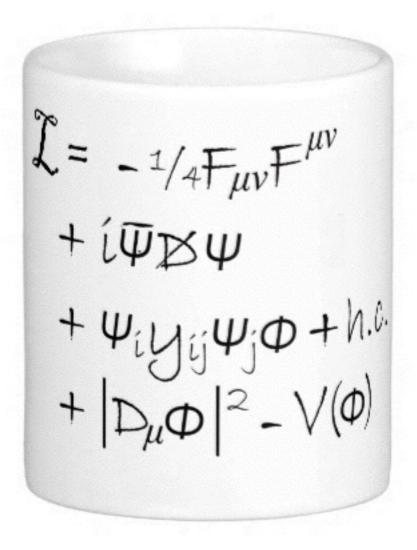
CHARM PHYSICS

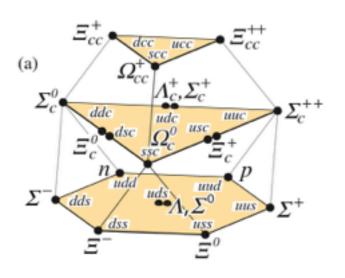
RECENT MEASUREMENTS

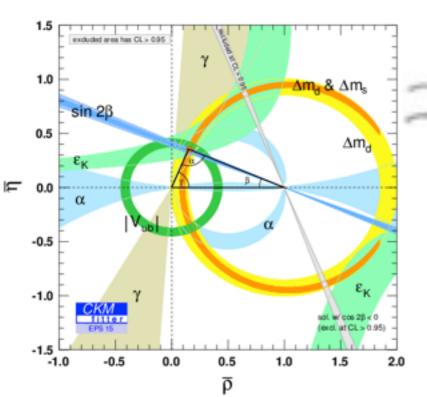

& FUTURE PROSPECTS

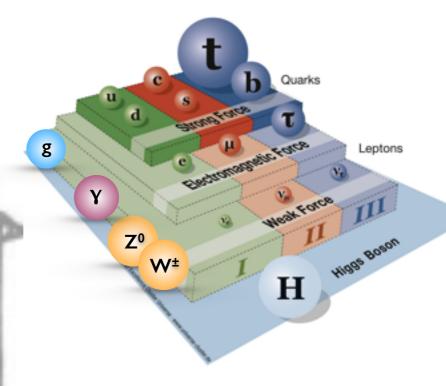
AT Bellell

Giulia Casarosa, INFN Sezione di Pisa

Outline


- Model Introduction: Charm in the Standard Model
- M A Snapshot of Charm Physics
 - Theory & Standard Model predictions
 - Selected Recent Measurements
- The Belle II Experiment: detector & innovative reconstruction techniques
- Marm Prospects at Belle II


is the Standard Model mug half empty half full?


Introduction

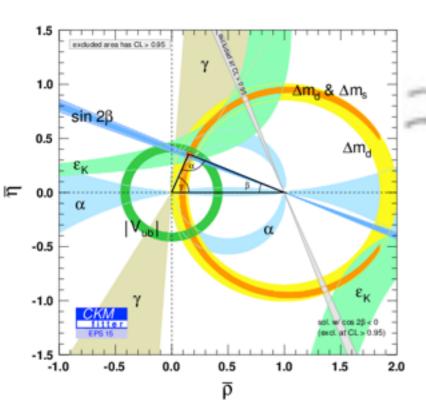
The SM Mug is Half Full ...

√ the quark model predicts the observed bound states, mesons and baryons

√ interactions between mesons, baryons and leptons are predicted with a precision of o(1%)

√ hundreds of observables are correctly predicted within the theoretical and the experimental errors

Charm Physics


The SM Mug is Half Full and Half Empty

no explanation of the observed matter-antimatter asymmetry [effect o(100%)]

no explanation of masses hierarchy

√ the quark model predicts the observed bound states, mesons and baryons

√ hundreds of observables are correctly predicted within the theoretical and the experimental errors

no dark matter candidate nor

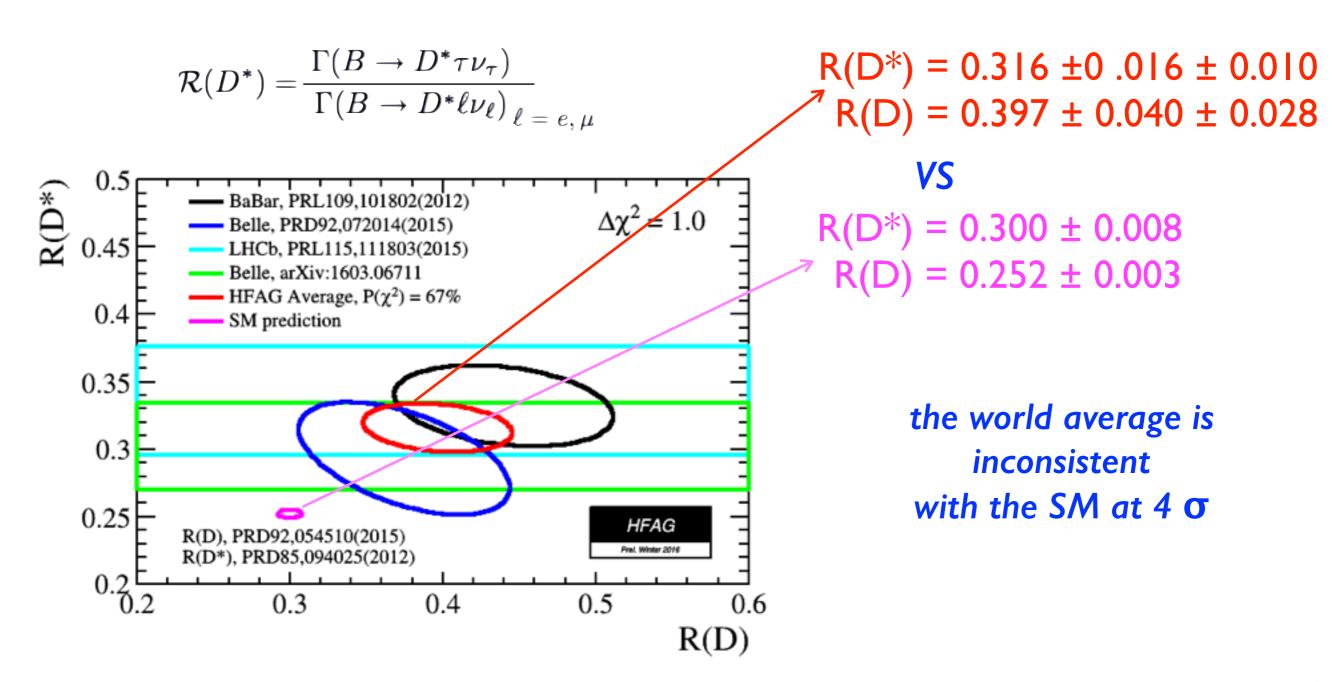
[95% of the universe is unknown]

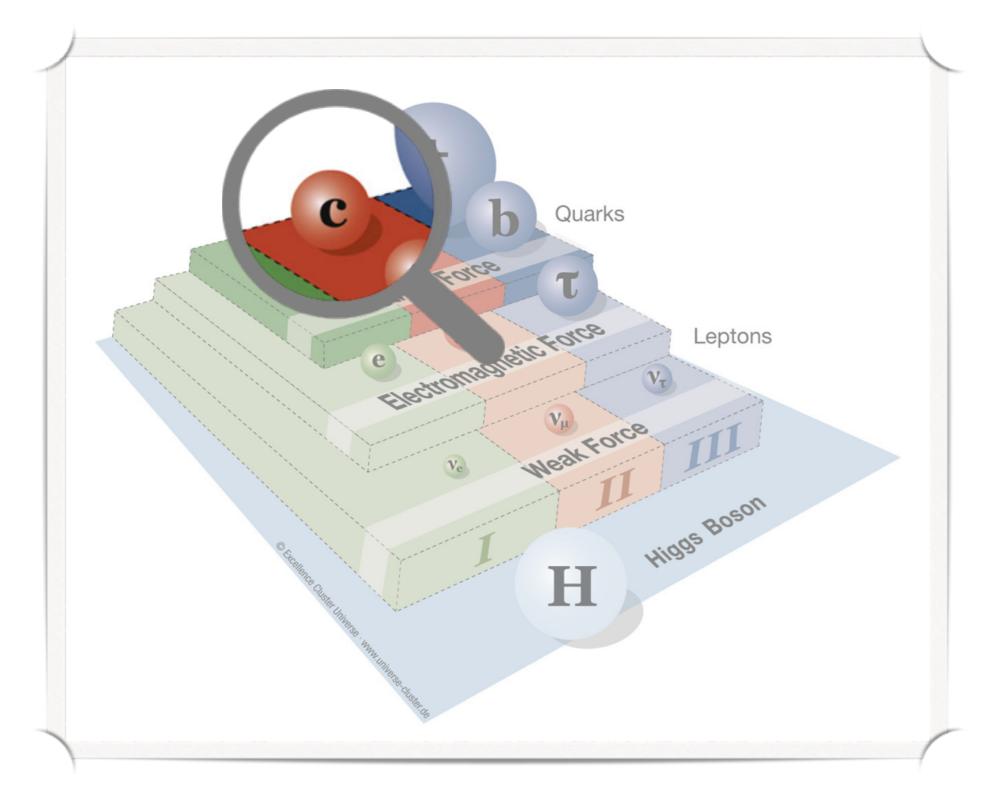
dark energy explanation

√ interactions between

mesons, baryons and

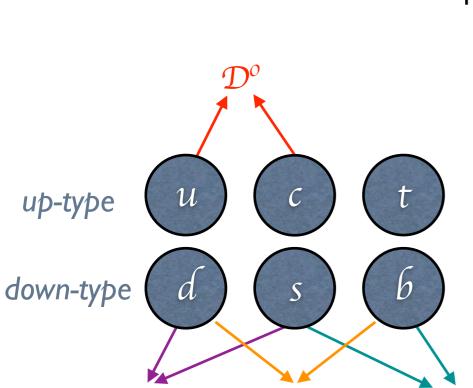
leptons are predicted

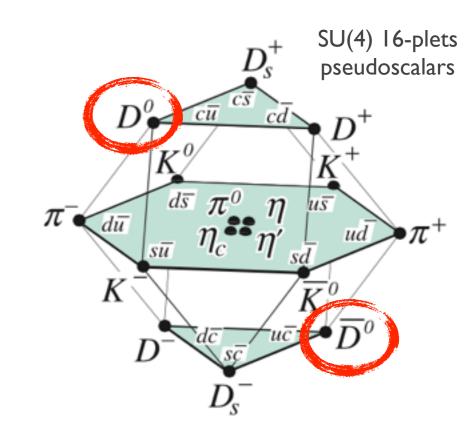

with a precision of o(1%)


Charm Physics 5

... and Maybe Cracked Somewhere?

- → There are some effects that can be compatible with statistical fluctuations, as well as hints of physics beyond the Standard Model
- ⇒ e.g.: $B \rightarrow D^{(*)} \tau \nu$





Zooming on Charm

Charm in the Standard Model

- → charm is an up-type quark, of mass ~ 1.25 GeV/c²
 - not heavy $(m(b) \sim 4.2 \text{ GeV/c}^2)$ nor light $(m(s) \sim 100 \text{MeV/c}^2)$
- it forms charged and neutral mesons and baryons
- in particular the neutral meson D^0 is the only mixing meson made of up-type quarks:
 - the top quark decays before forming bound states
 - π^0 coincides with its own antiparticle

charm flavour physics

- complementary informations provided w.r.t.K and B mixing and CPV
- eventual NP contributions must couple to the up-type sector
- constraints NP models probing a different parameters space

Mixing and CP Violation T-evolution

prediction of K ⁰ mixing (theta-tau puzzle)	1955 1956	observation of K ⁰ mixing observation of P violation	
observation of CP violation in the K ⁰ system	1964 1967	Sakharov Conditions for Baryogenesis	charm m
proposal of CKM mechanism	1973	, 3	only in
	1987	observation of B ⁰ mixing	experim become mixing
			→ no clear
observation of direct CP violation in K ⁰ decays	1999		CPViola
observation of CP violation in the B ⁰ system	2001		the chai
	2006	observation of B _s mixing	system among 1
	2008	evidence of D ⁰ mixing	mixing
evidence CPV in the D ⁰ system	2011		
observation of D ⁰ mixing	2012	observation of direct CP violation in B _s decays	
evidence CPV in the D ⁰ system experimentally disappeared	2013		
	2016	search of CPV in the charm secretary reaches the sub ‰ precisions	tor

mixing and CPV

- the last few years ments have e sensitive to D^0
- ar observation of lation yet
- arm mixing is the less known the four SM systems

Charm Physics Giulia Casarosa

Neutral Meson Mixing

→ Mixing occurs when the mass eigenstates differ from the flavour eigenstates:

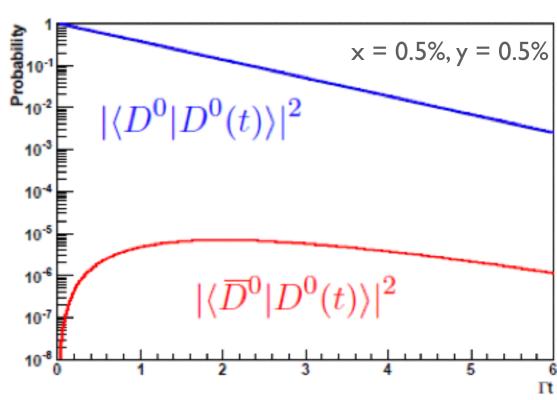
$$|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D}^0\rangle$$

with $|p|^2 + |q|^2 = 1$ and assuming CPT conservation

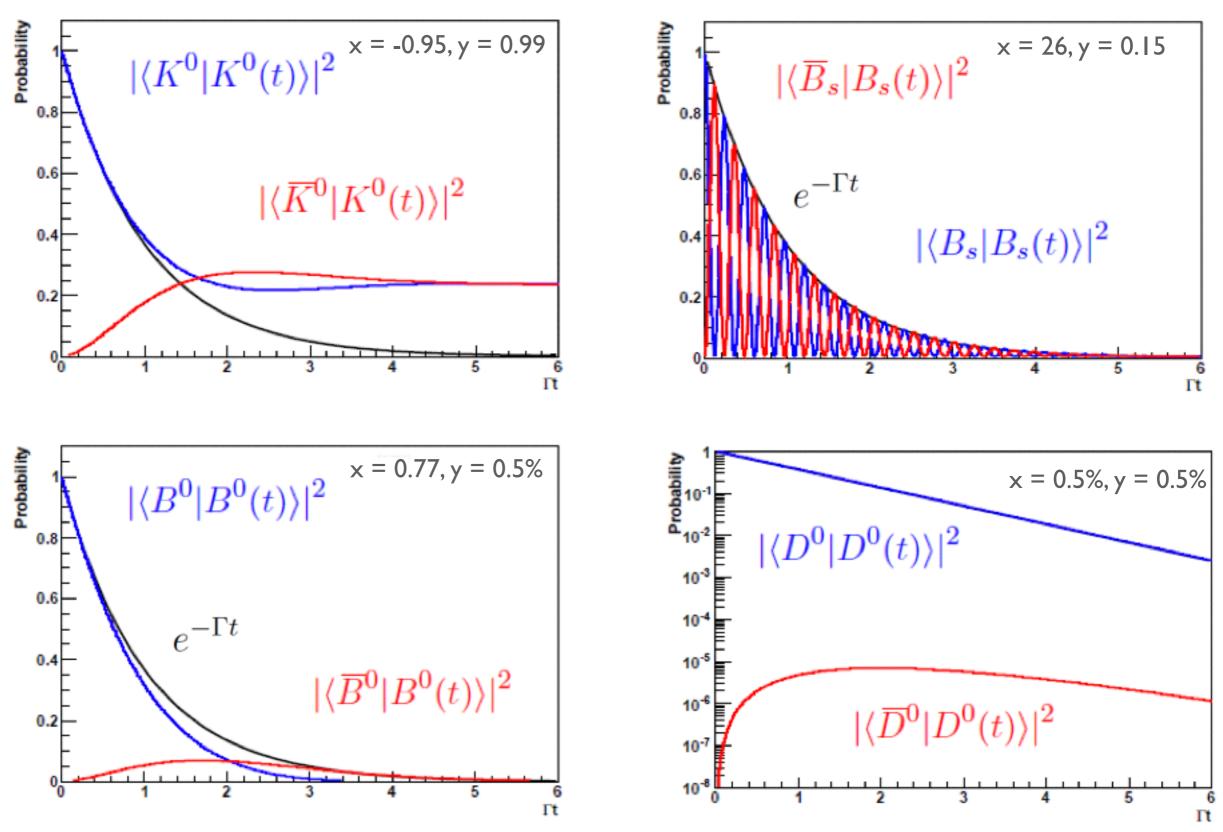
10

→ The time evolution of the flavour eigenstates is described by the mixing parameters:

$$x = \frac{m_1 - m_2}{\Gamma} \qquad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$


with
$$\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$$

- \rightarrow Let's consider the state of a neutral charmed meson that was a D⁰ at t = 0:
 - The probability that the flavour is changed at time t is:


$$|\langle \overline{D}^0 | D^0(t) \rangle|^2 \propto e^{-\Gamma t} \left[\cosh(y \Gamma t) - \cos(x \Gamma t) \right]$$

• The probability that the flavour is not changed at time t is:

$$|\langle D^0|D^0(t)\rangle|^2 \propto e^{-\Gamma t} \left[\cosh(y\Gamma t) + \cos(x\Gamma t)\right]$$

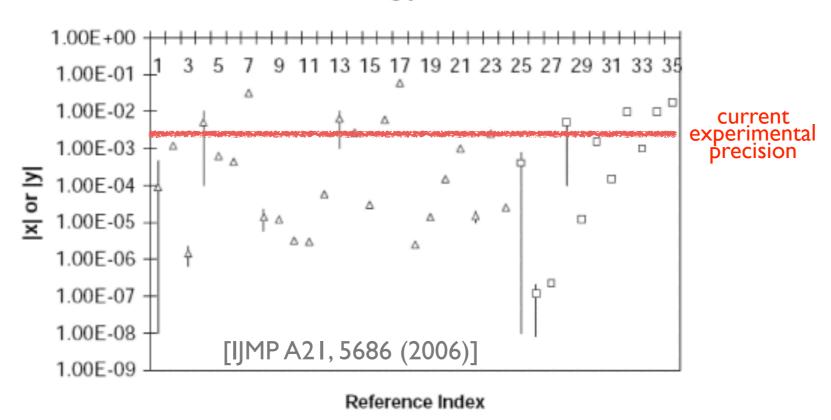
The 4 Standard Model Mixing Systems

What About CP Violation?

→ CP Violation (CPV) is naturally introduced in the SM by the unitary CKM matrix, through its irreducible complex phase:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} u & c \\ 1 - \lambda^2/2 & \lambda \\ -\lambda & 1 - \lambda^2/2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 \end{pmatrix} \begin{pmatrix} t \\ A\lambda^3(\rho - i\eta) \\ A\lambda^2 \\ b \end{pmatrix}$$

Wolfeinstein parameterization up to λ^3


- → Charm decays involve primarily the first two generations → naively no CPV expected in the Standard Model
- → Real life is more complicated:
 - due to the difficulties in the diagrams computation, it is hard to predict a precise value (or upper limit) for the CPV that we can expect from the SM
 - with the increase of the experimental precision theorists have revised their conclusions

"measuring CPV with the current experimental sensitivity is a clear sign of NP"

Standard Model Predictions

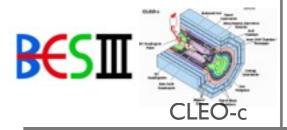
- → The Standard Model predictions on mixing and CP Violation parameters are affected by large uncertainties due to the difficulties in the computation of the dominant long-distance contributions:
 - computation of D-mixing diagrams is non perturbative (approximations holding in the B and K cases do not apply for charm)
 - the available computational power is not enough for lattice QCD

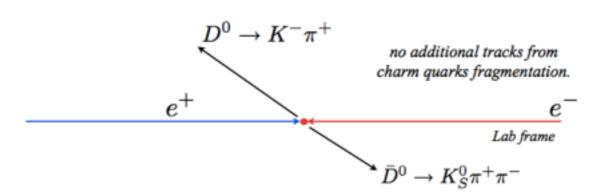
Standard Model mixing predictions

Current Theoretical Approaches

- 1. D⁰ mixing and indirect CPViolation
 - employ a parameterization that is appropriate for the level of precision expected in the BelleII/LHCb-upgrade era
- 2. Flavour SU(3) analysis of direct CPV and rates in D \rightarrow PP and D \rightarrow VP decays
 - infer the presence of NP in direct CPV measurements using SM SU(3) relations
 - quantifying SU(3) violation in D → PP, VP decays with increasing experimental precision can improve upper bound estimates of SM mixing CP Violation
- 3. Relatively clean opportunities for NP in leptonic and semileptonic decays
 - lattice QCD input needed (bonus: feedbacks to the lattice theory community)

need of experimental inputs

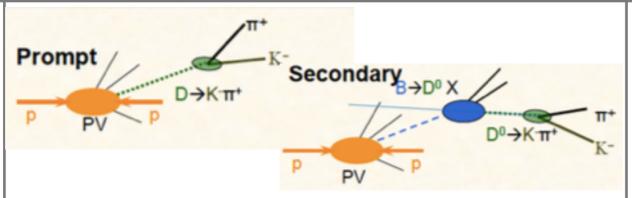

theory needs experimental inputs not only to check the final predictions but also to check the model hypothesis!



Recent Charm Results

A Selection of Charm Experiments

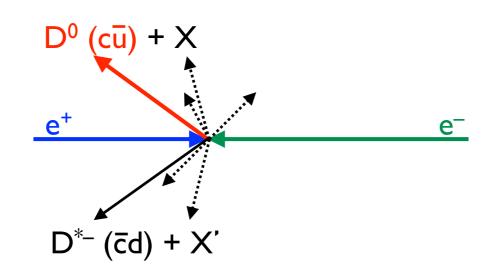
threshold production



- √extremely clean environment
- √pure D-beam, almost no bkg
- ✓ quantum coherence
- no CM boost, no T-dep analyses

hadron colliders

- ✓ large production cross-section
- √large boost: excellent time res
- dedicated trigger required
- hard to do neutrals and neutrinos


B-Factories

high-luminosity B-Factory

- √ clean event environment
- √high trigger efficiency
- √ high-efficiency detection of neutrals
- √ many high-statistics control samples
- √time-dependent analysis
- smaller cross-section than hadron colliders

A Selection of Charm Observables

CPViolation

time-integrated A_{CP} , ΔA_{CP} and T-odd asymmetries

- $D^0 \rightarrow K_S \pi^0$, $\pi^0 \pi^0$, $K^+ K^-$, $\pi^+ \pi^-$
- $D^0 \rightarrow K^+K^-\pi^+\pi^-, \pi^+\pi^-\pi^0, K_SK_S$
- D⁺ $\to K_S \pi^+, K_S K^+, \pi^+ \pi^0$
- $D_s^+ \rightarrow K_S \pi^+, K_S K^+$

mixing & indirect CPV

x, y, |q/p|, $A_{\Gamma}/\Delta Y$, arg(q/p), R_{M}

- $D^0 \rightarrow K_S \pi^+ \pi^-$
- $D^0 \rightarrow K^+K^-, \pi^+\pi^-, K^+\pi^-$
- $D^0 \to \pi^+ \pi^- \pi^0$

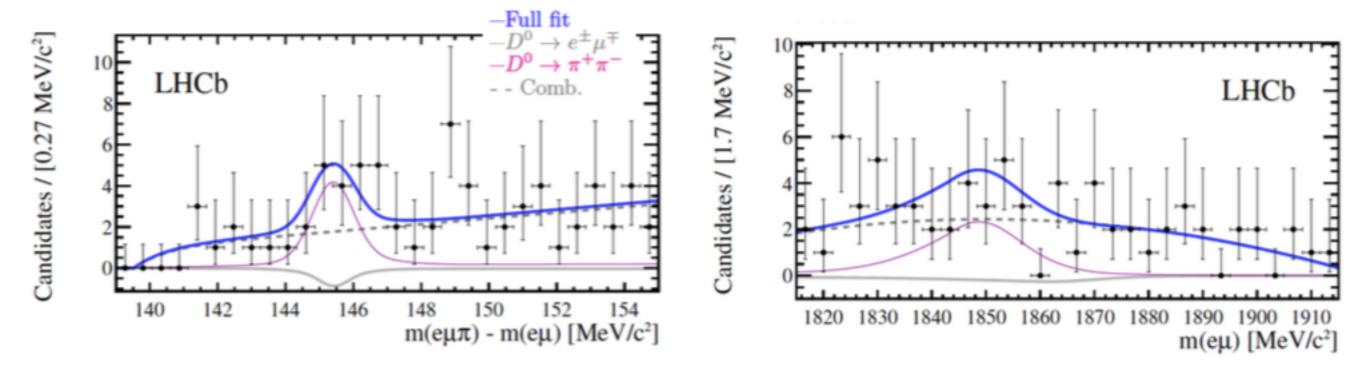
rare/forbidden decays

cross sections

- $D^0 \rightarrow \text{ invisible } (\gamma)$
- D⁰→e[±]µ[∓]
- $D^0 \rightarrow \mu^+ \mu^-, e^+ e^- \dots$

(semi)leptonic & radiative decays

branching ratios, fD

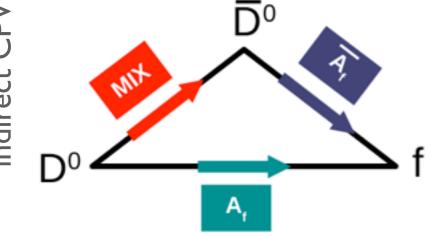

- D⁺ $\rightarrow \pi \ell \nu$, $K \ell \nu$, $K^* \ell \nu$
- $D_s^+ \rightarrow \pi \ell \nu$, $K \ell \nu$, $K^* \ell \nu$
- $D^0 \rightarrow \omega \gamma, \rho \gamma, \gamma \gamma$...

NOTE: the displayed list of channels is only a selection

Search for $D^0 \rightarrow e^{\pm} \mu^{\mp}$

- → The decay is forbidden: lepton flavour is not conserved
- ⇒ Several models beyond-SM predict it with a BR of the order of 10⁻⁶
- → Use D^* -tagged D^0 mesons and normalize to the D^0 → $K\pi$ channel

→ Set the world best limit and constrains the parameter space in some leptoquark models.


 $\mathcal{B}(D^0 \to e^{\pm}\mu^{\mp}) < 1.3 \times 10^{-8} \text{ at } 90\% \text{ CL}$

CP Violation Observables

- ightharpoonup CPViolation in the decay if $|A_f| \neq |\bar{A}_{\bar{f}}|$
 - need at least 2 amplitudes with different strong and weak phases, the observables are in form of asymmetries:

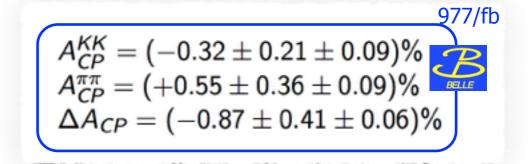
$$A_{CP}(f) = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2} \quad \text{or} \quad A_D^f = \frac{|A_f/\bar{A}_f|^2 - |\bar{A}_{\bar{f}}/A_{\bar{f}}|^2}{|A_f/\bar{A}_f|^2 + |\bar{A}_{\bar{f}}/A_{\bar{f}}|^2}$$

- ightharpoonup CPViolation in the mixing if $\left|R_M = \left|\frac{q}{p}\right| \neq 1\right|$ or $A_M = \frac{R_M^2 R_M^{-2}}{R_M^2 + R_M^{-2}}$
 - probability of $D^0 \to \overline{D}^0$ is different than the CP-conjugate $D^0 \to \overline{D}^0$
- CP Violation in the interference between decays with and without mixing:

if
$$\phi_f \neq 0$$
 where $\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} = \left| \frac{q}{p} \frac{\bar{A}_f}{A_f} \right| \exp\left[i(\delta_f + \phi_f)\right]$ strong + weak phase

$\Delta A_{CP} = A_{CP} (D^0 \rightarrow K^+K^-) - A_{CP} (D^0 \rightarrow \pi^+\pi^-)$

- \rightarrow The combination of A_{CP} enhances the sensitivity to CPV
- ⇒ First LHCb measurement used $D^{*+} \rightarrow D^0 \pi^+$ to tag of the D^0 flavour:


PRL108, 111602 (2012)

$$\Delta A_{CP} = [-0.82 \pm 0.21(\text{stat}) \pm 0.11(\text{syst})]\% \times 3.5\sigma \text{ evidence of CPV}$$

- ⇒ Second measurement done with with muon tagged D^0 : $B \to D^0 \mu^- X$ Phys.Lett.B723 33 (2013)
 - Ifb⁻¹ @7TeV, different trigger wrt D*+ tagged analysis $\Delta A_{CP} = (0.49 \pm 0.30 \, (\mathrm{stat}) \pm 0.14 \, (\mathrm{syst}))\% \quad \star \text{ no evidence of CPV}$
- → Update of the muon tagged analysis, also the single asymmetries are provided
 - Ifb^{-I} @7TeV + 2fb^{-I} @8TeV

LHCb-PAPER-2014-013

$$A_{CP}(K^-K^+) = (-0.06 \pm 0.15 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$$

 $A_{CP}(\pi^-\pi^+) = (-0.20 \pm 0.19 \,(\text{stat}) \pm 0.10 \,(\text{syst}))\%$
 $\Delta A_{CP} = (+0.14 \pm 0.16 \,(\text{stat}) \pm 0.08 \,(\text{syst}))\%$

- → Last update of the D*+ tagged analysis
 - Ifb^{-I} @7TeV + 2fb^{-I} @8TeV

PRL 116, 1191601 (2016)

$$\Delta A_{CP} = [-0.10 \pm 0.08(\text{stat}) \pm 0.03(\text{syst})]\%$$

most precise measurement of a timeintegrated CP asymmetry in the charm sector from a single experiment


Indirect CPV in $D^0 \rightarrow K^+K^-$, $D^0 \rightarrow \pi^+\pi^-$

⇒ Determine D^0 flavour using $B \to D^0 \mu^- X$ decays

PRL 116 (2016) 191601 3 fb⁻¹ @ 7,8 TeV

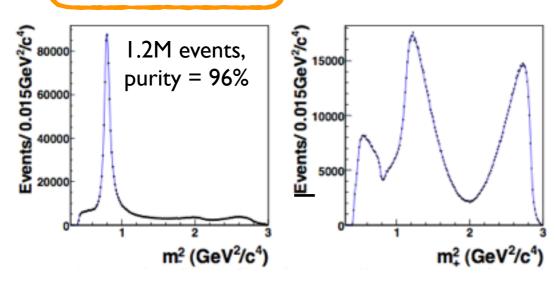
- ⇒ Simultaneous fit to D^0 and \overline{D}^0 mass distributions in each of the 50 bins of the decay time. Evaluation of the raw A_{CP} in each bin.
- ightharpoonup Determine A_{\(\Gamma\)} by a χ^2 fit to the time dependent asymmetry: $A_{CP}(t) pprox A_{CP}^{
 m dir} A_{\Gamma} \frac{t}{ au}$

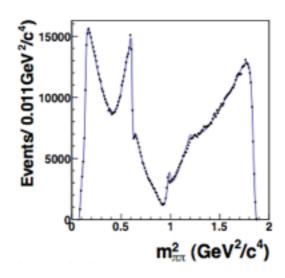
$$A_{\Gamma}(K^{-}K^{+}) = (-0.134 \pm 0.077 ^{+0.026}_{-0.034})\%$$

$$A_{\Gamma}(\pi^{-}\pi^{+}) = (-0.092 \pm 0.145 ^{+0.025}_{-0.033})\%$$

no evidence of indirect CPV precision reaching the sub-% level

$$A_{\Gamma} \equiv rac{\hat{\Gamma}_{D^0} - \hat{\Gamma}_{ar{D}^0}}{\hat{\Gamma}_{D^0} + \hat{\Gamma}_{ar{D}^0}}$$


Time-Dependent Dalitz Plot $D^0 \rightarrow K_S \pi^+ \pi^-$



- → directly sensitive to the mixing and the CPV parameters: x, y, $|\lambda_f|$ and $arg(\lambda_f)$ PRD 89, 09110(R) (2014) (assuming no direct CPV). Tag the D⁰ flavour with D*+→D⁰π+ decays.
- → Mixing and CPV modify the decay time distribution over the Dalitz Plot:

$$|\mathcal{A}|^2 \propto |A_f|^2 e^{-\Gamma t} \, \left[\frac{1 + |\lambda_f|^2}{2} \mathrm{cosh}(y_\mathsf{D} \Gamma t) + \frac{1 - |\lambda_f|^2}{2} \mathrm{cos}(x_\mathsf{D} \Gamma t) - Re \lambda_f \mathrm{sinh}(y_\mathsf{D} \Gamma t) + Im \lambda_f \mathrm{sin}(x_\mathsf{D} \Gamma t) \right]$$

→ Use a $model A_f(m^2_+, m^2_-)$ to describe the interference of resonances over the Dalitz Plot:

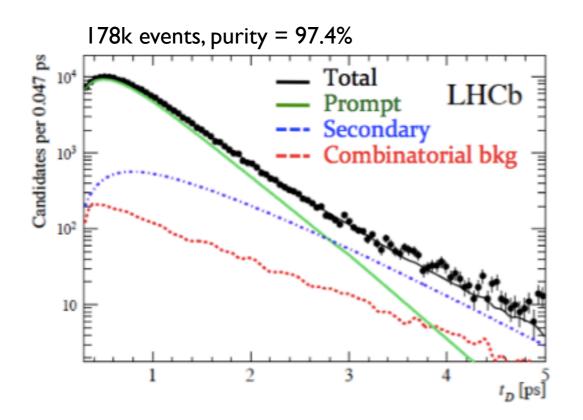
Dalitz Plot fit
projections
13 resonances taken
into account, extract
magnitude and phases
for each of them

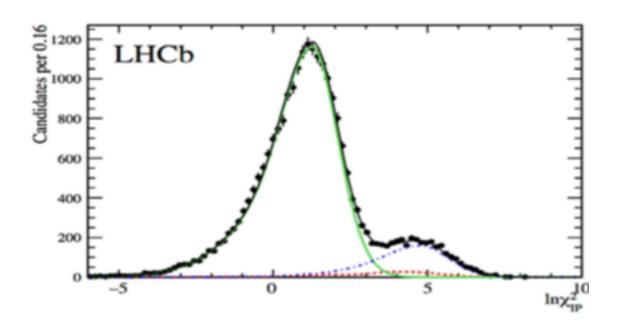
- → A time-dependent fit to the Dalitz Plot distribution allows to extract:
 - an additional systematic error is associated to the particular choice of the DP model

x(%)	$0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09}$
(01)	
y(%)	$0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06}$
x(%)	$0.56 \pm 0.19^{+0.04+0.06}_{-0.08-0.08}$
y(%)	$0.30 \pm 0.15^{+0.04+0.0}_{-0.05-0.07}$
q/p	$0.90^{+0.16+0.05+0.06}_{-0.15-0.04-0.05}$
$arg(q/p)(^{\circ})$	$-6 \pm 11 \pm 3^{+3}_{-4}$
	x(%) y(%) q/p

Giulia Casarosa

Time-Dependent Dalitz Plot $D^0 \rightarrow K_S \pi^+ \pi^- LHC$

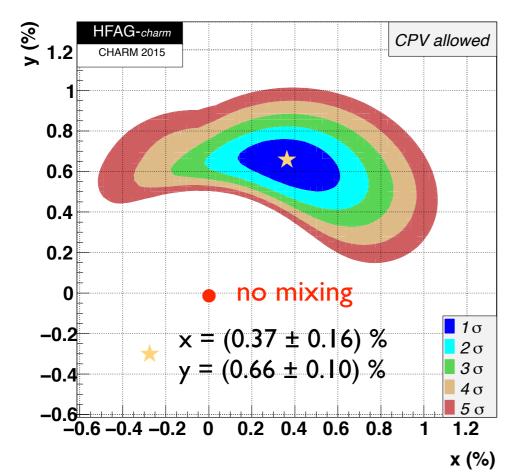

LHCb

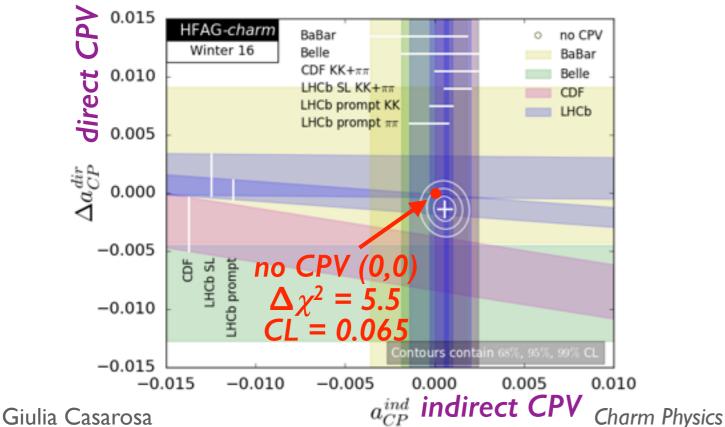

23

→ Use a model-independent approach

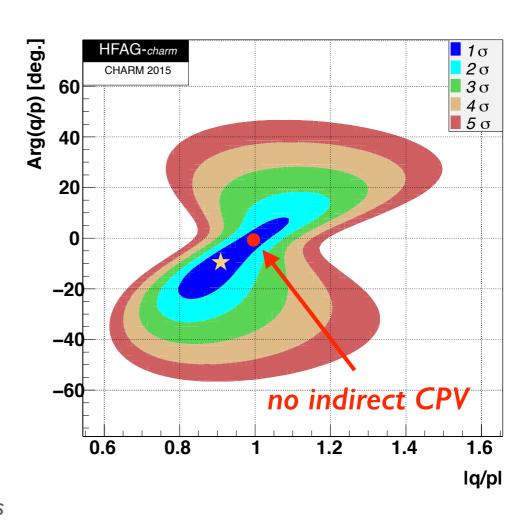
JHEP 04 (2016) 033 1 fb⁻¹ @ 7 TeV

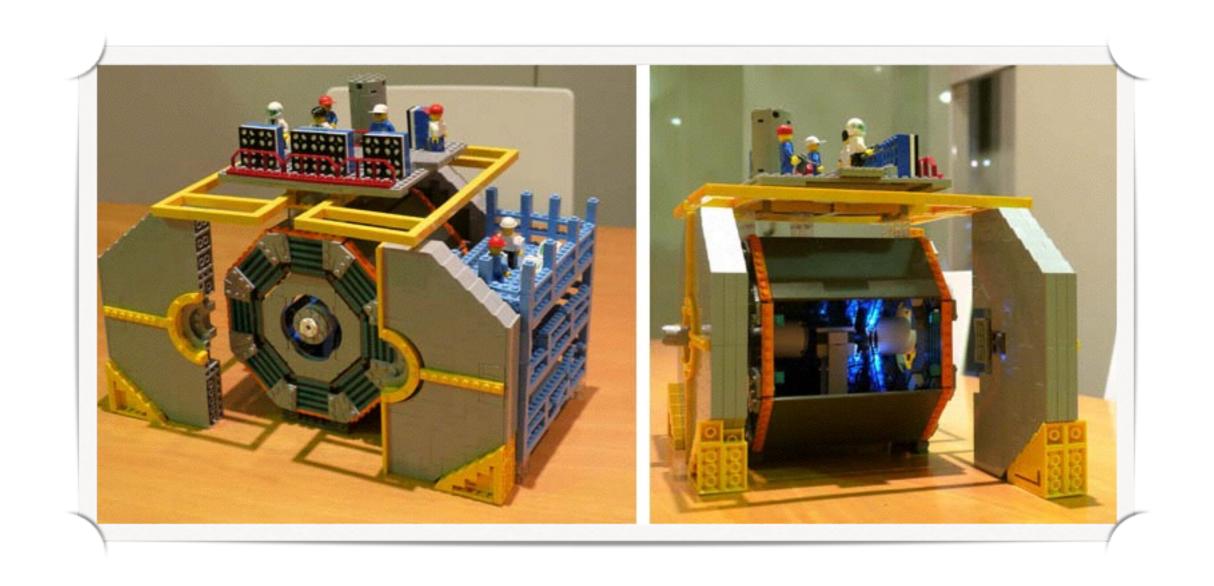
- DP divided in 16 bins with constant strong phase difference
- constrain hadronic parameters (T_i, c_i, s_i) to values measured by CLEO [PRD 82 (2010) 112006]
- Time-Dependent decay rate (assuming no CPV): $P_{D^0} = e^{-\Gamma t} \left[T_i \Gamma t \sqrt{T_i T_{-i}} \left(y c_i + x s_i \right) \right]$
- ⇒ use $D^{*+} \to D^0 \pi^+$ decays and simultaneously fit DP bins (Δm , m_D) to separate signal from background and in $(t_D, \ln(\chi^2_{(IP)}))$ to distinguish prompt D from D from B decays



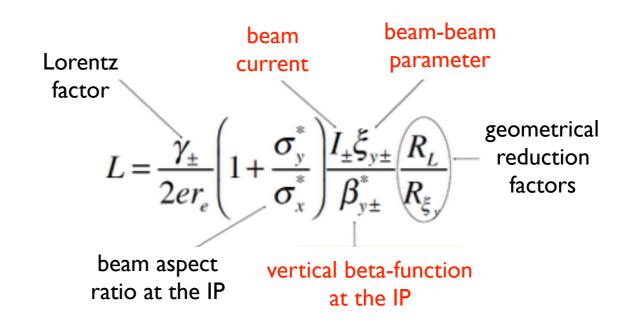


this is the first model-independent measurement of the mixing parameters (assuming no CPV)


 $x = (0.86 \pm 0.53 \pm 0.17)\%$ $y = (0.03 \pm 0.46 \pm 0.13)\%$


Experimental World Averages

- Mixing have been experimentally established, the mixing parameter x is the less known
- → No clear evidence of direct CPV
- No hints of indirect CPV



Belle II

High-Luminosity Asymmetric B Factory

- → Target luminosity is $\mathscr{L} = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (x40 w.r.t. BELLE)
- → Achievable in the nano-beam scheme (P. Raimondi for SuperB)
 - double beam currents
 - squeeze beams @ IP by 1/20

26

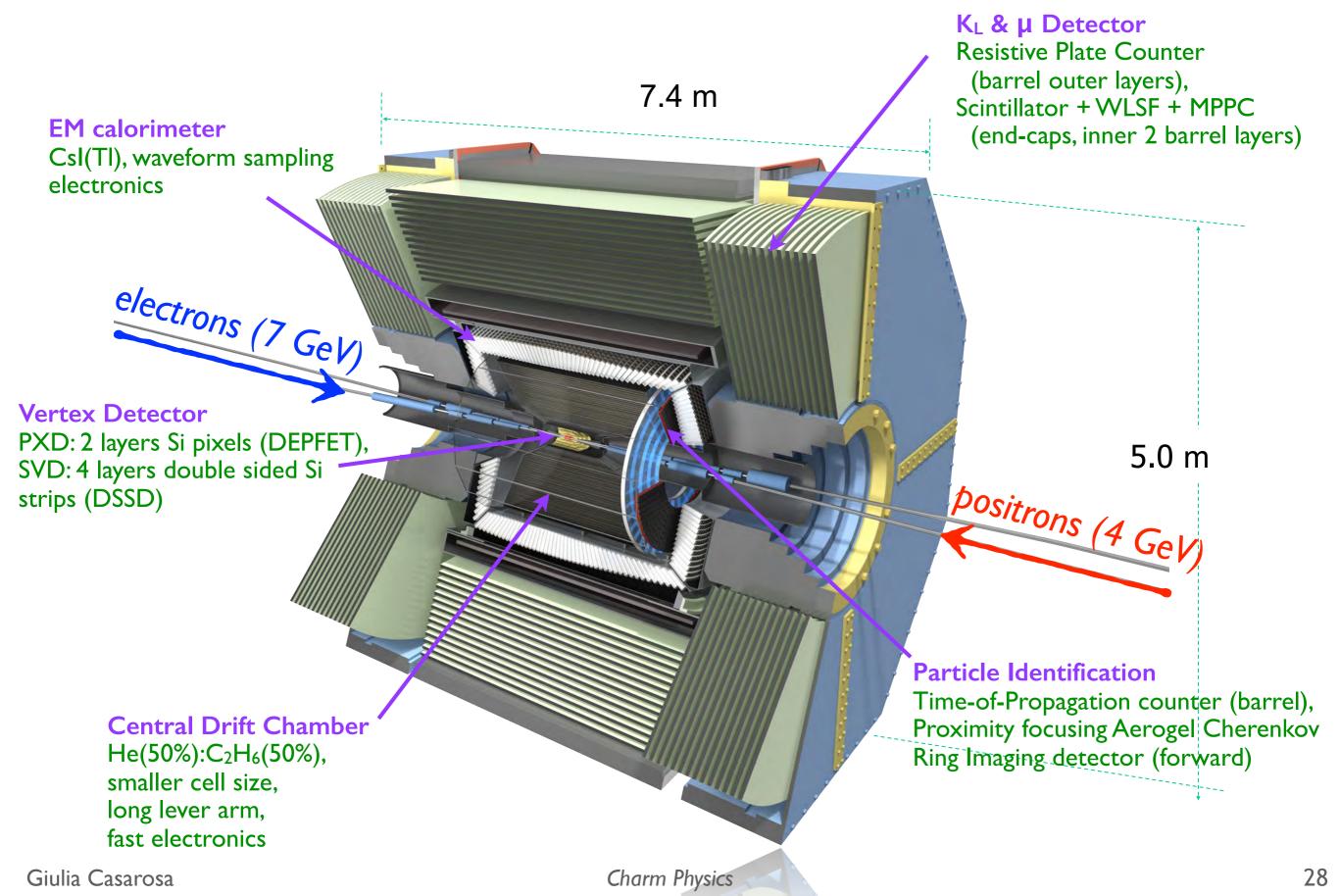
paramotors		KEKB		Super	SuperKEKB	
parameters		LER	HER	LER	HER	units
beam energy	Еь	3.5	8	4	7	GeV
CM boost	βγ	0.4	125	0.	28	
half crossing angle	φ	H		41.5		mrad
horizontal emittance	٤x	18	24	3.2	4.6	nm
emittance ratio	K	0.88	0.66	0.37	0.40	%
beta-function at IP	β_x^*/β_y^*	120	0/5.9	32/0.27	25/0.30	mm
beam currents	lь	I.64	1.19	3.6	2.6	Α
beam-beam parameter	ξ _y	129	90	0.0881	0.0807	
beam size at IP	σ_x^*/σ_y^*	100/2		10/0.059		μm
Luminosity	\mathscr{L}	2.1×	(10 ³⁴	8x	035	cm ⁻² s ⁻¹

High-Luminosity Asymmetric B Factory

- Target luminosity is $\mathcal{L} = 8 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ (x40 w.r.t. BELLE)
- → Achievable in the nano-beam scheme (P. Raimondi for SuperB)
 - double beam currents
 - squeeze beams @l

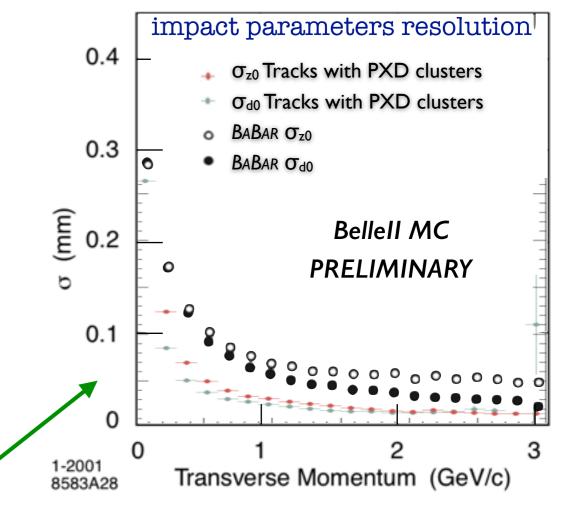
squeezed beams @ IP

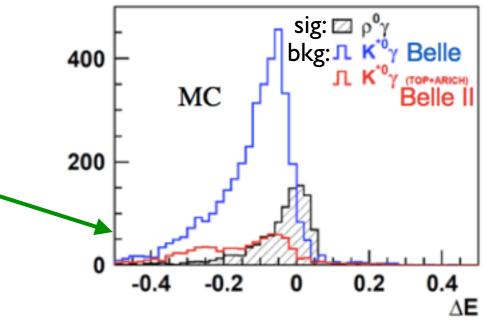
greatly improved constraint


beam-beam reduced CM boost Lorentz factor reduced vertex separation, Δt resolution increased detector hermeticity beam aspect vertical beta-function at the IP

at the IP

parameters	fitting	Super	KEKE	units	
pai afficters	LER		LER	HER	unics
beam energy	3.5	8	4	7	GeV
CM boost	0.4	25	0.	28	
x40 luminosi	tı (41	1.5	mrad
ho	•	24	3.2	4.6	nm
 higher background rate 		0.66	37	0.40	%
 detectors occupancy, damage, fake hits, principle 		5.9	32/0.27	25/0.30	mm
the calorimeter	up	1.19	3.6	2.6	Α
bez • higher event rate	•	90	0.0881	0.0807	
→ higher trigger rate, D	AQ, computing	2	(10/0	1.059	μm
 x40 produced signal e 		O ³⁴	8x	035	cm ⁻² s ⁻¹


The Bellell Detector


Belle II Perfomance Improvements

- ⇒ B-Factory advantages over hadron collider detectors:
 - clean event environment
 - high trigger efficiency
 - high-efficiency detection of neutrals $(\gamma, \pi^0, \eta, \eta', ...)$
 - many control samples to study systematics
 - good kinematic resolution (Dalitz plots analysis)
 - missing energy and missing mass analysis are straightforward (for B physics)

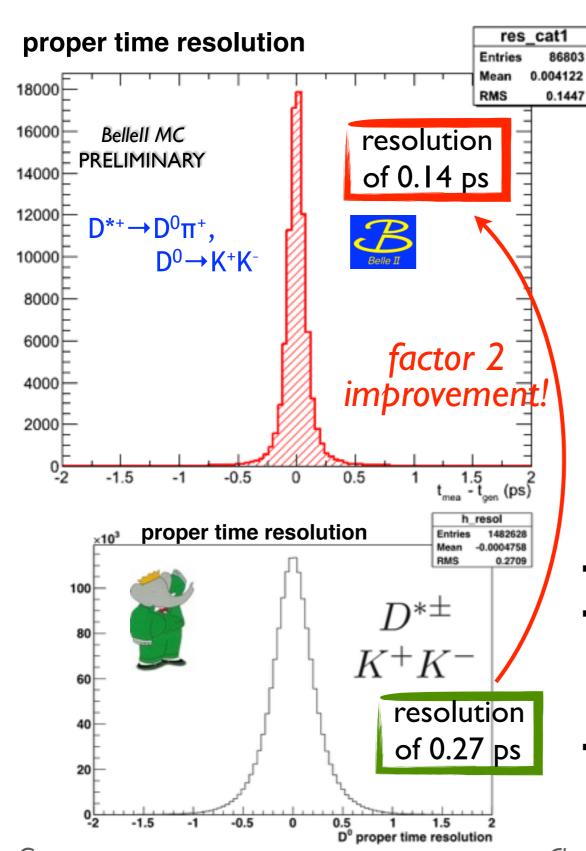
IMPROVEMENTS wrt Belle

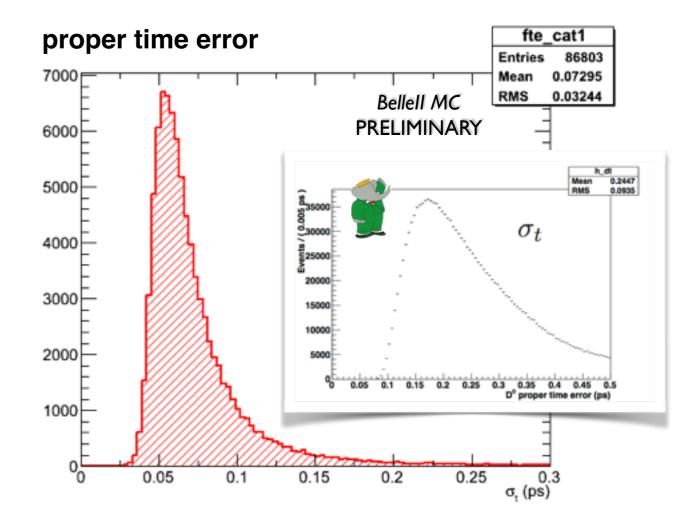
- IP and secondary vertex resolution
- K_S and π^0 reconstruction
- K/π separation
- \rightarrow PID and μ ID in the end caps

29

Estimation of Expected Sensitivities

→ The projections on the expected sensitivities are extrapolated from Belle measurements


$$\sigma_{BelleII} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) rac{\mathcal{L}_{Belle}}{50 ext{ ab}^{-1}} + \sigma_{ired}^2}$$
 M. Staric, KEK FFW14


- ➡ we assume that most of the systematics scale with statistics
- → There maybe (other) sources of systematic errors that do not scale with statistics, that show up only in very high statistics samples
 - Belle II will have high statistics control samples to keep them under control
- → The detector improvements w.r.t. Belle will be helpful, but their effect is not included in these extrapolations, unless otherwise stated
 - increase hermiticity
 - increase K_S efficiency
 - improve IP and secondary vertex resolution

- improve K/π separation
- improve Π^0 reconstruction
- ▶ add PID and µ ID in end caps

D⁰ Proper Time: Resolution and Error

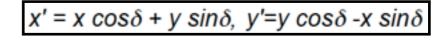
- **⇒** factor 2 improvement in the proper time resolution
- \rightarrow factor 3.5 improvement in the estimation of σ_t
 - average $\sigma_t = 0.07$ ps VS 0.25 ps for BaBar
 - RMS $\sigma_t = 0.03 \text{ ps VS } 0.09 \text{ ps for } B_A B_{AR}$
- \rightarrow factor 3 improvement in the D⁰ proper time significance
 - average $t/\sigma_t = 6 \text{ VS } 2 \text{ for } B_A B_{AR}$

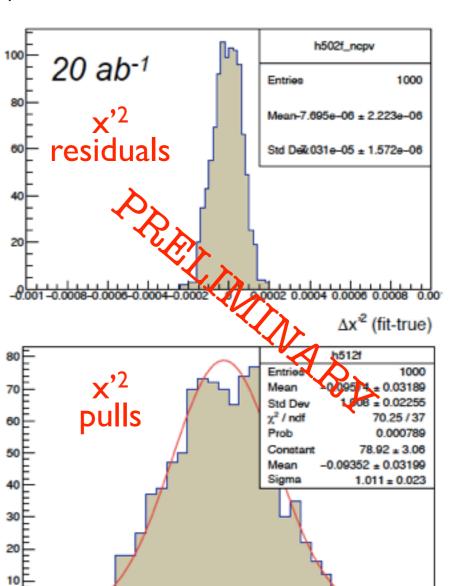
Estimation of Mixing and CPV Parameters

- → Use the (almost) systematic-free measurement of Mixing and CPV in the WS D⁰→K⁺ π ⁻ channel
 - generate $D^0 \rightarrow K^+\pi^-$ decays with mixing
 - smear decay times according to resolution ($\sigma = 0.14 \text{ ps}$)
 - generate ensembles of 1000 experiments (438630 D⁰ each 50 ab⁻¹)

■ ToyMC study #1: no CPV

- fit decay time distribution for mixing parameters R_D , x'^2 , y'
- use same PDF for D^0 and \overline{D}^0 (convolved with a Gaussian resolution function)


$$\frac{dN(D^0\!\to\!f)}{dt} \; \propto \; e^{-\overline{\Gamma}\,t} \; \left\{ R_D \; + \; \sqrt{R_D} \, y'(\overline{\Gamma}t) \; + \; \frac{(x'^2+y'^2)}{4} (\overline{\Gamma}\,t)^2 \right\}$$


- → ToyMC study #2: fitting for CPV
 - fit decay time distribution for mixing and CPV parameters R_D , x', y', |q/p|, φ (sensitive to the sign of x'!)
 - use different PDFs for D^0 and \overline{D}^0 (both convolved with a Gaussian resolution function)

$$D^{0}(t) = : e^{-\overline{\Gamma} t} \left\{ R_{D} + \left| \frac{q}{p} \right| \sqrt{R_{D}} (y' \cos \phi - x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{q}{p} \right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \right\}$$

$$D^{0}(t) = : e^{-\overline{\Gamma} t} \left\{ \overline{R}_{D} + \left| \frac{p}{q} \right| \sqrt{\overline{R}_{D}} (y' \cos \phi + x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{p}{q} \right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\}$$

$$x^{2}$$

x¹² pulls

Impact on Mixing & CPV Observables

$$\sigma_{BelleII} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$$

estimated	current	Belle + BaBar	scaled		improved σ _t
error on	HFAG	1.5/ab	50/ab	50/ab, no CPV	50/ab, CPV
x' (%)	_	(*) 0.98	(*) 0.45	(*) 0.22	0.15
x' ² (%)	_	0.0195	0.009	0.0044	_
y' (%)	_	0.321	0.16	0.047	0.10
q/p	0.1	_	_	_	0.051
Φ (deg)	10	_	_	_	5.7

- **⇒** factor 3 improvement on x' and more than 50% improvement on y' with respect to the crude scaling with luminosity
- → factor 2 improvement with respect to the current world-average on the CPV parameters, competitive with LHCb-upgrade

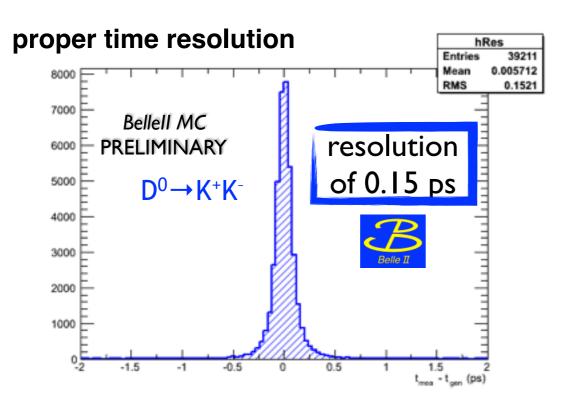
(*) measurements are NOT sensitive to x', the error is computed from the error on x'^2 , as $\sigma(x') = 2\sigma(x'^2)/x' = 50 \sigma(x'^2)$ Giulia Casarosa

Prospects for $D^0 \rightarrow K_S \pi^+ \pi^-$

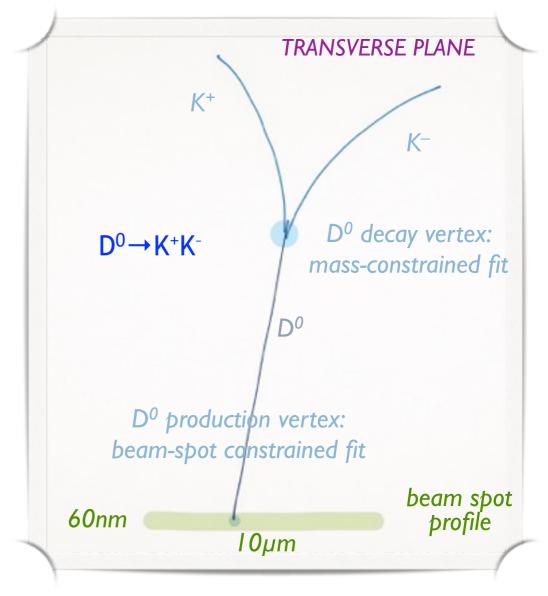
Belle II NOTE: improvements in the proper ime resolution are not included!!

	Observable	Statistical	Syste	ematic	Total
			red.	irred.	
	$x^{K_S\pi^+\pi^-}$ [10 ⁻²]				
X	$976 \; { m fb^{-1}}$	0.19	0.06	0.11	0.20
	$50 \ { m ab}^{-1}$	0.03	0.01	0.11	0.11
	$ q/p ^{K_S\pi^+\pi^-}$ [10 ⁻²]				
q/p	$976 \; { m fb}^{-1}$	15.5	5.2 - 5.6	7.0-6.7	17.8
	$50 { m ~ab^{-1}}$	2.2	0.7-0.8	7.0-6.7	7.0-7.4
	$y^{K_S\pi^+\pi^-}$ [10 ⁻²]				
y	$976~{ m fb^{-1}}$	0.15	0.06	0.04	0.16
	50 ab^{-1}	0.02	0.01	0.04	0.05
	$\phi^{K_S\pi^+\pi^-}$ [°]				
ф	$976 \; { m fb}^{-1}$	10.7	4.4-4.5	3.8-3.7	12.2
	$50 \ { m ab^{-1}}$	1.5	0.6	3.8-3.7	4.0-4.2

LHCb upgrade arXiv:1208.3355


Parameter	Precision (3fb^{-1})	Precision $(50 \mathrm{fb^{-1}})$
x	2×10^{-3}	4×10^{-4}
y	2×10^{-3}	4×10^{-5}
q/p	0.2	0.04
ϕ	15°	3°

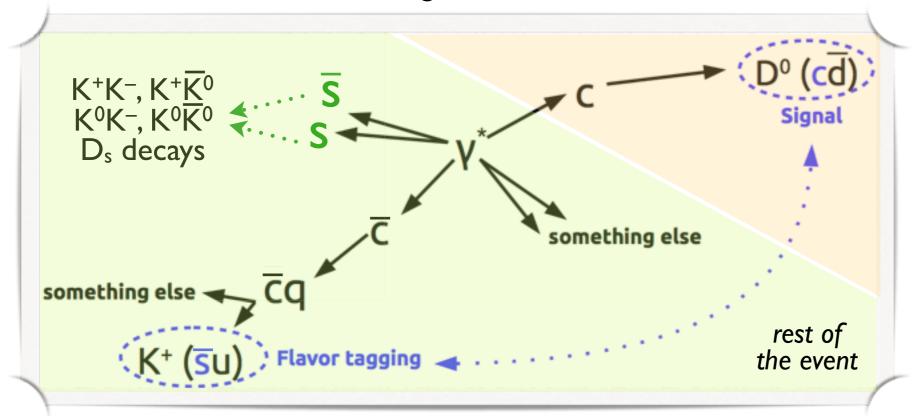
- $\sigma_{BelleII} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$
 - precision limited by the irreducible systematics related to the Dalitz Plot model
 - final precision can be improved using a model-independent approach
 - BelleII and LHCb expected precisions on φ are comparable
 - statistical precision on |q/p| and x is comparable with LHCb predictions, systematics need to be reduced

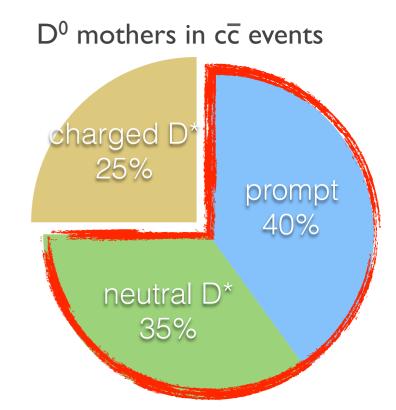


Proper Time Resolution for e⁺e[−]→D X

- ightharpoonup We can measure the proper time of D⁰ coming directly from the hadronization of the charm quark with comparable precision.
- → The flavour of the D⁰ at production cannot be tagged in the standard way (D*→D⁰ π)

Is there a way to determine the flavour of the prompt D^0 , i.e. not coming from a charged D^* decay?



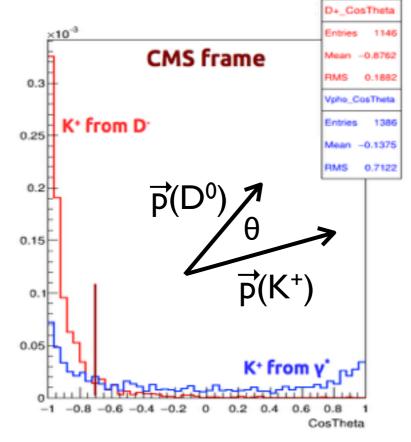

NOTE: the cartoon is not to scale

Prompt D⁰ Flavour Tagging

- → Can we recover at least a fraction of the 75% produced D⁰ not coming from a charged D* decay?
 - reconstruct the D^0 in the signal channel and define the rest of the event (ROE) as all the reconstructed particles that are not coming from the signal D^0 decay
 - select events with one single K in the ROE

Typical Correctly Tagging Events $cc \rightarrow D^0 D^-X$, $D^0 \rightarrow signal \ ch$ $D^- \rightarrow K^{*0}e^-v$; $K^{*0} \rightarrow K^+\pi^ cc \rightarrow D^0 \Lambda_c^-X$, $D^0 \rightarrow signal \ ch$ $\Lambda_c^- \rightarrow \Delta^{--} K^{*+}$; $K^{*+} \rightarrow K^+\pi^0$

- → flavour mis-tagging due to ccss when a K escapes reconstruction: these events introduce un-correlated charged kaons into the rest of the event
- ➡ irreducible mistag due to DCS decays of the rest of the event charmed meson or baryon



Selection and Results

- → The non-trivial part of this reconstruction technique is the selection of the tagging charged kaon
 - too tight requirements would result in a miscount of K⁺ in the ROE, too loose would result in a higher fraction of misidentified kaons, in both cases increasing the mistake levels.
 - winning strategy is to use a two-step selection based on a BDT with a first loose cut to reject most of the background and count the number of charged kaons, and a second tighter cut to reject fake kaons

A considerable faction of the background is represented by tagging kaons from the direct hadronization of a strange quark coming from the fragmentation $\frac{K^+K^-, K^+\overline{K}^0}{K^+K^-, K^+\overline{K}^0}$

tagging kaons are most likely back to back to the signal D⁰

a cut at $\cos\theta$ <0.7 rejects 66% of the mis-tagging K and 10% of the signal

Results obtained with BelleII full simulation(*)

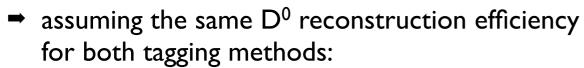
• tagging efficiency = 15%

D_s decays

- mistag probability = 5%
- expected D^0 sample = 60% of the one obtained with the D^* tagging reconstruction technique with an overlap of 3%

a completely new tagging method has been developed:

- increase of statistics with an additional D^0 sample,
- very useful to independently evaluate systematics

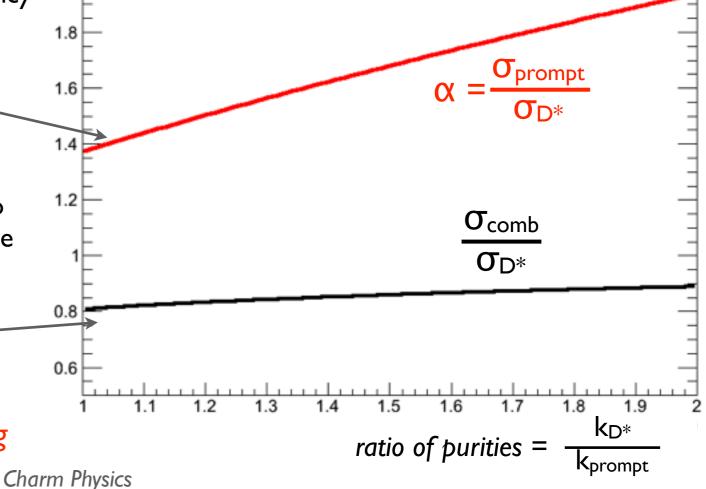


Giulia Casarosa

Impact on the Statistical Error on ACP

 \rightarrow Let's evaluate the statistical error on A_{CP} using the prompt D^0 with respect to what obtained using the D* tagging technique

	tagging efficiency	mistag probability	available Ds	effective tagging efficiency	purity	A _{CP} statistical error
method	E _{tag}	ω	Z	$Q = \varepsilon_{tag}(1-2\omega)^2$	channel dep.	$\sigma_{ ext{stat}}$
D*	80%	0,5%	хI	68%	k _D *	σ_{D^*}
prompt	15%	5%	x 3	12%	k_{prompt}	$\sigma_{\sf prompt}$



$$\sigma_{\text{prompt}} = \sigma_{D_{\infty}^*} \sqrt{\frac{N_{D^*}}{N_{\text{prompt}}}} \frac{k_{D^*}}{k_{\text{prompt}}} \frac{Q_{D^*}}{Q_{\text{prompt}}}$$

combining the statistical errors from the two measurements, under the assumption that the two D^0 samples are independent:

$$\sigma_{comb} = \sigma_{D^*} \frac{\alpha}{\sqrt{1+\alpha^2}}$$

reduction of 80% to 90% on the σ_{stat} on A_{CP} corresponding to 3 to 6 months of data taking at design luminosity

Prospects for CP Asymmetries

Belle II	M. Staric @	KEK Flavour	Factory Wo	orkshop 2014
----------	-------------	-------------	------------	--------------

mode	\mathcal{L} (fb $^{-1}$)	A _{CP} (%)	Belle II at 50 ab^{-1}
$D^0 o K^+K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	±0.03 LHCb
$D^0 o\pi^+\pi^-$	976	$+0.55\pm0.36\pm0.09$	± 0.05 LHCb
$D^0 o\pi^0\pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	± 0.09
$D^0 o K_s^0\pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.03
$D^0 o K_s^0\eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 o K_s^0\eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	±0.04 LHCb
$D^+ o \eta \pi^+$	791	$+1.74\pm1.13\pm0.19$	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
$D^+ ightarrow K_s^0 \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.03
$D^+ ightarrow K_s^0 K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	±0.05 LHCb
$D_s^+ o K_s^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29 LHCb
$D_s^+ o K_s^0 K^+$	673	$+0.12\pm0.36\pm0.22$	±0.05

- → Only the D* tagging method is considered
- → A_{CP} precision will reach o(10⁻⁴), better than the current theoretical predictions
- → Other interesting channels not included: $D^+ \to \pi^+\pi^0$, $D^0 \to K_SK_S$, 3-body final states (DP analysis)

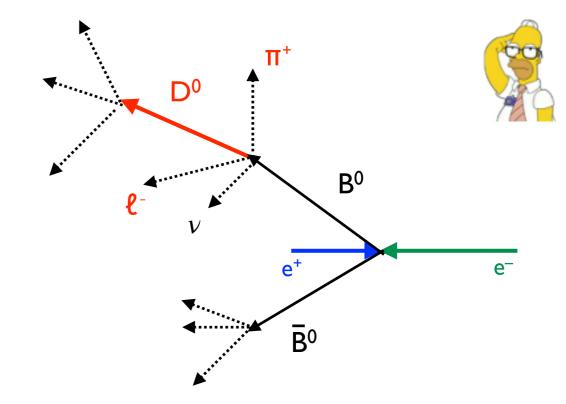
LHCb upgrade arXiv:1208.3355

Measurement	Current Precision	Precision (50fb^{-1})
$D^0 o K^+ \ K^-$	$0.15\% (3 \text{fb}^{-1} \text{- SL})$	0.03%
$D^0 o \pi^+ \; \pi^-$	$0.19\% (3 \text{fb}^{-1} - \text{SL})$	0.03%
$D^+ o \phi \pi^+$	$0.14\% (1 \text{fb}^{-1})$	0.01%
$D^+ o K^0_{\scriptscriptstyle S} \ K^+$	$0.14\% (3 \text{fb}^{-1})$	0.03%
$D_s^+ o K_{\scriptscriptstyle S}^0 \; \pi^+$	$0.17\% (3 \text{fb}^{-1})$	0.03%

(*) K_S efficiency may be lower in LHCb upgrade

- BelleII can do lot's of channels, important for SU(3) analysis
- Belle II is favourited on measurements with neutrals in the final state, but will be competitive with LHCb anyway also on some channels with charged tracks in the final state

39


Charm from B Decays

$$B^0 \to D^{*+} \ell^- \nu; D^{*+} \to D^0 \pi^+$$

Partial Reconstruction of the B assuming...

- → B⁰ is at rest in the center-of-mass of the Y(4S)
 (p=380MeV/c)
- → D⁰ produced at rest in the center-of-mass of the D*+, therefore:
 - $p(D^{*+}) = \alpha + \beta p(\pi_s)$
 - D^{*+} and π_s have the same direction
- ...allows to compute the M_{ν}^2 peaking at 0 for signal.

Estimate from BABAR (200fb⁻¹onPeak + 22 fb⁻¹ offPeak): [M.Rotondo, F.Simonetto]

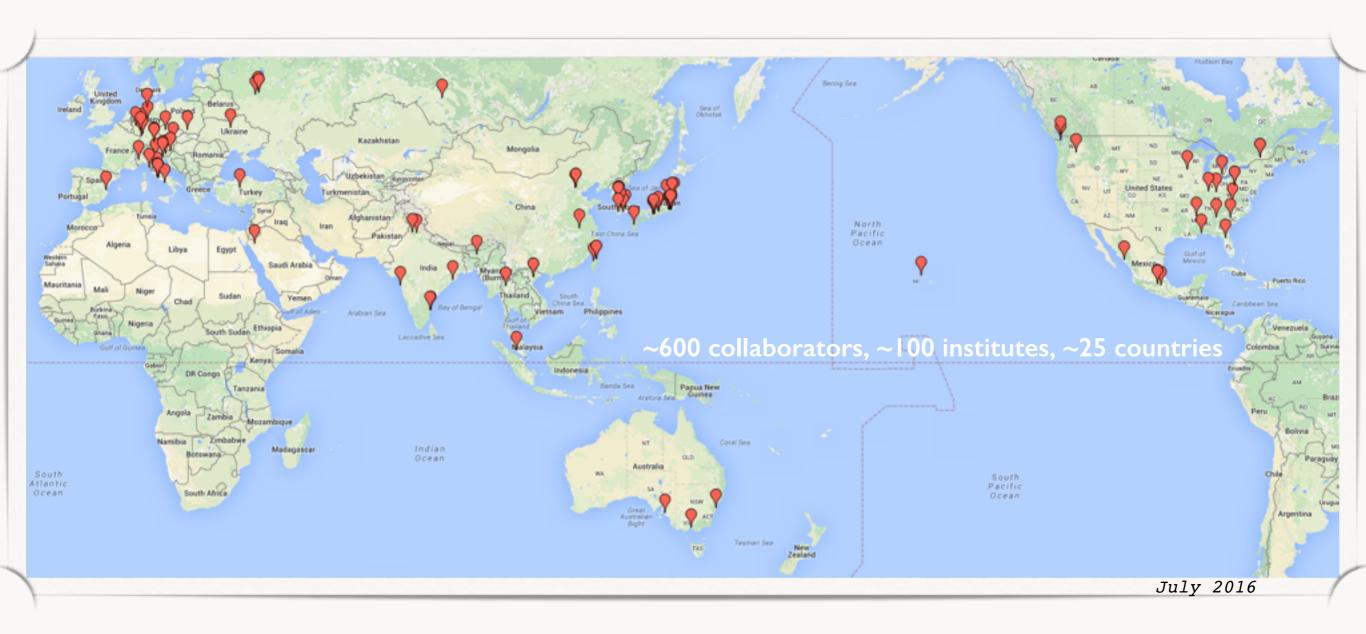
tag	# signal	purity	
е	2150	52%	
μ	1740	55%	

I ab⁻¹
6M
4.8M

= 10M/ab tagged D⁰

VS

~ 80M/ab from


~ 80IVI/ab from
D*+ tagging
(depends on the final state)

- different reconstruction technique allows to have a tagged sample of D^0 that can be reconstructed a posteriori!
- can exploit full reconstruction of the "other" B, e.g. for $D \rightarrow$ invisible searches

Conclusions

- → Charm Physics will contribute significantly to Flavour Physics in the process of understanding Nature in the next decades
 - efforts on both the theory and the experimental sides are required in order to significantly improve the knowledge on charm
- → Belle II has a rich charm physics program. Innovative reconstruction techniques are being developed in order to maximally exploit the features of the improved detector
- → Belle II and LHCb will provide one-order-of magnitude more precise measurements of charm observables in the next decade, improving our knowledge of charm physics and searching for physics beyond the Standard Model

The Belle II Collaboration:

