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Introduction

• The anomalous magnetic moment of the muon:

hadronic light-by-light scattering

Dispersion relations for meson transition form factors

• Ingredients for a data-driven analysis of η, η′ → γ∗γ(∗)

e+e− → e+e−π0 γπ → ππγπ → ππ

e+e− → π0γe+e− → π0γ ω, φ → ππγ e+e− → ππγ

ππ → ππ

Pion transition form factor

Fπ0γ∗γ∗

(

q2
1
, q2

2

)

Partial waves for

γ∗γ∗
→ ππ

e+e− → e+e−ππ

Pion vector

form factor F π

V

Pion vector

form factor F π

V

e+e− → 3π pion polarizabilitiespion polarizabilities γπ → γπ

ω, φ → 3π ω, φ → π0γ∗ω, φ → π0γ∗

Colangelo, Hoferichter, BK, Procura, Stoffer 2014

Summary / Outlook
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Hadronic light-by-light scattering

• hadronic light-by-light may soon dominate
Standard Model uncertainty in (g − 2)µ

µ

hadrons
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−→ how to control hadronic modelling? Jegerlehner, Nyffeler 2009
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Hadronic light-by-light scattering

• hadronic light-by-light may soon dominate
Standard Model uncertainty in (g − 2)µ

• different contributions estimated (in 10−11):
µ

hadrons

π0, η, η′

µ µ

π±, K± axials,

µ

scalars

µ

quarks

99±16 –19±13 15±7 21±3

−→ how to control hadronic modelling? Jegerlehner, Nyffeler 2009

• dispersive point of view: analytic structure, cuts and poles

−→ (on-shell) form factors and scatt. amplitudes from experiment

−→ expansion in masses of intermediate states, partial waves
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Dispersion relations for pedestrians
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Dispersion relations for pedestrians
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∫
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discT (z)dz

z − s

=
1
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∫

∞

4M2
π

ImT (z)dz

z − s

• discT (s) = 2i ImT (s) calculable by "cutting rules":

T (s) T (s)

e.g. if T (s) is a ππ partial wave −→

discT (s)

2i
= ImT (s) =

2qπ√
s
θ(s− 4M2

π)|T (s)|2
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Dispersion relations for pedestrians

Re(z)

Im(z)

s

4M2
π

analyticity & Cauchy’s theorem:

T (s) =
1

2πi

∮
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T (z)dz

z − s

−→ 1

2πi

∫

∞

4M2
π

discT (z)dz

z − s

=
1

π

∫

∞

4M2
π

ImT (z)dz

z − s

• discT (s) = 2i ImT (s) calculable by "cutting rules":

T (s) T (s)
inelastic intermediate states (KK̄, 4π)
suppressed at low energies

−→ will be neglected in the following
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Dispersive analysis of π0/η → γ∗γ∗

• isospin decomposition: see also following talk by S. Leupold
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• analyse the leading hadronic intermediate states:
see also Gorchtein, Guo, Szczepaniak 2012
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⊲ isovector photon: 2 pions

∝ pion vector form factor × γπ → ππ / η → ππγ

all determined in terms of pion–pion P-wave phase shift
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• isospin decomposition: see also following talk by S. Leupold
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• analyse the leading hadronic intermediate states:
see also Gorchtein, Guo, Szczepaniak 2012

γ
(∗)
s/v

π0/η

γ∗v

π+

π−

γ
(∗)
v/s

π0/η

γ∗s
ω, φ

⊲ isovector photon: 2 pions

∝ pion vector form factor × γπ → ππ / η → ππγ

all determined in terms of pion–pion P-wave phase shift
⊲ isoscalar photon: 3 pions −→ dominated by narrow ω, φ

↔ ω/φ transition form factors; very small for the η
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Warm-up: pion form factor from dispersion relations

• just two hadrons: form factor, e.g. e+e− → π+π−, τ− → π−π0ντ

=disc

ImF (s) ∝ F (s)× phase space × T ∗

ππ(s)

−→ final-state theorem: phase of F (s) is scattering phase δ(s)
Watson 1954
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Warm-up: pion form factor from dispersion relations

• just two hadrons: form factor, e.g. e+e− → π+π−, τ− → π−π0ντ

=disc

ImF (s) ∝ F (s)× phase space × T ∗

ππ(s)

−→ final-state theorem: phase of F (s) is scattering phase δ(s)
Watson 1954

• dispersion relations allow to reconstruct form factor from
imaginary part −→ elastic scattering phase δ(s):

F (s) = P (s)Ω(s) , Ω(s) = exp

{

s

π

∫

∞

4M2
π

ds′
δ(s′)

s′(s′ − s)

}

P (s) polynomial, Ω(s) Omnès function Omnès 1958

• today: high-accuracy ππ phase shifts available
Ananthanarayan et al. 2001, García-Martín et al. 2011
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Pion vector form factor vs. Omn ès representation

• divide τ− → π−π0ντ form factor by Omnès function:

0 0.5 1 1.5 2

Q
2
 [GeV

2
]

1.1

1.2

1.3

R
(Q

2 )

Hanhart et al. 2013

−→ linear below 1 GeV: FV
π (s) ≈ (1 + 0.1GeV−2s)Ω(s)

−→ above: inelastic resonances ρ′, ρ′′. . .
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Final-state universality: η, η′
→ π+π−γ

• η(′) → π+π−γ driven by the chiral anomaly, π+π− in P-wave

−→ final-state interactions the same as for vector form factor

• ansatz: Fη(′)

ππγ = A× P (t)× Ω(t), P (t) = 1 + α(′)t, t = M2
ππ
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Final-state universality: η, η′
→ π+π−γ

• η(′) → π+π−γ driven by the chiral anomaly, π+π− in P-wave

−→ final-state interactions the same as for vector form factor

• ansatz: Fη(′)

ππγ = A× P (t)× Ω(t), P (t) = 1 + α(′)t, t = M2
ππ

• divide data by pion form factor −→ P (t) Stollenwerk et al. 2012
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P
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)

−→ exp.: αKLOE = (1.52± 0.06)GeV−2
cf. KLOE 2013
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Transition form factor η → γ∗γ

Hanhart et al. 2013

F̄ηγ∗γ(q
2, 0) = 1 +
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Transition form factor η → γ∗γ

Hanhart et al. 2013
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for η → π+π−γ over direct
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(rate suppressed by α2

QED)

figure courtesy of C. Hanhart

data: NA60 2011, A2 2014
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Anomalous decay η → π+π−γ

• αKLOE = (1.52± 0.06)GeV−2 large

−→ implausible to explain through ρ′, ρ′′. . .

• for large t, expect P (t) → const. rather

• η → γ∗γ transition form factor:
−→ dispersion integral covers

larger energy range η

γ

π+

π−

γ∗
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Anomalous decay η → π+π−γ

• αKLOE = (1.52± 0.06)GeV−2 large

−→ implausible to explain through ρ′, ρ′′. . .

• for large t, expect P (t) → const. rather

• η → γ∗γ transition form factor:
−→ dispersion integral covers

larger energy range η

γ

π+

π−

γ∗

Intriguing observation:

• naive continuation of Fη
ππγ = A(1 + αt)Ω(t) has zero

at t = −1/α ≈ −0.66GeV2

−→ test this in crossed process γπ− → π−η

−→ "left-hand cuts" in πη system? BK, Plenter 2015
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Primakoff reaction γπ → πη

• can be measured in Primakoff
reaction COMPASS

• πη S-wave forbidden

P-wave exotic: JPC = 1−+

D-wave a2(1320) first resonance

π−
η

π−
γ(∗)

Z
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Primakoff reaction γπ → πη

• can be measured in Primakoff
reaction COMPASS

• πη S-wave forbidden

P-wave exotic: JPC = 1−+

D-wave a2(1320) first resonance

π−
η

π−
γ(∗)

Z

• include a2 as left-hand cut in decay
couplings fixed from a2 → πη, πγ

η

π+π−

γ
a+2

η

π−π+

γ
a−2

η
π

π

a2
γ

π−

π+

P

⊲ compatible with decay data?
⊲ predictions for γπ → πη cross sections and asymmetries

[−→ spares] BK, Plenter 2015
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η, η′
→ π+π−γ with a2
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KLOE 2013

α = 1.52±0.06, χ2/ndof = 0.94
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η, η′
→ π+π−γ with a2
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KLOE 2013

α = 1.52±0.06, χ2/ndof = 0.94

−→ α = 1.42±0.06, χ2/ndof = 0.90

• equally good—why care? sum rule for η → γ∗γ transition form
factor slope reduced by 7− 8% cf. Hanhart et al. 2013
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η, η′
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α′ = 0.6± 0.2, χ2/ndof = 1.2

• equally good—why care? sum rule for η → γ∗γ transition form
factor slope reduced by 7− 8% cf. Hanhart et al. 2013
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η, η′
→ π+π−γ with a2
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−→ α = 1.42±0.06, χ2/ndof = 0.90
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Crystal Barrel 1997

α′ = 0.6± 0.2, χ2/ndof = 1.2

−→ α′ = 1.4± 0.4, χ2/ndof = 1.4

• equally good—why care? sum rule for η → γ∗γ transition form
factor slope reduced by 7− 8% cf. Hanhart et al. 2013

• α ≈ α′ (large-Nc) better fulfilled including a2 BK, Plenter 2015
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New data on η′
→ π+π−γ
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BESIII preliminary, Fang 2015
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New data on η′
→ π+π−γ
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fit to pseudodata after BESIII preliminary

• fit form
[

A(1 + αt+ βt2) +
κ

m2
ω − t− imωΓω

]

× Ω(t)

−→ curvature ∝ βt2 essential (smaller than a2 prediction)
−→ even ρ–ω mixing clearly visible
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Prediction for η′ transition form factor

• isovector: combine high-precision data

on η′ → π+π−γ and e+e− → π+π−

• isoscalar: VMD, couplings fixed from

η′ → ωγ and φ → η′γ
η′

γ

π+

π−

γ∗
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Prediction for η′ transition form factor

• isovector: combine high-precision data

on η′ → π+π−γ and e+e− → π+π−
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S. Holz, BSc thesis 2016
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How to go doubly virtual? — e+e− → ηπ+π−

• idea (again): beat α2
QED suppression

of e+e− → ηe+e− by measuring

e+e− → ηπ+π− instead

η

γ∗
π+

π−

γ∗
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How to go doubly virtual? — e+e− → ηπ+π−

• idea (again): beat α2
QED suppression

of e+e− → ηe+e− by measuring

e+e− → ηπ+π− instead

η

γ∗
π+

π−

γ∗

• test factorisation hypothesis in e+e− → ηπ+π−:

Fηππγ∗(sππ, Q
2
2)

!?
= Fηππγ(sππ)× Fηγγ∗(Q2

2)

⊲ allow same form for Fηππγ(sππ) as in η → π+π−γ

⊲ fit subtractions to π+π− distribution in e+e− → ηπ+π−

−→ are they compatible to the ones in η → π+π−γ?

⊲ parametrise Fηγγ∗(Q2
2) by sum of Breit–Wigners (ρ, ρ′)

Xiao et al. (preliminary)

B. Kubis, Towards a dispersive determination of the η and η
′ transition form factors – p. 15



How to go doubly virtual? — e+e− → ηπ+π−
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Xiao et al. (preliminary); data: BaBar 2007

• dσ/d
√
sππ integrated over 1 GeV ≤

√

Q2
2 ≤ 4.5 GeV

• factorisation seems to work only if a2 contribution retained

• more differential/binned data highly desirable!
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How to go doubly virtual? — η′
→ π+π−π+π−

• prediction of η′ → 4π branching ratios based on ChPT + VMD:
π+ π+

π−π−

K

K̄

η′ η′

ρ0

ρ0

π+

π−

π+

π−

−→ B(η′ → π+π−π+π−) = (10± 3)× 10−5 Guo, BK, Wirzba 2012

exp: B(η′ → π+π−π+π−) = (8.5± 0.7± 0.6)× 10−5 BESIII 2014
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How to go doubly virtual? — η′
→ π+π−π+π−

• prediction of η′ → 4π branching ratios based on ChPT + VMD:
π+ π+

π−π−

K

K̄

η′ η′

ρ0

ρ0

π+

π−

π+

π−

−→ B(η′ → π+π−π+π−) = (10± 3)× 10−5 Guo, BK, Wirzba 2012

exp: B(η′ → π+π−π+π−) = (8.5± 0.7± 0.6)× 10−5 BESIII 2014

• start analysis of doubly virtual η′ transition form factor from here?

η′
ρ0

ρ0

γ∗

η′

ρ0

ρ0

γ∗ γ∗

γ∗

π+ π+

π+π+

π−
π− π−

π−

factorising non-factorising
−→ more differential info on η′ → π+π−π+π− highly desirable!
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Summary / Outlook

Dispersive analyses of η(′) transition form factors:

• high-precision data on η → π+π−γ KLOE and η′ → π+π−γ BESIII

allow for high-precision dispersive predictions of η(′) → γγ∗

• not discussed here: dispersive continuation of

transition form factors to spacelike virtualities see S. Leupold for π0
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Summary / Outlook

Dispersive analyses of η(′) transition form factors:

• high-precision data on η → π+π−γ KLOE and η′ → π+π−γ BESIII

allow for high-precision dispersive predictions of η(′) → γγ∗

• not discussed here: dispersive continuation of

transition form factors to spacelike virtualities see S. Leupold for π0

Further useful experimental input (mainly for doubly virtu al):

• Primakoff reaction γπ → πη COMPASS

• e+e− → ηπ+π− differential data C.-W. Xiao et al.

• given η′ → π+π−γ — can you do η′ → π+π−e+e− with precision?

• more detailed data on η′ → π+π−π+π−? work in progress

−→ determine (g − 2)µ contributions with controlled uncertainty
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Spares
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What are left-hand cuts?

Example: pion–pion scattering

Re(z)

Im(z)

s

4M2
π

s

• right-hand cut due to unitarity: s ≥ 4M2
π
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What are left-hand cuts?

Example: pion–pion scattering

Re(z)

Im(z)

s

4M2
π

t

• right-hand cut due to unitarity: s ≥ 4M2
π

• crossing symmetry: cuts also for t, u ≥ 4M2
π
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What are left-hand cuts?

Example: pion–pion scattering

Re(z)

Im(z)

s

4M2
π0

t

• right-hand cut due to unitarity: s ≥ 4M2
π

• crossing symmetry: cuts also for t, u ≥ 4M2
π

• partial-wave projection: T (s, t) = 32π
∑

i Ti(s)Pi(cos θ)

t(s, cos θ) = 1−cos θ
2 (4M2

π − s)

−→ cut for t ≥ 4M2
π becomes cut for s ≤ 0 in partial wave
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Formalism including left-hand cuts

η

π+π−

γ
a+2

η

π−π+

γ
a−2

η
π

π

a2
γ

π−

π+

P

• a2 + rescattering essential to preserve Watson’s theorem

• formally:

Fη
ππγ(s, t, u) = F(t) + Ga2(s, t, u) + Ga2(u, t, s)

F(t) = Ω(t)

{

A(1 + αt) +
t2

π

∫

∞

4M2
π

dx

x2

sin δ(x)Ĝ(x)
|Ω(x)|(x− t)

}

Ĝ: t-channel P-wave projection of a2 exchange graphs

• re-fit subtraction constants A, α
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Total cross section γπ → πη

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.1

1

10

0.7 0.8 0.9 1.0 1.1 1.2
0

0.2

0.4

0.6

σ
(s
)
[µ

b]

√
s [ GeV]

blue: t-channel dynamics / "ρ" only red: full amplitude

• t-channel dynamics dominate below
√
s ≈ 1GeV

• uncertainty bands: Γ(η → π+π−γ), α, a2 couplings BK, Plenter 2015

B. Kubis, Towards a dispersive determination of the η and η
′ transition form factors – p. 22



Differential cross sections γπ → πη

• amplitude zero visible in differential cross sections:

-1.0 -0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

zs = cos θs

d
σ
/
d
z s

[µ
b]

√

s = 0.9GeV

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

zs = cos θs
d
σ
/
d
z s

[µ
b]

√

s = 1.0GeV

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

zs = cos θs

d
σ
/
d
z s

[µ
b]

√

s = 1.1GeV

blue: t-channel dynamics / "ρ" only red: full amplitude
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Differential cross sections γπ → πη

• amplitude zero visible in differential cross sections:

-1.0 -0.5 0.0 0.5 1.0
0.00

0.05
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0.15

0.20

zs = cos θs

d
σ
/
d
z s

[µ
b]

√

s = 0.9GeV

-1.0 -0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

zs = cos θs
d
σ
/
d
z s

[µ
b]

√

s = 1.0GeV

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

zs = cos θs

d
σ
/
d
z s

[µ
b]

√

s = 1.1GeV

blue: t-channel dynamics / "ρ" only red: full amplitude

• strong P-D-wave interference

• can be expressed as forward-
backward asymmetry

AFB =
σ(cos θ > 0)− σ(cos θ < 0)

σtotal

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
-1.0

-0.5

0.0

0.5

1.0

√

s [ GeV]

A
F

B
(s
)
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Summary: processes and unitarity relations for π0
→ γ∗γ∗

process unitarity relations SC 1 SC 2

γ
∗

v

γs

γ∗

v

P Fπ0γγ

γs

P F3π σ(γπ → ππ)

γ∗

s

γ∗

v

ω, φ γ∗

vω, φ Γπ0γ

ω, φ

P Γ3π
d2Γ
ds dt(ω, φ → 3π)

γ
∗

s

γ
∗

v

γ
∗

s
γ
∗

v

σ(e+e− → π0γ)

γ∗

s

P σ(e+e− → 3π)
σ(γπ → ππ)

d2Γ
ds dt(ω, φ → 3π)

γ
∗

s F3π σ(e+e− → 3π)

Colangelo, Hoferichter,

BK, Procura, Stoffer 2014

γπ → ππ

ω → 3π, φ → 3π

γ∗ → 3π

common theme:
resum ππ rescattering
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