

LUIGI Marchese Oxford university

APERITIVO SCIENTIFICO

Università di Bologna

September 9, 2016

Measurement of low-p_T charm-meson production cross-section at CDF

APERITIVO SCIENTIFICO

Colour by QCD

September 9, 2016

Measurement of low-p_T D⁺-meson production cross-section at CDF

APERITIVO SCIENTIFICO

Colour by QCD

September 9, 2016

- Motivations
- Signal and Background
- Detector overview
- D⁺ extraction
- Efficiency
- Systematics
- Cross Section
- Conclusions

"IT'S BORN. IT'S A CHARM. CONGRATULATIONS!"

HADRONIC PRODUCTION

12/09/16

L. Marchese

CHARM OBSERVABLES

- Gluons carry color charge

• D hadrons are some of the observables for *c*-quarks

12/09/16

L. Marchese

- We can study the production and hadronisation of a heavy up-type quark
- We can study its weak decay

• Lever-arm to study HE neutrinos from charm hadrons produced in cosmic ray interactions with atmospheric nuclei

- We can study the production and hadronisation of a heavy up-type quark
- We can study its weak decay

• Lever-arm to study HE neutrinos from charm hadrons produced in cosmic ray interactions with atmospheric nuclei

- ✤ Differential cross section for the inclusive hadro-production of charm mesons at low p_T with initial state $p \bar{p}$ and $\sqrt{s} = 1.96TeV$: extension of the previous CDF measurements
- Theoretical models for pQCD have big uncertainties at low-p_T
 [*M. Cacciari et al., JHEP 1210 (2012) 137*]

Experiment	Initial state	√s [Gev]
Many expt's CERN, FNAL	K, p, π Nucl. tgts.	up to 40
LHCb	рр	7, 13 · 10 ³
ALICE	рр	7, 2.76 [.] 10 ³
ATLAS	рр	7 · 10 ³

- ✤ Differential cross section for the inclusive hadro-production of charm mesons at low p_T with initial state $p \bar{p}$ and $\sqrt{s} = 1.96TeV$: extension of the previous CDF measurements
- Theoretical models for pQCD have big uncertainties at low-p_T
 [M. Cacciari et al., JHEP 1210 (2012) 137]

Experiment	Initial state	√s [Gev]
Many expt's CERN, FNAL	K, p, π Nucl. tgts.	up to 40
LHCb	рр	7, 13 · 10 ³
ALICE	рр	7, 2.76 · 10 ³
ATLAS	рр	$7 \cdot 10^{3}$

SIGNAL ID

EXPERIMENTALLY ...

- 1. Good spatial resolution to separate primary and secondary vertices
- 2. Good momentum resolution

SIGNAL: D⁺ TOPOLOGY

Transverse: plane perpendicular to the proton beam direction

SIGNAL AND BACKGROUND

The invariant-mass doesn't distinguish between primary and secondary component

12/09/16

L. Marchese

TEVATRON AND CDF

- $p \bar{p}$ hadron collider $\sqrt{s} = 1.96 TeV$
- Peak Luminosity: $\mathcal{L} \approx 3.8 \cdot 10^{32} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$
- CDF recorded luminosity: 10 fb⁻¹ (2002 2011)
- We use the entire 1.96TeV-dataset

- Inner tracking system, solenoidal magnet (1.4 T)
 - Calorimeters and muon detectors

12/09/16

L. Marchese

TRACKING SYSTEM

Tracking-system performance

For |η|≤1: σ_{pT}/p_T²≈0.0015 c/GeV σ_{d0}≈40 μm

3D charged-particle tracking

- Seven-layer silicon inner detector
- Large outer drift chamber

12/09/16

Data collected by two triggers:

- 1. Zero Bias (ZB)
- Events collected every bunch crossing whether or not collisions occur
- Rate ~ 1.7 ev/s

- 2. **M**inimum **B**ias (MB)
- At least one inelastic *pp* collision
- CLC, "Cherenkov Luminosity counter $(3.7 < |\eta| < 4.7)$ Coincidence"
- Rate ~ 1 ev/s.

The goal is to measure the p_T-averaged and y-integrated cross section

$$\frac{d\sigma_{D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}}(p_{T}; |y| \leq 1) = \frac{N_{D^{+}}(p_{T})}{\Delta p_{T} \cdot L \cdot \varepsilon \cdot BR(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+})}\Big|_{|y| \leq 1}$$

- **DATA-DRIVEN OPTIMIZATION** in each $p_T(D^+)$ with the EVEN/ODD method
- **2D-FITTING PROCEDURE on the (mass, d₀)** –space to extract the YIELD as a function of $p_T(D^+)$: $N_D^+(P_T)$
- $\Box \quad \text{INTEGRATED LUMINOSITY OF OUR SAMPLE:} \quad L$
- **DECAY BRANCHING RATIO of the channel:** $BR(D^+ \rightarrow K^- \pi^+ \pi^+)$
- **RECONSTRUCTION** (based on MC simulations) and TRIGGER EFFICIENCY: \mathcal{E}

12/09/16

SIGNAL: BASE SELECTION

SELECTION OPTIMIZATION

SELECTION OPTIMIZATION

SELECTION OPTIMIZATION

SIGNAL REGION:

ODD sample 3.5 <p_T(D⁺) < 4.5 GeV/c

Compare d₀ distributions for left and right Sidebands

Secondary

 Assumption: in the signal region <u>three components</u>
 Primary

- For each component, the distributions in mass (m) and impact parameter (d₀) are uncorrelated
- Two parameters (f_P, f_S) -unbinned likelihood fit

 $\int (f_{P}, f_{S}) = f_{P} \cdot F_{S,P}(m) F_{P}(d_{0}) + f_{S} \cdot F_{S,P}(m) F_{S}(d_{0}) + (1 - f_{P} - f_{S}) \cdot F_{C}(m) F_{C}(d_{0})$

6.5 < p_T(D⁺) < 14.5 GeV/c

4.5 < p_T(D⁺) < 6.5 GeV/c

3.5 < p_T(D⁺) < 4.5 GeV/c

1.5 < p_T(D⁺) < 2.5 GeV/c

$$\varepsilon(D^+; p_T) = \varepsilon_{trig} \cdot \varepsilon_{rec}(p_T) \Big|_{|y| \le 1}$$

$$\varepsilon_{rec}(D^{+}; p_{T}) = \frac{N_{Candidates}(p_{T}) pas \sin g _ the _ \text{Re} c _ Selections}{N_{Generated}(p_{T})} \bigg|_{|y| \le 1}$$

 No p_T-dependence Negligible effect: 1.7‰ We handle it as a systematic uncertainty MC based Since it is the first CDF low-p_T-cross-section measurement, we performed additional cross shocks 	TRIGGER EFFICIENCY	RECONSTRUCTION EFFICIENCY
performed additional cross-checks	 ➢ No p_⊤dependence ➢ Negligible effect: 1.7‰ ➢ We handle it as a systematic uncertainty 	 p_T-dependence MC based Since it is the first CDF low-p_T-cross-section measurement, we performed additional cross-checks

RECONSTRUCTION EFFICIENCY

CDF Run II Preliminary				
$p_T(D^+) \; [{ m GeV}/c]$	$p_T(D^+)$ [GeV/c] Subsample $\varepsilon_{\rm rec}(D^+)$ [%]			
1595	Even	0.331 ± 0.011		
1.0-2.0	Odd	0.267 ± 0.010		
0525	Even	1.142 ± 0.026		
2.5-3.5	Odd	1.020 ± 0.025		
3.5 – 4.5	Even	2.098 ± 0.047		
	Odd	2.110 ± 0.047		
	Even	3.936 ± 0.073		
4.0-0.0	Odd	3.936 ± 0.073		
6.5 - 14.5	Even	7.46 ± 0.15		
	Odd	7.36 ± 0.15		

We should check and eventually correct ...

HOW TO

In principle the Silicon efficiency per single track already seen in the COT is a 5D-function:

$$\varepsilon(\phi_0, z_0, \theta_0, p_T, t) \longrightarrow \varepsilon(\phi_0, z_0, t) \cdot \frac{\varepsilon(\cot\theta, t) \cdot \varepsilon(p_T, t)}{\varepsilon_0^2 \text{ Normalization constant}}$$

In our case no $\varepsilon(\cot\theta, t)$ -dependence is observed, then:

$$\varepsilon = \varepsilon(\phi_0, z_0, t) \cdot \frac{\varepsilon(p_T, t)}{\varepsilon_0}$$

SINGLE-TRACK EFFICIENCY

L. Marchese

- > The J/ Ψ DATASET implements a trigger cut for $p_T < 1.5$ GeV/c
- Our phase space is densely populated for p_T < 1.5 GeV/c ISSUE: J/Ψ-muons don't probe p_T as low as we need
- → We expand the DATASET in the low p_T region including the Silicon p_T efficiency per soft π (from $D^{*\pm} \longrightarrow D^0 \pi^{\pm}$) already seen in the COT

$$\varepsilon(p_T, t)$$
 $P_T \ge 1.5 \text{ GeV/c from J/}\Psi$

 \square p_T < 1.5 GeV/c from π_{soft}

> We perform some Data/MC tests with both the samples

12/09/16

High momenta

Low momenta

L. Marchese

The MC/Data tests for both π_{soft} and µ-samples have confirmed MC-conditional-silicon efficiency doesn't reproduce correctly the real conditional-silicon efficiency per single track.

The effect is small

- > We perform the study as a function of the time
- To be conservative, we apply the maximum correction observed to our D⁺-sample.

Reconstruction-efficiency procedure

We perform some MC/Data tests on control-samples to evaluate possible inaccuracies in the MC simulation of the silicon

- Background and signal shape We change the signal or the background shape and evaluate the effect on the final number
- Trigger Efficiency
- Luminosity
- D⁺ Branching Ratio

	CDF Run II Preliminary					
=	$\sigma_{L_{\mathrm{trig}}}^{\mathrm{sys}}$ [%]	$\sigma_{\mathrm{shape}}^{\mathrm{sys}}$ [%]	$\sigma^{ m sys}_{\varepsilon_{ m trig}}$ [%]	$\sigma^{ m sys}_{arepsilon_{ m rec}}$ [%]	$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+) ~[\%]$	$\sigma_{\rm tot}^{\rm sys}$ [%]
_	5.8	0.9-1.5 depending on the bin	0.17	11.5	0.24	13

RESULTS: CROSS SECTION

The cross section we measure is **p_T-AVERAGED and y-INTEGRATED**

The horizontal bars represent the $p_{T}\mbox{-}interval$ over which we average in $p_{T}\mbox{-}$

The markers are placed at the p_T pointvalue at which the cross section equals the predicted values of the cross section.

FONLL reference: *M. Cacciari et al., JHEP* **1210** (2012) 137 Uncertainties on scales, masses and PDFs have been considered for the theoretical prediction

We perform some consistency checks to be sure that all the procedures of the analysis are well performed

- 1. Optimization procedure
- 2. Fitting procedure
- 3. Charge-related effects
- 4. Triggers consistency
- 5. Global procedure

OPTIMIZATION PROCEDURE

The numbers are consistent within errors Only statistical uncertainties are considered for both the subsamples

L. Marchese

FITTING PROCEDURE

- To test the robust fitting-procedure, for each p_T(D⁺)-bin we have produced 1000 simulated pseudo-experiments that mimic each component (prompt, secondary and combinatorics) according to its pdf.
- The input values for the fraction in generations are those determined by the fit in data.
- We have performed the 2D-fit on each sample
- We have evaluated the pulls distribution
- No biases are introduced by the fitting procedure

FITTING PROCEDURE

CHARGE-RELATED EFFECTS

We have measured separately the D⁺ and the D⁻ production cross section:

- No new optimization
- We perform separately the fitting procedure and the efficiency measurement for the D⁺ and the D⁻ sample
 - Only statistical uncertainties have been considered
- It was not possible for the lowest bin, p_T(D⁺) in [1.5; 2.5] GeV/c, because of low statistics

CDF Run II Preliminary			
$p_T(D^+) \; [\mathrm{GeV}/c] \; d\sigma/dp_T(D^-) \; [\mathrm{nb}/(\mathrm{GeV}/c)] \; d\sigma/dp_T(D^+) \; [\mathrm{nb}/(\mathrm{GeV}/c)]$			
2.5 – 3.5	20600 ± 2200	24040 ± 3100	
3.5 – 4.5	$10\ 200\ \pm\ 1\ 200$	$9 900 \pm 1 100$	
4.5 - 6.5	$3\ 100\pm 304$	$3\ 700\ \pm\ 360$	
6.5 - 14.5	383 ± 38	384 ± 40	

No charge-related effects are observed

TRIGGERS CONSISTENCY

We have measured separately the D⁺ cross section in the ZB and MB sample:

- No new optimization or efficiency measurement
- We perform the fitting procedure using the ZB and MB separately
 - Only statistical uncertainties have been considered
- It was not possible for the lowest bin, p_T(D⁺) in [1.5; 2.5] GeV/c, because of low statistics

CDF Run II Preliminary			
$p_T(D^+) \; [{ m GeV}/c]$	Subsample a	$d\sigma/dp_T(D^+) \; [{\rm nb}/({\rm GeV}/c)]$	
05.25	ZB	20200 ± 2500	
2.0-3.0	MB	$20 100 \pm 1 900$	
2545	\mathbf{ZB}	$9 900 \pm 1 100$	
3.0-4.0	MB	$9~200\pm950$	
45.65	\mathbf{ZB}	$3\ 220\pm314$	
4.0-0.0	MB	$3\ 226\pm 298$	
6 E 14 E	ZB	315 ± 34	
0.0-14.0	MB	351 ± 33	

The two results are consistent

L. Marchese

GLOBAL PROCEDURE

For each $p_T(D^+)$ -bin we have evaluated the production cross section as a function of the data-taking periods It was not possible for the lowest bin, $p_T(D^+)$ in [1.5; 2.5] GeV/c, because of low statistics

Only statistical uncertainties have been considered

For each subsample a new optimization has been performed

COMPARISON WITH PREVIOUS CDF-RESULT

- The comparison with the previous CDF result, PRL 91-measurement, is an important consistency check of the analysis, but doing it properly is not straightforward:
 - 1. The *PRL91*-analysis published the cross section at a given p_T value within each bin while we measure the cross section averaged across each bin
 - The PRL91 and this measurement cover different p_T ranges: [6, 20] vs [1.5, 14.5] GeV/c

A simple direct comparison is not possible

COMPARISON WITH PRL-91RESULT

- To overcome the problem of the different binning and different cross-section definition we compare the measurements by using the theoretical prediction as a reference to normalize both measurements
- We consider all experimental uncertainties except the common luminosity contribution
- We agree within $\Delta/\sigma = 0.5$

The markers for this measurement are

placed at the average- p_{T} within the bin.

PRL91-MEASUREMENT AND THEORY CDF Run II $\int L dt = 5.8 \text{ pb}^{-1}$ $\frac{d\sigma(D^+)}{dp_T}$ [nb/(GeV/c)] 10³ 10^{2} FONLL 10 CDF 2003 PRL 91,241804 10 12 14 16 8 0 2 Δ 6 p_(D⁺) [GeV/c] CDF Run II Preliminary PRL91-Data/Theory ratio $p_T(D^+)$ [GeV/c] PRL91-meas. $[nb/(GeV/c)]^*$ Theory 6 - 7 1.886 ± 309 997 ± 541 1.89 ± 1.07 7 - 8 948 ± 143 537 ± 259 1.77 ± 0.89 8 - 10 233 ± 99 361 ± 57 1.54 ± 0.70 10 - 12 131 ± 22 89 ± 32 1.47 ± 0.59

12-20 18.3±3.0 13.0±3.6 1.40±0.46 *scaled to take into account the current value of the BR = 9.46 ± 0.24 %

THIS MEASUREMENT AND THEORY

1.5 - 2.5	32 700±7 509	36 009±25 847	0.91 ± 0.69	
2.5 - 3.5	$20\ 600\pm 2\ 975$	$15 565 \pm 14 663$	1.32 ± 1.27	
3.5 - 4.5	9 500±1 378	$6\ 538 \pm 5\ 070$	1.45 ± 1.15	
4.5 - 6.5	$3\ 230 \pm 453$	2 176±1 378	1.48 ± 0.97	
6.5 - 14.5	336 ± 47	218 ± 99	1.54 ± 0.74	

This Data/Theory ratio

 0.91 ± 0.69

 1.32 ± 1.27

 1.45 ± 1.15

 1.48 ± 0.97

 1.54 ± 0.74

PRL91-MEASUREMENT AND THEORY THIS MEASUREMENT AND THEORY CDF Run II Preliminary $\int L dt = 10 \text{ fb}^{-1}$ CDF Run II $\int L dt = 5.8 \text{ pb}^{-1}$ 10⁶ <u>dσ(D^+)</u> [nb/(GeV/c)] $\frac{d\sigma(D^+)}{dp_T}$ [nb/(GeV/c)] FONLL: M. Cacciari et al. -+ Data 10³ 10⁵ dp 10⁴ 10^{2} 10³ FONLL 10 10² CDF 2003 PRL 91,241804 10 12 14 16 8 0 2 6 0 2 6 8 10 12 p_(D⁺) [GeV/c] p_(D⁺) [GeV/c] CDF Run II Preliminary CDF Run II Preliminary $p_T(D^+)$ [GeV/c] This meas. [nb/(GeV/c)] $p_T(D^+)$ [GeV/c] PRL91-meas. $[nb/(GeV/c)]^*$ Theory PRL91-Data/Theory ratio Theory 6 - 7 1.886 ± 309 997 ± 541 1.89 ± 1.07 36 009±25 847 1.5 - 2.532 700±7 509 7 - 8 948 ± 143 537 ± 259 1.77 ± 0.89 2.5 - 3.5 20.600 ± 2.975 $15\ 565 \pm 14\ 663$ 8 - 10 361 ± 57 233 ± 99 1.54 ± 0.70 3.5 - 4.5 $9\ 500\pm 1\ 378$ 6 538±5 070 10 - 12 131 ± 22 89 ± 32 1.47 ± 0.59 4.5 - 6.5 $3\ 230\pm453$ $2\ 176\pm1\ 378$ 12 - 20 18.3 ± 3.0 13.0 ± 3.6 1.40 ± 0.46 6.5 - 14.5 218 ± 99 336 ± 47

*scaled to take into account the current value of the BR = 9.46 ± 0.24 %

Weighted-averages of the data/theory ratios

CDF Ru	ın II Preliminary	
This <data ratio="" theory=""></data>	PRL-91 <data ratio="" theory=""></data>	Δ/σ
1.54 ± 0.15	1.64 ± 0.13	0.48

12/09/16

L. Marchese

14

CONCLUSIONS

- We have measured the low p_T D⁺-meson production cross section at CDF
- While the measurements lie within the band of theoretical uncertainty, there is a systematic variation suggesting that the shape of the theoretical cross section can benefit by further refinement taking account these results
- We agree with earlier determination at high momenta
- Since it is the first measurement of the silicon low p_T efficiency, it is a benchmark for all other CDF cross section-measurements in these kinematic conditions
- Further information can be found at: <u>http://goo.gl/ai9mj2</u>

Enjoy your "aperitivo scientifico"!

BACK-UP

OPTIMIZATION RESULTS

p _T (D⁺) [GeV/c]	PARITY	Any two p _T (TRK) ≥ [GeV/c]	χ²/ndf ≤	L _{xy} ≥ (cm)
	EVEN	0.6	2	0.0600
[2.5, 3.5]	ODD	0.6	3	0.0600
	EVEN	0.7	5	0.0750
[3.5, 4.5]	ODD	0.7	5	0.0750
	EVEN	0.9	6	0.0750
[4.5, 6.5]	ODD	0.9	6	0.0750
	EVEN	1.1	7	0.0750
[6.5, 13.5]	ODD	1.1	7	0.0750
	EVEN	0.7	4	0.0600
[1.5; 2.5]	ODD	0.6	4	0.0600

 $|d_0(D^+)| \le 100 \ \mu m$

L. Marchese

The structures are not related to the Prompt or Secondary component

They are due to the contribution of combinatorics. In SBs-subtracted region they disappear

- ➤ The D⁰ (D^{*+}→ D⁰π[±]_{soft}) is detected only when you have goodquality silicon tracks
- \succ The conditional-silicon-efficiency for the soft- π is silicon-biased

CONDITIONAL-SILICON EFFICIENCY: ALTERNATIVE PROCEDURE

We use the soft-π to model the shape and the J/Ψ dataset for the plateau

CONDITIONAL-SILICON EFFICIENCY: ALTERNATIVE PROCEDURE

 ✓ We get the following average data-corrected silicon efficiency for a D⁺ already seen in the COT

$$< \varepsilon_{data}(D^{*}) > = < \varepsilon(K^{-}) \cdot \varepsilon(\pi^{*}) \cdot \varepsilon(\pi^{*}) >$$

✓ Assuming that the MC is reliable in the Silicon simulation, we determine

$$<\varepsilon_{MC}(D^{+};p_{T})>=<\frac{N_{Silicon}(D^{+};p_{T})}{N_{COT}(D^{+};p_{T})}>$$

✓ For each $p_T(D^+)$ bin we measure the **C**orrection **F**actor as:

$$CF(D^{+}; p_{T}) \ge \frac{\langle \varepsilon_{data}(D^{+}; p_{T}) \rangle}{\langle \varepsilon_{MC}(D^{+}; p_{T}) \rangle}$$

CDF Run II Preliminary		
$p_T(D^+) \; [{\rm GeV}/c]$	CF	
[1.5; 2.5]	0.97 ± 0.09	
$[2.5; \ 3.5]$	0.96 ± 0.09	
[3.5; 4.5]	0.96 ± 0.09	
[4.5; 6.5]	0.94 ± 0.08	
[6.5; 14.5]	0.94 ± 0.09	

✤ A systematic uncertainty of 6% should be applied to all the $p_T(D^+)$ -bins

✤ We should apply a systematic uncertainty of 11.5 % to all the p_T(D⁺)-bins following the first procedure

✤ We prefer to be conservative and apply a systematic uncertainty of 11.5%