

Euclid @ UniMI

D.Maino & L.Guzzo

Physics Dept., University of Milano & Astronomical Observatory, Merate

11 July 2016 UniMI (Italy)

Euclid Cosmological Motivation

■ Concordance Model: An accelerating Λ dominated Universe

...but with some open interesting questions

The 2000s question...

- Is acceleration driven by a cosmological constant or by an evolving quantity (e.g. scalar field)?
- Does General Relativity still work on cosmological scales?

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}\mathbf{R} = \frac{8\pi G}{c^2}T_{\mu\nu} + \mathbf{\Lambda}g_{\mu\nu}$$

- lacksquare R o f(R) i.e. modified theory of gravity and nature of Λ
- Different effect on the background expansion H(z) and growth rate of structures f(z)

Euclid Goal: Answer both questions

- Measure the expansion history H(z) to high accuracy to detector \sim % variation in DE e.o.s. w(z)
 - BAO (Barionic Acoustic Oscillations) in the clustering pattern of galaxies as a standard rod
 - Weak Lensing effect as a shape distortion on galaxies

Euclid Goal: Answer both questions

- Measure from both probes at the same time the growth rate of structures to detect modification of gravity
 - RSD (Redshift Space Distortions) in galaxy clusters
 - WL Tomography
- These probes are sensitive differently on the Φ and Ψ potentials of the perturbed metric

BAO: A cosmological ruler

Percival et al 2007,09,11

CMB

Planck Collaboration 2013

BAO: A cosmological ruler

Growth of structure: peculiar motions

Growth produces motions: galaxy peculiar velocities

Growth of structure: peculiar motions

ESA Euclid Mission

■ Mirror: 1.2 meter Korsch

Mass: 2200 kg

■ Dimensions: 4.5 x 3 meters

Launch: December 2020 by Soyuz from Kourou

■ Orbit/Lifetime: L2 & 6

ESA Euclid Mission

The ESA Euclid space mission

Euclid SGS

Euclid@UniMI

- DM is involved into SGS activities: deputy lead and scientific coordinator of SDC-IT
 - S/W development (Euclid Image Utils) for OU-NIR & OU-SIR
 - Support for S/W integration into the SGS infrastructures to complete Scientific Challenges
 - S/W development and integration for OU-SPE (Emission & Absorption Lines measurements) and OU-LE3 (Dust extintion)
- Around "autumn" UniMI will gain 3 other Euclidian: Luigi Guzzo (as Full Professor), Carmelita Carbone and Ben Granett

Euclid@UniMI - Carmelita Carbone

- Large scale simulations include DE and with neutrinos with three different masses
- Impact on Weak Lensing deflection angle on CMB anisotropies

Euclid@UniMI - Ben Granett

- Improved statistical estimator of P(k)
- Find new cosmological probes: cosmic voids

Euclid@UniMI - Luigi Guzzo

- Co-Lead of Galaxy Cluster WG
- PI of VIPERS, a galaxy redshift survey with VIMOS@VLT:
 - 90k redshifts to trace cosmic web at z > 0.5
 - Density and Volume comparable to state-of-the-art of local surveys (SDSS)
 - Cosmology with GC and RSD

Euclid@UniMI - Luigi Guzzo

