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η → 3π in a nutshell

η → ππ forbidden by CP
η → πππ allowed, however, G parity is violated, and it must proceed via
isospin breaking effects (η is isosinglet and this πππ system cannot have
the isospin 0)
possible mechanisms:

second order EM interactions

HQED(x) = −1

2
e2
∫
dyDµν(x− y)T (jµ(x)jν(y))

apart from mπ+/0 difference small: [Sutherland, Bell ’68]; [Baur, Kambor, Wyler ’95];
[Ditsche, Kubis, Meißner ’09]

mass difference between u and d quarks

HQCD(x) =
md −mu

2
(d̄d− ūu)(x)

A major tool for studying η → 3π: ChPT
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η → 3π in ChPT

LO (current algebra result) [Cronin ’67]

A(s, t, u) =
B0(mu −md)

3
√

3F 2
π

(
1 +

3(s− s0)
m2
η −m2

π

)
can be rewritten using

Q2 =
m2
s − m̂2

m2
d −m2

u

or R =
ms − m̂
md −mu

We can pull out isospin breaking effects (up to first order in IB) defining

A(s, t, u) =

√
3

4R
M(s, t, u), M(s, t, u) =

1

F 2
π

(4

3
m2
π − s

)
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η → 3π in ChPT

NLO [Gasser, Leutwyler ’85]: one loop calculation, large enhancement (as
anticipated by [Roiesnel, Truong ’81]) confirmed:

ΓLOGL(η → π0π+π−) ≈ 66 eV→ ΓNLOGL (η → π0π+π−) ≈ 160 eV

remark 1 one can use dispersive techniques to get(/verify) the
absorptive part of p4 amplitude with ππ intermediate
states.
I.e. under KK (or more precisely ηπ) threshold one should
get the same:
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η → 3π in ChPT; NNLO [Bijnens, Ghorbani ’07]:
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η → 3π at two-loop order in ChPT: results

Dalitz plot of |M(s, t, u)|2 [parameters: x =
√
3

2mη(mη−3mπ)(u− t), y = 3
2mη(mη−3mπ)(s0 − s)]

OHp2L & +OHp4L & +OHp6L

-1.0

-0.5

0.0

0.5

1.0y

-1.0

-0.5

0.0

0.5

1.0

x

0

1

2

normalization at center of Dalitz plot: |M(s0, s0, s0)|+p
6

= 1
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η → 3π: dispersive analysis

For the general dispersive technique background see e.g. previous talks
by Kubis and Leupold

When we started our project, there were two main attempts:

[Anisovich, Leutwyler ’96] −→ more in the previous talk Passemar

[Kambor, Wiesendanger, Wyler ’95]

based on the extended Khuri-Treiman analysis
uses O(p4) ChPT
assumes the validity of ChPT

Dispersive approach for η → 3π is a reliable theoretical tool, based only
on general assumptions: relativistic invariance, unitarity, analyticity and
crossing symmetry together with chiral counting, which ensures that our
amplitude is valid up to and including O(p6)
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Dispersive analysis: general idea

aim: construction of fully relativistic model independent representations
of η → 3π valid up to and including two-loop corrections.
tools: the dispersive approach based only on very general principles,
unitarity, analyticity and crossing symmetry, combined with chiral
counting
already used for: ππ scattering [Stern, Sazdjian, Fuchs ’93]

chiral counting: amplitude ≈ O(p2), unitarity: amplitude is dominantly
real (Im starts at O(p4)). Analyticity (together with chiral limit
behaviour): MLO = AM2

η +B(s− s0), (where s0 is the center of a

Dalitz plot) n.b. MChPT
LO = 1

F 2
π

(
4
3m

2
π − s

)
chiral counting: contribution

of multi-pion states and D and higher waves suppressed
We will thus analytically continue Pπ → ππ to the decay region together
with decomposition into the partial waves

A(s, t, u) = 16π(f0(s) + 3f1(s) cos θ) +A`≥2
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Reconstruction theorem [Stern, Sazdjian, Fuchs ’93; M.Z., Novotný ’08]

Generally for process AB → CD:

S(s, t;u)= P 3 + Φ0(s) + [s(t− u) + (m2
A −m2

B)(m2
C −m2

D)]Φ1(s)
+ crossed channels + O(p8),

P 3 - third order polynomial in s, t, u with same symmetries as S(s, t;u),

schematically (up to subtractions)

Φ0(s)∼
∞∫
Σ

dx Imf0(x)
x−s + . . . ,

Φ1(s)∼
∞∫
Σ

dx Imf1(x)

(x−s)λ1/2
AB

(x)λ
1/2
CD

(x)
,

and similar for the t− and u− crossed channel[
λXY (s) =

(
s− (mX +mY )2

)(
s− (mX −mY )2

)]
This can be used to fully reconstruct from data the whole amplitude
(neglecting O(p8)) in the whole low-energy region of the Mandelstam
variables (including the unphysical domain).
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Dispersive approach: unitarity relations

Unitarity relation
Assuming T-invariance and the real analyticity of the amplitude, the
unitarity relation gives for the partial waves

Imf
i→f
`

(s) =
∑

(1,2)

1
S

λ1/2(s,m2
1,m

2
2)

s
f
i→(k1,k2)
`

(s)
[
f
f→(k1,k2)
`

(s)
]∗
θ(s− (m1 +m2)2)

S = 1(2) for (un)distinguishable states k1, k2

in the low-energy region the intermediate states other than those
containing pairs of pseudoscalar mesons are suppressed up to O(p8)
intermediate states other than ππ induce singularities far from the
central region of Dalitz plot of P → πππ processes ⇒ can be
expanded in series and included into the polynomial
iterative process: correct analytic continuation important for the
second iteration, e.g.

ϕ̃l(s) ∼
∫ t+(s)

t−(s)
dt Pl (cos θ(s, t))

∞∫
(ma+mb)2

dx

x3
Imf0(x)

x− t
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Dispersive approach: η → 3π

Due to Bose symmetry, CP invariance P-wave of some (sub)processes
can be zero
General form of η → π+π−π0, schematically up to O(p8)

M(s, t, u) = P +W+−
0 (s)−

[
W+0

0 (t) + 3(u− s)W+0
1 (t) + u-channel

]
W+−

0 (s) ∼
∫

dx

x− s
Imt+−0 (x)

W+0
0 (s) ∼

∫
dx

x− s
Imt+0

0 (x)

W+0
1 (s) ∼

∫
dx

x− s
Imt+0

1 (x)

λ1/2σ

Imt+−0 :

η η

+

Imt+0
i :

η

note: for η → 3π0 there is no P -wave contribution.

M(s, t, u) = P +W 00(s) +W 00(t) +W 00(u)
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Dispersive approach

All parameters hidden in P [note: at the same time we need to consider
ππ → ππ, that brings additional parameters in the corresponding
polynomial; they can be fit or taken from somewhere else [Stern, Sazdjian,

Fuchs ’93]]

P = A+−m
2
η +B+−(s− s0) + C+−(s− s0)2 +D+−[(t− s0)2 + (u− s0)2]

+ E+−(s− s0)3 + F+−[(t− s0)3 + (u− s0)3]

n.b. M(s, t, u) is connected with M(s, t, u) via isospin relation

M(s, t, u) = M(s, t, u) +M(t, u, s) +M(u, s, t)

and so are the parameters in P with A+−, . . .

K. Kampf η → 3π and π0 physics 12/33



Adler zero

SU(2) theorem:
The amplitude for η → π+(p+)π−(p−)π0(p0) vanishes in SU(2) chiral
limit for p+ = 0 or p− = 0.
Consequence: expanding the amplitude

M(s, t, u) =
∑
i,j≥0

cijs
i [(t− u)2 −m4

η]
j

SU(2) theorem states:
c00 = O(m2

π)

(and similarly around other points)
However, we expand in different place
(center of Dalitz plot).
Forcing the Adler zero can be dangerous

K. Kampf η → 3π and π0 physics 13/33



Adler zero

SU(2) theorem:
The amplitude for η → π+(p+)π−(p−)π0(p0) vanishes in SU(2) chiral
limit for p+ = 0 or p− = 0.
Consequence: expanding the amplitude

M(s, t, u) =
∑
i,j≥0

cijs
i [(t− u)2 −m4

η]
j

SU(2) theorem states:
c00 = O(m2

π)

(and similarly around other points)
However, we expand in different place
(center of Dalitz plot).
Forcing the Adler zero can be dangerous

Toy example: fn sine and linear fit
(oversimplification!)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

K. Kampf η → 3π and π0 physics 13/33



Adler zero

SU(2) theorem:
The amplitude for η → π+(p+)π−(p−)π0(p0) vanishes in SU(2) chiral
limit for p+ = 0 or p− = 0.
Consequence: expanding the amplitude

M(s, t, u) =
∑
i,j≥0

cijs
i [(t− u)2 −m4

η]
j

SU(2) theorem states:
c00 = O(m2

π)

(and similarly around other points)
However, we expand in different place
(center of Dalitz plot).
Forcing the Adler zero can be dangerous

Toy example: fn sine and linear fit
(oversimplification!)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

K. Kampf η → 3π and π0 physics 13/33



Adler zero

SU(2) theorem:
The amplitude for η → π+(p+)π−(p−)π0(p0) vanishes in SU(2) chiral
limit for p+ = 0 or p− = 0.
Consequence: expanding the amplitude

M(s, t, u) =
∑
i,j≥0

cijs
i [(t− u)2 −m4

η]
j

SU(2) theorem states:
c00 = O(m2

π)

(and similarly around other points)
However, we expand in different place
(center of Dalitz plot).
Forcing the Adler zero can be dangerous

Toy example: fn sine and linear fit
(oversimplification!)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

remark: error bars – important!
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η → 3π

Work in collaboration with M.Knecht, J.Novotny and M.Zdrahal
One crucial point: setting the normalization

we use O(p6) ChPT calculation

matching imaginary part (avoid the problems with LECs)

for ChPT good convergence for t = u when coming from NLO to
NNLO

using “plateau” argument (we expect a physical quantity as a
function of matching point to be stable at some region)
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η → 3π

Work in collaboration with M.Knecht, J.Novotny and M.Zdrahal
Our work [published in 2011] based on KLOE 2008 analysis.

final result R = 37.7± 2.2

seeming violation of Adler zero theorem (line s = u)

beyond SU(2) limit, the absolute term proportional to m2
π

we expand around the center of Dalitz plot, the studied Adler zero is
relatively far (error bars)

New study based on the recent KLOE II analysis (2016) in progress
[again in col. with M.Knecht, J.Novotny, M.Zdrahal]

the highest O(p6) part of our polynomial

∼ E(s− sc)3 + F
[
(t− sc)3 + (u− sc)3

]
is polluted by the error from fitting to data.

we would like to improve this issue
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π0 and related processes
status report on finished and ongoing projects

K. Kampf η → 3π and π0 physics 16/33



PDG 2016 on π0

K. Kampf η → 3π and π0 physics 16/33



π0 life time

π0 mean life, PDG history:

1985 (8.4± 0.6)× 10−17 s
...
2009 (8.4± 0.6)× 10−17 s
2010 (8.4± 0.5)× 10−17 s
2011 (8.4± 0.4)× 10−17 s
2012 (8.52± 0.18)× 10−17 s ← PrimEx col.
...
today (8.52± 0.18)× 10−17 s

theory: [KK,Moussallam] (8.04± 0.11)× 10−17 s

pdg’09LO

’70 HprimL’70 HprimL

’70 HprimL’70 HprimL

’73 HprimL’73 HprimL

’85 HdirL’85 HdirL

’88 He+e-L’88 He+e-L

HPrimExLHPrimExL

HpdgLHpdgL

Htheory KK+MoussallamLHtheory KK+MoussallamL

7 8 9 10 11 12

GHΠ0 ® Γ ΓL @eVD
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π0 → γγ

one of the most important processes for theory of particle physics

π0 lightest hadron ⇒ dominant decay mode π0 → γγ (br=98.82%)

non-existence of logarithmic correction to the current algebra result
at NLO

connection with the non-renormalization theorem ?

new experimental activities

theory – NNLO calculation: [KK,Moussallam’09] → see next
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one of the most important processes for theory of particle physics

π0 lightest hadron ⇒ dominant decay mode π0 → γγ (br=98.82%)

non-existence of logarithmic correction to the current algebra result
at NLO

connection with the non-renormalization theorem ?

new experimental activities (e.g. JLab,KLOE)

theory – NNLO calculation: [KK,Moussallam’09] → see next
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π0 → γγ at NNLO in 2 flavour ChPT: technical part

NLO: a) One-loop diagrams with one vertex from LWZ , b) tree
diagrams with one vertex from LWZ and one vertex from O(p4)
Lagrangian, c) tree diagrams with one vertex from O(p6)
anomalous-parity sector

O(p6) anomalous-parity sector from [Bijnens, Girlanda, Talavera ’02]

representation of chiral field: U = σ + i τ.πF , σ =
√

1− ~π2/F 2 (no
γ4π vertex at LO)

one-loop

two-loop

verification of Z-factor, Fπ/F [Bürgi ’96], [Bijnens, Colangelo, Ecker,

Gasser, Sainio ’02]

double log checked by Weinberg consistency rel. [Colangelo ’95]
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π → γγ: Phenomenology

Fπ = 92.22± 0.07 MeV from [Marciano, Sirlin ’93] πl2 decay

using quark mass ratio (from lattice), pseudo-scalar meson masses,
R from η → 3π (ChPT: [Bijnens,Ghorbani ’07])
md−mu
ms

= (2.29± 0.23) 10−2

B(md −mu) = (0.32± 0.03)M2
π0

3L7 + Lr8(µ) = (0.10± 0.06) 10−3 (µ = Mη) (from pseudo-scalar
meson masses formula [Gasser, Leutwyler ’85])

CW7 = 0 (more precisely CW7 � CW8 , motivated by simple resonance
saturation)

CW8 = (0.58± 0.2)10−3GeV−2 (from η → 2γ)

result Γπ0→2γ = (8.09± 0.11)eV

[or τπ0 = (8.04± 0.11)× 10−17 s]
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π0 → γγ: leading logs (for details see [Bijnens,KK,Lanz’12])

Leading logarithm contribution of individual orders in percent of the
leading order:

Adler-Lee-Treiman-Zee-Terentev theorem on triangle and box anomaly

F 3π(0, 0, 0) =
1

eF 2
π

Fπγγ(0, 0)

is valid up to 2-loop order for LL beyond the soft-photon limit
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π0 → e+e−

KTeV’s measurement:

Γ(π0 → e+e−, x > 0.95)

Γ(π0 → e+e−γ, x > 0.232)
= (1.685± 0.064± 0.027)× 10−4 .

by extrapolating the Dalitz branching ratio to the full range of x

B(π0 → e+e−(γ), x > 0.95) = (6.44± 0.25± 0.22)× 10−8 .

Extrapolating the radiative tail using Bergström:

Bno-rad
KTeV (π0 → e+e−) = (7.48± 0.29± 0.25)× 10−8 .

Theoretical prediction [Dorokhov, Ivanov ’07, ’10]

Bno-rad
SM (π0 → e+e−) = (6.23± 0.09)× 10−8 . (1)

3.3 σ ⇒ New physics?
In any case, radiative corrections play an important role in the analysis
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π0 → e+e−

Radiative corrections → two-loop graphs

(a) (b)

(c) (d)

(e) (f)
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π0 → e+e−

two-loop contributions, together with Bremsstrahlung (= Dalitz)
[Dorokhov et al. ’08], [Vasko,Novotny ’11], [Husek,KK,Novotny’14]

counter-term chiral Lagrangian for π0ll̄ [Savage et al’92]

modelled using the resonances [Knecht ’99]

χ
(r)
LMD(Mρ) = 2.2± 0.9

rem.: different models possible, see e.g. [Masjuan,Sanchez-Puertas

’15], for χ = 2.76(23)

KTeV implies [Husek,KK,Novotny’14]

χ
(r)
KTeV(Mρ) = 4.5± 1.0

original discrepancy down to 2 σ level

note: weak contributions mediated via π0 → Z∗ → e+e− three
orders of magnitude smaller than EM
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Dalitz decay [K.K., Knecht, Novotný ’06]

History

First calculated by [Dalitz ’51].

Radiative corrections studied by [Joseph ’60], [Lautrup, Smith’71], [Mikaelian, Smith’72]

and during the 1980s by Tupper, Grose, Samuel, Lambin, Pestieau, Roberts...

π0(P )

ց

ր
q

γ(k)

e+(p+)

e−(p−)

x = m2
ee/M

2
π , y =

E+ − E−
Eγ

∣∣∣
π0→0

NLO studied via δ(x, y) and δ(x):

dΓ

dxdy
= δ(x, y)

dΓLO

dxdy
,

dΓ

dx
= δ(x)

dΓLO

dx
.

with (point-like pion)

dΓLO

dxdy
=

α3

(4π)4
Mπ0

F 2
π

(1− x)3

x2
[M2

π0x(1 + y2) + 4m2],

dΓLO

dx
=

α3

(4π)4
8

3

Mπ0

F 2
π

(1− x)3

x2
(xM2

π0 + 2m2).
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Dalitz decay: slope parameter

π0(P )

ց

ր
q

γ(k)

e+(p+)

e−(p−)

Γ1γR
µ (p+, p−, k) = ie2ε ναβ

µ qαkβ Fπ0γγ∗(q
2) iDT

νρ(q)(−ie)Λρ

Fπ0γγ∗(q
2) is related to the doubly off-shell form factor Aπ0γ∗γ∗(q

2
1, q

2
2)∫

d4x eil·x〈0|T (jµ(x)jν(0)|π0(P )〉 = −iεµναβlαPβ Aπ0γ∗γ∗(l
2, (P−l)2)

One can define a slope parameter aπ

Fπ0γγ∗(q
2) = Fπ0γγ∗(0)

[
1 + aπ

q2

M2
π0

+ · · ·
]
,

dΓexp

dx
− δQED(x)

dΓLO

dx
=

dΓLO

dx
[1 + 2x aπ].
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Dalitz decay: summary of [KK,Knecht,Novotny’06] & [Husek,KK,Novotny’15]

Our works provide a detailed analysis of NLO radiative corrections to the Dalitz
decay amplitude.

The off-shell pion-photon transition form factor was included:
this requires a treatment of non perturbative strong interaction effects

The one-photon irreducible contributions, which had been usually neglected,
were included.
We have shown that, although these contributions are negligible as far as the
corrections to the total decay rate are concerned, they are however sizeable in
regions of the Dalitz plot which are relevant for the determination of the slope
parameter aπ of the pion-photon transition form factor.

Our prediction for the slope parameter aπ = 0.029 ± 0.005 is in good agreement
with the determinations obtained from the (model dependent) extrapolation of
the CELLO and CLEO data.
Unfortunately, the experimental error bars on the latest values of aπ extracted
from the Dalitz decay are still too large

used in NA48 analysis for the search of dark photon [1504.00607]
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Double Dalitz decay
History

determination of parity of pion via π0 → γγ[Yang ’50], experimentally difficult

using internal conversion [Kroll, Wada ’55]

First measurement (and todays PDG number) [Samios et al. ’62], hydrogen bubble
chamber: 8× 106 π0-decays on approx 800 thousand pictures → 200
double-dalitzs (10t. dalitzs)

B(π0 → e+e−e+e−) = (3.18± 0.3)× 10−5

π0 is pseudoscalar (only 3.6σ significance)

[Miyazaki and E. Takasugi ’73] adding the effect of lepton exchange to Kroll-Wada

new study: [Barker et al. ’03] (some disagreement with previous)

new measurement: KTeV ’08

confirmation of negative π0 parity
first searches for parity & CPT violation
B(π0 → e+e−e+e−) = (3.46± 0.19)× 10−5
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Double Dalitz decay
collaboration with T.Husek, M. Knecht, J. Novotný and P.Sanchez Puertas

It seems natural to convert the on-shell photon to the other Dalitz pair
and obtain immediately Double Dalitz decay. This is true for LO:

However, for higher orders we have new topologies [Barker et al. ’03]:

We are recalculating these results and try to put them together with our
parameters introduced in the context of π0 → e+e−γ.
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Further plans and projects

π0 → Ps γ
similar to the Dalitz decay (threshold below e+e−)
non-relativistic bound state formalism Nemenov ’72
radiative correction small Vysotskii ’79
experiment Serpukhov ’89 (=pdg)

π0 → 4γ and π0 → 3γ
interesting probe of the light-by-light scattering
theoretical estimate is 3 orders below the experimental limit

π0 → νν̄ and π0 → νν̄γ
helicity suppression vs. weak radiative suppression
experimental limits far below reliable theoretical predictions

η/K similar decays
already in preparation: η → `+`−γ: in collaboration with T. Husek,
S. Leupold and J. Novotny
work in progress: η → γγ: in col. with J.Bijnens, E. Passemar

systematic study of odd intrinsic parity sector
e.g. transition formfactor Fπγγ , continuation of [KK,Novotny’11], in
collaboration with T.Kadavy and J.Novotny
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π0 and new physics

one crucial ingredient for chiral dynamics: Fπ

Fπ from πl2 based on SM; deviation from standard V −A leads to
an effective F̂π [Bernard,Oertel,Passemar,Stern ’08]

F 2
π = F̂ 2

π (1 + ε), with ε ∼ V ud
R /V ud

L

connection between Fπ and Fπ0 tiny [KK,Moussallam ’09]

Fπ+

Fπ0

∣∣∣
QCD

− 1 =
B2(md −mu)2

F 4
π

[
−16 cr9(µ)− l7

16π2

(
1 + log

m2
π

µ2

)]
' 0.7× 10−4 .

⇒ one can thus use π0 → γγ for determination of Fπ:

Fπ ≈ Fπ0 = 93.85± 1.3(exp.)± 0.6(theory) MeV = 93.85± 1.4 MeV

n.b. F̂π = 92.22(7) ⇒ ε ≈ 3− 4% 1σ significance for right-handed
currents
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Summary

η → 3π: fashionable subject, theoretically studied e.g. by:

ChPT (Gasser, Leutwyler ’85; Bijnens, Ghorbani ’07)

EM corrections (Baur,Kambor,Wyler’96; Ditsche, Kubis, Meiner ’08)

NREFT (Gullstrom, Kupsc,Rusetsky ’08; Schneider, B. Kubis, and
C. Ditsche,’11),

new dispersive analyses (KK,Knecht,Novotny,Zdrahal ’11,
Albaladejo, Moussallam ’15, Guo et al ’15+’16, Colangelo, Lanz,
Leutwyler, Passemar ’16)

resummed ChPT (Kolesar,Novotny ’16)

Short overview of π0-related processes presented: π0 → γγ, π0 → e+e−,
π0 → e+e−γ (Dalitz decay), π0 → e+e−e+e− (double Dalitz)
with some future plans.
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