partial \Omega} \frac{T(z) d z}{z-s}
$$

Dispersion relations for pedestrians

analyticity \& Cauchy's theorem:

$$
\begin{aligned}
T(s) & =\frac{1}{2 \pi i} \oint_{\partial \Omega} \frac{T(z) d z}{z-s} \\
& \longrightarrow \frac{1}{2 \pi i} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\operatorname{disc} T(z) d z}{z-s} \\
& =\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\operatorname{Im} T(z) d z}{z-s}
\end{aligned}
$$

Dispersion relations for pedestrians

analyticity \& Cauchy's theorem:

$$
\begin{aligned}
T(s) & =\frac{1}{2 \pi i} \oint_{\partial \Omega} \frac{T(z) d z}{z-s} \\
& \longrightarrow \frac{1}{2 \pi i} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\operatorname{disc} T(z) d z}{z-s} \\
& =\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\operatorname{Im} T(z) d z}{z-s}
\end{aligned}
$$

- $\operatorname{disc} T(s)=2 i \operatorname{Im} T(s)$ calculable by "cutting rules":

e.g. if $T(s)$ is a $\pi \pi$ partial wave \longrightarrow

$$
\frac{\operatorname{disc} T(s)}{2 i}=\operatorname{Im} T(s)=\frac{2 q_{\pi}}{\sqrt{s}} \theta\left(s-4 M_{\pi}^{2}\right)|T(s)|^{2}
$$

Dispersion relations for pedestrians

analyticity \& Cauchy's theorem:

$$
\begin{aligned}
T(s) & =\frac{1}{2 \pi i} \oint_{\partial \Omega} \frac{T(z) d z}{z-s} \\
& \longrightarrow \frac{1}{2 \pi i} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\operatorname{disc} T(z) d z}{z-s} \\
& =\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{\operatorname{Im} T(z) d z}{z-s}
\end{aligned}
$$

- $\operatorname{disc} T(s)=2 i \operatorname{Im} T(s)$ calculable by "cutting rules":

inelastic intermediate states ($K \bar{K}, 4 \pi$) suppressed at low energies
\longrightarrow will be neglected in the following

Dispersive analysis of $\pi^{0} / \eta \rightarrow \gamma^{*} \gamma^{*}$

- isospin decomposition:
see also following talk by S. Leupold

$$
\begin{aligned}
F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) & =F_{v s}\left(q_{1}^{2}, q_{2}^{2}\right)+F_{v s}\left(q_{2}^{2}, q_{1}^{2}\right) \\
F_{\eta \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) & =F_{v v}\left(q_{1}^{2}, q_{2}^{2}\right)+F_{s s}\left(q_{2}^{2}, q_{1}^{2}\right)
\end{aligned}
$$

Dispersive analysis of $\pi^{0} / \eta \rightarrow \gamma^{*} \gamma^{*}$

- isospin decomposition:
see also following talk by S. Leupold

$$
\begin{aligned}
F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) & =F_{v s}\left(q_{1}^{2}, q_{2}^{2}\right)+F_{v s}\left(q_{2}^{2}, q_{1}^{2}\right) \\
F_{\eta \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) & =F_{v v}\left(q_{1}^{2}, q_{2}^{2}\right)+F_{s s}\left(q_{2}^{2}, q_{1}^{2}\right)
\end{aligned}
$$

- analyse the leading hadronic intermediate states:
see also Gorchtein, Guo, Szczepaniak 2012

- isovector photon: 2 pions
\propto pion vector form factor $\times \gamma \pi \rightarrow \pi \pi / \eta \rightarrow \pi \pi \gamma$ all determined in terms of pion-pion P -wave phase shift

Dispersive analysis of $\pi^{0} / \eta \rightarrow \gamma^{*} \gamma^{*}$

- isospin decomposition:
see also following talk by S. Leupold

$$
\begin{aligned}
F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) & =F_{v s}\left(q_{1}^{2}, q_{2}^{2}\right)+F_{v s}\left(q_{2}^{2}, q_{1}^{2}\right) \\
F_{\eta \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) & =F_{v v}\left(q_{1}^{2}, q_{2}^{2}\right)+F_{s s}\left(q_{2}^{2}, q_{1}^{2}\right)
\end{aligned}
$$

- analyse the leading hadronic intermediate states:
see also Gorchtein, Guo, Szczepaniak 2012

\triangleright isovector photon: 2 pions
\propto pion vector form factor $\quad \times \quad \gamma \pi \rightarrow \pi \pi / \eta \rightarrow \pi \pi \gamma$
all determined in terms of pion-pion P-wave phase shift
\triangleright isoscalar photon: 3 pions

Dispersive analysis of $\pi^{0} / \eta \rightarrow \gamma^{*} \gamma^{*}$

- isospin decomposition:
see also following talk by S. Leupold

$$
\begin{aligned}
F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) & =F_{v s}\left(q_{1}^{2}, q_{2}^{2}\right)+F_{v s}\left(q_{2}^{2}, q_{1}^{2}\right) \\
F_{\eta \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right) & =F_{v v}\left(q_{1}^{2}, q_{2}^{2}\right)+F_{s s}\left(q_{2}^{2}, q_{1}^{2}\right)
\end{aligned}
$$

- analyse the leading hadronic intermediate states:
see also Gorchtein, Guo, Szczepaniak 2012

\triangleright isovector photon: 2 pions
\propto pion vector form factor $\times \gamma \pi \rightarrow \pi \pi / \eta \rightarrow \pi \pi \gamma$ all determined in terms of pion-pion P-wave phase shift
\triangleright isoscalar photon: 3 pions \longrightarrow dominated by narrow ω, ϕ
$\leftrightarrow \omega / \phi$ transition form factors; very small for the η

Warm-up: pion form factor from dispersion relations

- just two hadrons: form factor, e.g. $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$

$\operatorname{Im} F(s) \propto F(s) \times$ phase space $\times T_{\pi \pi}^{*}(s)$
\longrightarrow final-state theorem: phase of $F(s)$ is scattering phase $\delta(s)$

Warm-up: pion form factor from dispersion relations

- just two hadrons: form factor, e.g. $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}, \tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$

$$
\operatorname{Im} F(s) \propto F(s) \times \text { phase space } \times T_{\pi \pi}^{*}(s)
$$

\longrightarrow final-state theorem: phase of $F(s)$ is scattering phase $\delta(s)$
Watson 1954

- dispersion relations allow to reconstruct form factor from imaginary part \longrightarrow elastic scattering phase $\delta(s)$:

$$
F(s)=P(s) \Omega(s), \quad \Omega(s)=\exp \left\{\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}\right\}
$$

$P(s)$ polynomial, $\Omega(s)$ Omnès function

- today: high-accuracy $\pi \pi$ phase shifts available

Ananthanarayan et al. 2001, García-Martín et al. 2011

Pion vector form factor vs. Omnès representation

- divide $\tau^{-} \rightarrow \pi^{-} \pi^{0} \nu_{\tau}$ form factor by Omnès function:

Hanhart et al. 2013
\longrightarrow linear below $1 \mathrm{GeV}: F_{\pi}^{V}(s) \approx\left(1+0.1 \mathrm{GeV}^{-2} s\right) \Omega(s)$
\longrightarrow above: inelastic resonances $\rho^{\prime}, \rho^{\prime \prime} \ldots$

Final-state universality: $\eta, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$

- $\eta^{(\prime)} \rightarrow \pi^{+} \pi^{-} \gamma$ driven by the chiral anomaly, $\pi^{+} \pi^{-}$in P-wave \longrightarrow final-state interactions the same as for vector form factor
- ansatz: $\mathcal{F}_{\pi \pi \gamma}^{\eta^{(\prime)}}=A \times P(t) \times \Omega(t), P(t)=1+\alpha^{(\prime)} t, t=M_{\pi \pi}^{2}$

Final-state universality: $\eta, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$

- $\eta^{(\prime)} \rightarrow \pi^{+} \pi^{-} \gamma$ driven by the chiral anomaly, $\pi^{+} \pi^{-}$in P-wave
\longrightarrow final-state interactions the same as for vector form factor
- ansatz: $\mathcal{F}_{\pi \pi \gamma}^{\eta^{(\prime)}}=A \times P(t) \times \Omega(t), P(t)=1+\alpha^{(\prime)} t, t=M_{\pi \pi}^{2}$
- divide data by pion form factor $\longrightarrow P(t)$

\longrightarrow exp.: $\alpha_{\text {KLOE }}=(1.52 \pm 0.06) \mathrm{GeV}^{-2}$
cf. KLOE 2013

Transition form factor $\eta \rightarrow \gamma^{*} \gamma$

Hanhart et al. 2013

$$
\begin{aligned}
\bar{F}_{\eta \gamma^{*} \gamma}\left(q^{2}, 0\right)=1 & +\frac{\kappa_{\eta} q^{2}}{96 \pi^{2} F_{\pi}^{2}} \int_{4 M_{\pi}^{2}}^{\infty} d s \sigma(s)^{3} P(s) \frac{\left|F_{\pi}^{V}(s)\right|^{2}}{s-q^{2}} \\
& +\Delta F_{\eta \gamma^{*} \gamma}^{I=0}\left(q^{2}, 0\right)[\longrightarrow \mathrm{VMD}]
\end{aligned}
$$

Transition form factor $\eta \rightarrow \gamma^{*} \gamma$

Hanhart et al. 2013

$$
\begin{aligned}
\bar{F}_{\eta \gamma^{*} \gamma}\left(q^{2}, 0\right)=1 & +\frac{\kappa_{\eta} q^{2}}{96 \pi^{2} F_{\pi}^{2}} \int_{4 M_{\pi}^{2}}^{\infty} d s \sigma(s)^{3} P(s) \frac{\left|F_{\pi}^{V}(s)\right|^{2}}{s-q^{2}} \\
& +\Delta F_{\eta \gamma^{*} \gamma}^{I=0}\left(q^{2}, 0\right)[\longrightarrow \mathrm{VMD}]
\end{aligned}
$$

\longrightarrow huge statistical advantage of using hadronic input for $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ over direct measurement of $\eta \rightarrow e^{+} e^{-} \gamma$ (rate suppressed by $\alpha_{Q E D}^{2}$)
figure courtesy of C. Hanhart data: NA60 2011, A2 2014

Anomalous decay $\eta \rightarrow \pi^{+} \pi^{-} \gamma$

- $\alpha_{\text {KLOE }}=(1.52 \pm 0.06) \mathrm{GeV}^{-2}$ large
\longrightarrow implausible to explain through $\rho^{\prime}, \rho^{\prime \prime} \ldots$
- for large t, expect $P(t) \rightarrow$ const. rather
- $\eta \rightarrow \gamma^{*} \gamma$ transition form factor:
\longrightarrow dispersion integral covers larger energy range

Anomalous decay $\eta \rightarrow \pi^{+} \pi^{-} \gamma$

- $\alpha_{\text {KLOE }}=(1.52 \pm 0.06) \mathrm{GeV}^{-2}$ large
\longrightarrow implausible to explain through $\rho^{\prime}, \rho^{\prime \prime} \ldots$
- for large t, expect $P(t) \rightarrow$ const. rather
- $\eta \rightarrow \gamma^{*} \gamma$ transition form factor:
\longrightarrow dispersion integral covers larger energy range

Intriguing observation:

- naive continuation of $\mathcal{F}_{\pi \pi \gamma}^{\eta}=A(1+\alpha t) \Omega(t)$ has zero at $t=-1 / \alpha \approx-0.66 \mathrm{GeV}^{2}$
\longrightarrow test this in crossed process $\gamma \pi^{-} \rightarrow \pi^{-} \eta$
\longrightarrow "left-hand cuts" in $\pi \eta$ system?

Primakoff reaction $\gamma \pi \rightarrow \pi \eta$

- can be measured in Primakoff reaction

COMPASS

- $\pi \eta$ S-wave forbidden

P-wave exotic: $J^{P C}=1^{-+}$
D-wave $a_{2}(1320)$ first resonance

Primakoff reaction $\gamma \pi \rightarrow \pi \eta$

- can be measured in Primakoff reaction

COMPASS

- $\pi \eta$ S-wave forbidden

P-wave exotic: $J^{P C}=1^{-+}$
D-wave $a_{2}(1320)$ first resonance

- include a_{2} as left-hand cut in decay couplings fixed from $a_{2} \rightarrow \pi \eta, \pi \gamma$

\triangleright compatible with decay data?
\triangleright predictions for $\gamma \pi \rightarrow \pi \eta$ cross sections and asymmetries [\longrightarrow spares]

BK, Plenter 2015
$\eta, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ with a_{2}

$$
\alpha=1.52 \pm 0.06, \chi^{2} / \text { ndof }=0.94
$$

$\eta, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ with a_{2}

$$
\alpha=1.52 \pm 0.06, \chi^{2} / \text { ndof }=0.94
$$

$$
\longrightarrow \alpha=1.42 \pm 0.06, \chi^{2} / \text { ndof }=0.90
$$

$\eta, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ with a_{2}

KLOE 2013
$\alpha=1.52 \pm 0.06, \chi^{2} /$ ndof $=0.94$
$\longrightarrow \alpha=1.42 \pm 0.06, \chi^{2} /$ ndof $=0.90$

- equally good-why care? sum rule for $\eta \rightarrow \gamma^{*} \gamma$ transition form factor slope reduced by $7-8 \%$
cf. Hanhart et al. 2013
$\eta, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ with a_{2}

KLOE 2013
$\alpha=1.52 \pm 0.06, \chi^{2} /$ ndof $=0.94$
$\longrightarrow \alpha=1.42 \pm 0.06, \chi^{2} /$ ndof $=0.90$

Crystal Barrel 1997
$\alpha^{\prime}=0.6 \pm 0.2, \chi^{2} /$ ndof $=1.2$

- equally good-why care? sum rule for $\eta \rightarrow \gamma^{*} \gamma$ transition form factor slope reduced by $7-8 \%$
cf. Hanhart et al. 2013
$\eta, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ with a_{2}

- equally good-why care? sum rule for $\eta \rightarrow \gamma^{*} \gamma$ transition form factor slope reduced by $7-8 \%$
cf. Hanhart et al. 2013
- $\alpha \approx \alpha^{\prime}$ (large- N_{c}) better fulfilled including a_{2}

New data on $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$

BESIII preliminary, Fang 2015

New data on $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$

fit to pseudodata after BESIII preliminary

- fit form

$$
\left[A\left(1+\alpha t+\beta t^{2}\right)+\frac{\kappa}{m_{\omega}^{2}-t-i m_{\omega} \Gamma_{\omega}}\right] \times \Omega(t)
$$

\longrightarrow curvature $\propto \beta t^{2}$ essential (smaller than a_{2} prediction)
\longrightarrow even $\rho-\omega$ mixing clearly visible

Prediction for η^{\prime} transition form factor

- isovector: combine high-precision data on $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ and $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
- isoscalar: VMD, couplings fixed from $\eta^{\prime} \rightarrow \omega \gamma$ and $\phi \rightarrow \eta^{\prime} \gamma$

Prediction for η^{\prime} transition form factor

- isovector: combine high-precision data on $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ and $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$
- isoscalar: VMD, couplings fixed from $\eta^{\prime} \rightarrow \omega \gamma$ and $\phi \rightarrow \eta^{\prime} \gamma$

How to go doubly virtual? $-e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$

- idea (again): beat $\alpha_{\text {QED }}^{2}$ suppression of $e^{+} e^{-} \rightarrow \eta e^{+} e^{-}$by measuring
$e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$instead

How to go doubly virtual? $-e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$

- idea (again): beat $\alpha_{Q E D}^{2}$ suppression of $e^{+} e^{-} \rightarrow \eta e^{+} e^{-}$by measuring $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$instead

- test factorisation hypothesis in $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$:

$$
F_{\eta \pi \pi \gamma^{*}}\left(s_{\pi \pi}, Q_{2}^{2}\right) \stackrel{!?}{=} F_{\eta \pi \pi \gamma}\left(s_{\pi \pi}\right) \times F_{\eta \gamma \gamma^{*}}\left(Q_{2}^{2}\right)
$$

\triangleright allow same form for $F_{\eta \pi \pi \gamma}\left(s_{\pi \pi}\right)$ as in $\eta \rightarrow \pi^{+} \pi^{-} \gamma$
\triangleright fit subtractions to $\pi^{+} \pi^{-}$distribution in $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$ \longrightarrow are they compatible to the ones in $\eta \rightarrow \pi^{+} \pi^{-} \gamma$?
\triangleright parametrise $F_{\eta \gamma \gamma^{*}}\left(Q_{2}^{2}\right)$ by sum of Breit-Wigners (ρ, ρ^{\prime})

How to go doubly virtual? $-e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$

Xiao et al. (preliminary); data: BaBar 2007

- $d \sigma / d \sqrt{s_{\pi \pi}}$ integrated over $1 \mathrm{GeV} \leq \sqrt{Q_{2}^{2}} \leq 4.5 \mathrm{GeV}$
- factorisation seems to work only if a_{2} contribution retained
- more differential/binned data highly desirable!

How to go doubly virtual? $-\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

- prediction of $\eta^{\prime} \rightarrow 4 \pi$ branching ratios based on ChPT + VMD:

How to go doubly virtual? $-\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

- prediction of $\eta^{\prime} \rightarrow 4 \pi$ branching ratios based on ChPT + VMD:

$\longrightarrow \mathcal{B}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)=(10 \pm 3) \times 10^{-5} \quad$ Guo, BK, Wirzba 2012
exp: $\mathcal{B}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)=(8.5 \pm 0.7 \pm 0.6) \times 10^{-5} \quad$ BESIII 2014
- start analysis of doubly virtual η^{\prime} transition form factor from here?

factorising

non-factorising
\longrightarrow more differential info on $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$highly desirable!

Summary / Outlook

Dispersive analyses of $\eta\left({ }^{\prime}\right)$ transition form factors:

- high-precision data on $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ KLOE and $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ BESIII allow for high-precision dispersive predictions of $\eta\left({ }^{\prime}\right) \rightarrow \gamma \gamma^{*}$
- not discussed here: dispersive continuation of transition form factors to spacelike virtualities see S. Leupold for π^{0}

Summary / Outlook

Dispersive analyses of $\eta\left({ }^{\prime}\right)$ transition form factors:

- high-precision data on $\eta \rightarrow \pi^{+} \pi^{-} \gamma$ KLOE and $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ BESIII allow for high-precision dispersive predictions of $\eta\left({ }^{\prime}\right) \rightarrow \gamma \gamma^{*}$
- not discussed here: dispersive continuation of transition form factors to spacelike virtualities see S. Leupold for π^{0}

Further useful experimental input (mainly for doubly virtual):

- Primakoff reaction $\gamma \pi \rightarrow \pi \eta$
- $e^{+} e^{-} \rightarrow \eta \pi^{+} \pi^{-}$differential data C.-W. Xiao et al.
- given $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \gamma$ - can you do $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} e^{+} e^{-}$with precision?
- more detailed data on $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$?
\longrightarrow determine $(g-2)_{\mu}$ contributions with controlled uncertainty

Spares

What are left-hand cuts?

Example: pion-pion scattering

- right-hand cut due to unitarity: $s \geq 4 M_{\pi}^{2}$

What are left-hand cuts?

Example: pion-pion scattering

- right-hand cut due to unitarity: $s \geq 4 M_{\pi}^{2}$
- crossing symmetry: cuts also for $t, u \geq 4 M_{\pi}^{2}$

What are left-hand cuts?

Example: pion-pion scattering

- right-hand cut due to unitarity: $s \geq 4 M_{\pi}^{2}$
- crossing symmetry: cuts also for $t, u \geq 4 M_{\pi}^{2}$
- partial-wave projection: $T(s, t)=32 \pi \sum_{i} T_{i}(s) P_{i}(\cos \theta)$

$$
t(s, \cos \theta)=\frac{1-\cos \theta}{2}\left(4 M_{\pi}^{2}-s\right)
$$

\longrightarrow cut for $t \geq 4 M_{\pi}^{2}$ becomes cut for $s \leq 0$ in partial wave

Formalism including left-hand cuts

- $a_{2}+$ rescattering essential to preserve Watson's theorem
- formally:

$$
\begin{aligned}
\mathcal{F}_{\pi \pi \gamma}^{\eta}(s, t, u) & =\mathcal{F}(t)+\mathcal{G}_{a_{2}}(s, t, u)+\mathcal{G}_{a_{2}}(u, t, s) \\
\mathcal{F}(t) & =\Omega(t)\left\{A(1+\alpha t)+\frac{t^{2}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d x}{x^{2}} \frac{\sin \delta(x) \hat{\mathcal{G}}(x)}{|\Omega(x)|(x-t)}\right\}
\end{aligned}
$$

$\hat{\mathcal{G}}$: t-channel P-wave projection of a_{2} exchange graphs

- re-fit subtraction constants A, α

Total cross section $\gamma \pi \rightarrow \pi \eta$

blue: t-channel dynamics / " ρ " only red: full amplitude

- t-channel dynamics dominate below $\sqrt{s} \approx 1 \mathrm{GeV}$
- uncertainty bands: $\Gamma\left(\eta \rightarrow \pi^{+} \pi^{-} \gamma\right), \alpha, a_{2}$ couplings BK, Plenter 2015

Differential cross sections $\gamma \pi \rightarrow \pi \eta$

- amplitude zero visible in differential cross sections:

Differential cross sections $\gamma \pi \rightarrow \pi \eta$

- amplitude zero visible in differential cross sections:

- strong P-D-wave interference
- can be expressed as forwardbackward asymmetry

$$
A_{\mathrm{FB}}=\frac{\sigma(\cos \theta>0)-\sigma(\cos \theta<0)}{\sigma_{\text {total }}}
$$

Summary: processes and unitarity relations for $\pi^{0} \rightarrow \gamma^{*} \gamma^{*}$

(

