PARTICLE DARK MATTER A MULTIMESSENGER ENDEAVOUR

NICOLAO FORNENGO

Department of Physics (Theory Division) – University of Torino and Istituto Nazionale di Fisica Nucleare (INFN) – Torino Italy

fornengo@to.infn.it nicolao.fornengo@unito.it

www.to.infn.it/~fornengo www.astroparticle.to.infn.it

Dipartimento di Fisica, Universita' di Genova 18.05.2016

Dark Matter

The presence of DM is supported by copious and consistent astrophysical and cosmological probes

- Large scales: Average DM density about 6 times baryon density

- Smaller scales: DM distribution is quite anisotropic and hierarchical clusters - galaxies - subhalos

Observations are compatible with a theoretical understanding of cosmic structure formation through gravitational instability based on the LCDM model

Although:

- Some problem on very small scales?
- Role of baryons in galaxy formation just started to be investigated

DM evidence purely gravitational

- Galaxy clusters dynamics
- Rotational curves of spiral galaxiesGravitational lensing
- Hydrodynamical equilibrium of hot gas in galaxy clusters
- Energy budget of the Universe
- The same theory of structure formation

If DM is a new particle, a non-gravitational signal (due to it's particle physics nature) is expected

Where to search for a signal

DM is present in:

- Our Galaxy
 - smooth component
 - subhalos
- Satellite galaxies (dwarfs)
- Galaxy clusters
 - smooth component
 - individual galaxies
 - galaxíes subhalos
- "Cosmíc web"

Galactic dark matter signals

Extragalactic/cosmological signals

Extragalactic signals

Photons: gamma, X, radío Neutrínos

Sunyaev-Zeldovich effect on CMB

Optical depth of the Universe

Stellar physics

Effects on stellar physics Neutron stars

General dependencies of the signals

+ additional astrophysical dependence on the propagation of the signal from the source to us

General dependencies of the signals

Annihilation (or decay)

Relevant particle physics properties:

- 1. Annihilation cross section (*) (or decay rate)
- 2. Mass of the DM particle
- 3. BR in the different final states
- 1 + 2 : Síze of the sígnal 2 + 3 : Spectral features

^(*) Determines also the cosmological relic abundance (for a thermal WIMP) $\Omega h^2 = 0.11 \iff \langle \sigma_{\rm ann} v \rangle = 2.3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$

Charged messengers

- Tranport in the galactic environment

- Diffusion largely affects directionality + spectral distortion
- Energy losses spectral distortion

Transport in the heliosphere
 Affects rigidities below 10-50 GeV/n spectral distortion

Donato, NF, Maurín, PRD 78 (2008) 0403506

Electrons/positrons

Astrophysical interpretation

Bounds on DM

Dí Mauro, Donato, NF, Vittíno, arXiv:1507.07001 (to appear in JCAP)

Charged cosmic rays - Outlook

Antíprotons

Províde strong bounds

Theoretical uncertainties are the limiting factor (nuclear cross-sections and transport in the Galaxy)

Even though affected by solar modulation, it might be important to approach the low-energy window (GAPS? ALADINO?)

Antideuterons

Best "discovery" channel at low energies (E < 3 GeV) Prospects for AMS-02 and GAPS

Electrons/positrons above E > 10 GeV Local source: DM or pulsars?

Local source: DM or pulsars? Dífficult to separate astro from DM emission Important to see higher energies, it migh not be decisive though

Neutral messengers

- Gamma-rays and neutrinos

- Trace (more) directly the source
- Energy losses only at very large energies
- Angular and energy resolution good but not exceptional

- Radío
 - Produced through electrons: source somehow blurred
 - Depend on local magnetic field, which are largely uncertain
 - Great energy and angular resolution

Galactic foreground emission Resolved sources Diffuse Gamma-Ray Backgound (DGRB)

Galactic center: an "excess" ?

Fermi/LAT excess(es) at the galactic center DM or pulsars or bursts?

Hooper, Goodenough, PLB (2011) 697 (2011) Hooper, Linden, PRD 84 (2011) 123005 Boyarsky et al., PLB (2011) 705 Daylan et al., arXiv:1402.6703 Abazajian et al., arXiv 1402.4090 Lacroix, Boehm, Silk, arXiv: 1403.1987

Dwarf galaxies

Ackermann et al. (Fermí Collab.), arXív:1503.02641

Ackerman et al. (Fermí Collab.) Ap. J. 799 (2015) 86

Fornasa, Sanchez-Conde, Phys. Rep. 598 (2015) 1

 $E^2 d\Phi/dEd\Omega$ [MeV cm⁻² s⁻¹ sr⁻¹]

DGRB intensity bounds on DM

Fornasa, Sanchez-Conde, Phys. Rep. 598 (2015) 1

Gamma rays - Outlook

Galactic center

Very interesting target, but difficult Potential hints, under hot discussion

Isotropic gamma-ray background Relevant for extragalactic DM Complex to seperate a DM signal from astrophysical sources

Dwarf galaxies

One of the best targets (DM dominated) Recently, new dwarfs have been discovered (DES): great potentiality

Radio emission

Galactic center Galactic and extragalactic diffuse emission Dwarf galaxies Larger undertainties, but promising for discovery

X-rays

Opportunity for non-WIMP DM

GOING BEYOND

BASED ON:

 CAMERA, FORNASA, NF, REGIS, AP. J. 771 (2013) L5
 GAMMA + COSMIC SHEAR

 CAMERA, FORNASA, NF, REGIS, JCAP 1506 (2015) 029
 GAMMA + COSMIC SHEAR

NF, REGIS, FRONT. PHYSICS 2 (2014) 6

NF, REGIS, PEROTTO, CAMERA, *AP.J.* 802 (2015) *L*1

GAMMA + CMB LENSING

GENERAL THEORY

 REGIS, XIA, CUOCO, NF, BRANCHINI, VIEL, PRL 114 (2015) 241301
 GAMMA + LSS

 CUOCO, XIA, REGIS, NF, BRANCHINI, VIEL, AP. J. SUPPL. 221 (2015) 29
 GAMMA + LSS

 ZECHLIN, CUOCO, DONATO, NF, VITTINO, ARXIV: 1512.07190
 GAMMA 1PPDF

 ZECHLIN, CUOCO, DONATO, NF, REGIS, ARXIV: 1605.02456
 GAMMA 1PPDF

Indirect dark matter signals

- Indirect detection signals are intrinsically anisotropic (being produced by DM structures, present at any scale)
- EM signals (and neutrinos) more directly trace the underlying DM distribution: they need to exhibit some level of anisotropy

 - "Bright" DM objects: would appear as resolved sources
 e.g: gamma or radio halo around clusters, dwarf galaxies or even subhalos
 - Faint DM objects: would be *unresolved* (i.e. below detector sensitivity) - Díffuse flux: at first level isotropic at a deeper level anisotropic

DGRB: not quite isotropic ...

Being the cumulative sum of independent sources (astro/DM) To first approximation: isotropic At a deeper level: anisotropies are present

Even though sources are too dim to be individually resolved, they can affect the <u>statistics of photons</u> across the sky

Photon statistics

Photon pixel counts (1 point PDF) Source count number dN/dS below detection threshold

Zechlin, Cuoco, Donato, NF, Vittino, arXiv:1512.07190

Malyshev, Hogg, Astrophys. J. 738 (2011) 181 Zechlín, Cuoco, Donato, NF, Regis, 1605.04253 Zechlín+

Energy dependence DM implications

Photon statistics

Photon pixel counts (1 point PDF)

Auto Correlation

Observationally: Energy dependence is available Redshift dependence is not available

Gamma rays auto-correlation

Ackerman et al (Fermí) PRD 85 (2012) 083007

Cuoco et al PRD 86 (2012) 063004 Harding , Abazajian JCAP 1211 (2012) 026 Di Mauro et al JCAP 1411 (2014) 012

Photon pixel counts (1 point PDF) Source count number dN/dS below detection threshold

2 point correlator angular power spectrum

 $\langle I(\vec{n}_1)I(\vec{n}_2) \rangle \longrightarrow C(\theta) \longrightarrow C_l$

Can we do more ?

Fold two pieces of information \checkmark

Cross-correlation of <u>EM signal</u> with gravitational tracer of DM

It exploits two distinctive features of <u>particle DM</u>: Electromagnetic signal: manifestation of the particle nature of DM

Gravitational tracer: probe of the existence of DM

It can offer a direct evidence that what is measured by means of gravity is indeed due to DM as a particle

Camera, Fornasa, NF, Regis, Ap. J. 771 (2013) L5
WEAK GRAVITATIONAL LENSING

Cosmic structures and gamma-rays

The same Dark Matter structures that act as lenses can themselves emit light at various wavelengths, including the gamma-rays range

- From astrophysical sources hosted by DM halos (AGN, SFG, ...)
- From DM itself (annihilation/decay)

Gamma-rays emitted by DM may exhibit strong correlation with lensing signal

The lensing map can act as the filter needed to isolate the signal hidden in a large "noise"

Redshift dependence Energy dependence

Camera, Fornasa, NF, Regis, Ap. J. Lett. 771 (2013) L5 Camera, Fornasa, NF, Regis, JCAP 1506 (2015) 029 NF, Regis, Front. Physics 2 (2014) 6

Reshift information in shear Energy spectrum of gamma-rays

can help in "filtering" signal sources can help in DM-mass reconstruction

Camera, Fornasa, NF, Regis, JCAP 1506 (2015) 029

Camera, Fornasa, NF, Regis, Ap. J. Lett. 771 (2013) L5

Further advantages

Observationally:

- Auto correlation feels:
 - Detector noise (auto correlates with itself)
 - Galactic foregound (auto correlates with itself: typically GF is subtracted, but residuals may be present)
- Cross correlation "automatically" removes:
 - Detector noíses (2 dífferent detectors, noíses do not correlate)
 Galactíc foreground (GT sígnals do not correlate with galactíc gamma ray emission)

Life is more complex than that, but these can offer a good help

Correlation functions

Source Intensity

 $I_g(\vec{n}) = \int d\chi \, g(\chi, \vec{n}) \, \tilde{W}(\chi)$ $\mathcal{D}ensity field of the source$

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \mathcal{A}ngular \ power \ spectrum \\ \mathcal{C}_{\ell}^{(ij)} = \frac{1}{\langle I_i \rangle \langle I_j \rangle} \int \frac{d\chi}{\chi^2} W_i(\chi) \ W_j(\chi) P_{ij}(k = \ell/\chi, \chi) \\ \\ \langle \hat{f}_{g_i}(\chi, \boldsymbol{k}) \hat{f}_{g_j}^*(\chi', \boldsymbol{k}') \rangle = (2\pi)^3 \delta^3(\boldsymbol{k} - \boldsymbol{k}') P_{ij}(k, \chi, \chi') \\ \\ f_g \equiv [g(\boldsymbol{x}|m, z)/\bar{g}(z) - 1] \\ \end{array} \right) \\ \begin{array}{l} \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ (e.g. \ from \ the \ halo \ model) \\ \\ \mathcal{D} \ power \ spectrum \ spect$

1-halo term
$$P_{ij}^{1h}(k) = \int dm \, \frac{dn}{dm} \hat{f}_i^*(k|m) \, \hat{f}_j(k|m)$$

2-halo term $P_{ij}^{2h}(k) = \left[\int dm_1 \, \frac{dn}{dm_1} b_i(m_1) \hat{f}_i^*(k|m_1) \right] \left[\int dm_2 \, \frac{dn}{dm_2} b_j(m_2) \hat{f}_j(k|m_2) \right] P^{\text{lin}}(k)$
Línear bías

depens on spatial clustering

Astro sources

typically considered as point-like 1h: poissonian, depends on abundance of sources 2h: traces matter through bias

Dark matter

extended

Point-like sources:

if rare: 1h flat, large if abundant: appear as more "isotropic" 1h smaller 2h may emerge and give info on clustering

Extended sources:

Ih no longer flat, suppressed at scale > size of sources

Main uncertainties for DM:

M_{mín} subhalo boost

Window functions for annihilating DM

$$\begin{aligned} & Clumping factor : a \text{ measure of the clustering} \\ W^{\gamma_{a}_{DM}}(\chi) &= \frac{\left(\Omega_{\text{DM}}\rho_{c}\right)^{2}}{4\pi} \frac{\langle\sigma_{a}v\rangle}{2m_{\text{DM}}^{2}} \left[1 + z(\chi)\right]^{3} \Delta^{2}(\chi) J_{a}(E,\chi) \\ & \text{DM photon "emissivity"} \\ \Delta^{2}(\chi) &\equiv \frac{\langle\rho_{\text{DM}}^{2}\rangle}{\bar{\rho}_{\text{DM}}^{2}} = \int_{M_{\text{max}}}^{M_{\text{max}}} dM \frac{\mathrm{d}n}{\mathrm{d}M} \int \mathrm{d}^{3}\mathbf{x} \frac{\rho_{h}^{2}(\mathbf{x}|M,\chi)}{\bar{\rho}_{\text{DM}}^{2}} \left[1 + B(M,\chi)\right] \\ & Subhalo \text{ boost} \end{aligned}$$
$$J_{a/d}(E,\chi) &= \int_{\Delta E_{\gamma}} \mathrm{d}E_{\gamma} \frac{\mathrm{d}N_{a/d}}{\mathrm{d}E_{\gamma}} \left[E_{\gamma}(\chi)\right] e^{-\tau[\chi, E_{\gamma}(\chi)]} \end{aligned}$$

Uncertainties from:

- Minimal halo mass M_{min}
- Halo concentration c(M)

Alternative approach to the Halo Model: Serpico et al. MNRAS 421 (2012) L87 Sefusatti et al.MNRAS 441 (2014) 1861

Gamma-rays are also emitted by astrophysical sources, each of which has a specific window function

Angular power spectra

Camera, Fornasa, NF, Regis, JCAP 06 (2015) 029

Detection forecasts

 5σ detection for DES + Fermí 10yr

Camera, Fornasa, NF, Regis, JCAP 06 (2015) 029

Sensitivity limits forecast

Camera, Fornasa, NF, Regis, JCAP 06 (2015) 029

Sensitivity on DM parameters

Camera, Fornasa, NF, Regis, JCAP 06 (2015) 029

First analysis on data

FERMI/GAMMA + PLANCK/CMBLENSING

Fermi/gamma + Planck/CMB lensing

Cross-correlation: 3.0σ evidence

Compatible with AGN + SFG + BLA gamma-rays emission Points toward a direct evidence of extragalactic origin of the IGRB

NF, Perotto, Regis, Camera, ApJ 802 (2015) L1

Window functions: DM x CMBlensing

CMB lensing is not the best observable for DM Instead it can hopefully help in constraining astrophysical sources NF, Regis, Front. Physics 2 (2014) 6

FERMI/GAMMA X GALAXY CATALOGS

<u>Galaxy catalogs</u> (expecially low-z ones) can have good overlap with DM They trace light (while shear directly traces DM), but great potential NF, Regis, Front. Physics 2 (2014) 6 Ando, Benoit-Levy, Komatsu, PRD 90 (2014) 023514 Ando, JCAP 1410 (2014) 061

Cross correlation with galaxy catalogs

Cuoco, Brandbyge, Hannestad, Haugbolle, Míele, PRD 77 (2008)123518 th Xía, Cuoco, Branchíní, Fornasa, Víel, MNRAS 416 (2011) 2247 SDSS 6, 2MASS, NVSS, SDSS 8 LRG <u>×</u> Fermí 21 months no sígnal

Xia, Cuoco, Branchini, Viel, APJS 217 (2015) 15

SDSS 6 QSO, SDSS 8 MGS, SDSS LRG, 2MASS, NVSS <u>x</u> Fermí 60 months

Fermi + 2MASS

The observed cross-correlation ^(*) can be reproduced (both in shape and size) by a DM contribution that is largely subdominant in the total intensity

Regis, Xia, Cuoco, Branchini, NF, Viel, PRL 114 (2015) 241301 (*) Xia, Cuoco, Branchini, Viel, APJS 217 (2015) 15

Fermi + 2MASS

For LRG, see also: Shirasaki, Horiuchi , Yoshida, PRD 92 (2015) 123540

Extension of the cross correlation approach

NF, Regis, Front. Physics 2 (2014) 6

- Gravitational tracers:
 - Weak lensing surveys (cosmic shear) traces the whole DM
 - CMB lensing
 - LSS surveys

 G_i

 E_{a}

- Electromagnetic signals:
 - Radío
 - X
 - Gamma

 $\langle G_i \times E_b \rangle$ $\langle E_a \times E_b \rangle$

X rays: see also Zandanel, Weniger, Ando, JCAP 09 (2015) 060

traces light -> bias

Additional cross correlations channels

Cross-correlations - Outlook

- In order to separate a DM non-gravitational signal from other astrophysical emissions, a filter based on the DM properties (i.e. the associated gravitational potential) appears to be very promising
- Cross-correlations offer an emerging opportunity:
 - DM particle signal: multiwavelenght emission (radio, X, gamma)
 - DM gravitational tracers: cosmic-shear, LSS surveys, CMB lensing
- Gamma rays + cosmic shear: cleanest possibility, appears quite powerful
- First relevant observational opportunity hopefully soon years with DES
- High-sensitivity will require Euclid together with the total accumulated Fermi statistics (plus possible novel gamma-ray detectors)
- In the meanwhile, two gamma-rays/gravity-tracers correlations appear to have been identified:
 - Cross-correlation with galaxy catalogues and LSS objects (3.50)
 - Cross-correlation with CMB-lensing (3.00)

EXCITING TIMES AHEAD AND A LOT OF FUN EXPECTED!

BACKUP SLIDES

AMS-02 pbar/p

Gamma rays - theory

Lee, Ando, Kamionkowski, JCAP 0907 (2009) 007 Dodelson, Belikov, Hooper, Serpico, PRD 80 (2009) 083504 Baxter, Dodelson, Koushiappas, Strigari, PRD 82 (2010) 123511 Lee, Lisanti, Safdí, JCAP 1505 (2015) 05 056 Feyereisen, Ando, Lee, JCAP 1509 (2015) 027

Gamma rays - hígh latítudes

Malyshev, Hogg, Astrophys. J. 738 (2011) 181 Zechlin, Cuoco, Donato, NF, Vittino, arXiv:1512.07190 Zechlin, Cuoco, Donato, NF, Regis, to appear

Gamma rays – galactic center

Lee, Lisantí, Saftí, Slatyer, Xue, Phys. Rev. Lett. 116 (2016) 5 051103 Línden, Rodd, Safdí, Slatyer, arXív:1604.01026 Horíuchí, Kaplinghat, Kwa, arXív:1604.01402

Radio P(D)

Scheuer, PCPS 53 (1957) 764 Condon, ApJ 188 (1974) 279 Venstrom, Scott, Wall, MNRAS 440 (2014) 2781 Vernstrom, Norrís, Scott, Wall, MNRAS 447 (2015) 2243

<u>X rays</u>

Hasinger et al. A&A 275 (1993) 1 Soltan, A&A 532 (2011) A19

IPPDF

Photon counts

Point sources Galactic foreground Diffuse isotropic 25% 69% 6% 6 years Fermí data |b| > 30 ^{deg} Energy range: (1-10) GeV

Zechlin, Cuoco, Donato, NF, Vittino, arXiv:1512.07190

Flux PDF

Feyereisen, Ando, Lee, JCAP 1509 (2015) 027

Wavelet analysis

Statistics of maxima in the wavelet-transformed map Applied to the GC excess: search for a large number of dim MSP-like sources, spatially distributes as the GC excess

Bartels, Krishnamurthy, Weniger, PRL 116 (2016) 05102

Gamma rays autocorrelation

Ando, Komatsu, PRD 73 (2006) 023521	DM
Ando, Komatsu, Narumoto, Totaní, PRD 75(2007) 063519	DM
Cuoco, Hannestad, Haugbolle, G. Míele, Serpico, Tu, JCAP 0704 (2007) 013	DM
Cuoco, Brandbyge, Hannestad, Haugbolle, Míele, PRD 77 (2008)123518	DM
Siegal-Gaskins, JCAP 0810 (2008) 040	DM
Siegal-Gaskins, Pavlidou, PRL 102 (2009) 241301	DM
Ando, PRD 80 (2009) 023520	DM
Fornasa, Pieri, Bertone, Branchini, PRD D80 (2009) 023518	DM
Taoso, Ando, Bertone, Profumo, PRD 79 (2009) 043521	DM
Ibarra, Tran, Weniger, PRD 81 (2010) 023529	DM
Hensley, Siegal-Gaskins, Pavlidou, ApJ 723 (2010) 277	DM
Zavala, V. Springel, M. Boylan-Kolchin, MNRAS 405 (2010) 593	DM
Cuoco, Sellerholm, Conrad, Hannestad, MNRAS 414 (3) (2011) 2040	DM
Campbell, Dutta, PRD 84 (2011) 075004	DM
Fornasa, Zavala, Sanchez-Conde, Gaskíns, Delahaye, MNRAS 429 (2012) 1526	DM
Ando, Komatsu, PRD 87 (2013) 123539	DM
Campbell, Beacom, arXiv:1312.3945	DM
NF, Regis, Front. Physics 2 (2014) 6	DM
Gomez-Vargas et al, NIM A742(2014) 149	DM

Gamma rays autocorrelation

Ando, Komatsu, Narumoto, Totaní, MNRAS 376 (2007) 1635 as	stro
Miniatí, Koushiappas, Dí Matteo, APJ 667 (2007) L1 as	stro
Ando, Pavlídou, MNRAS 400 (2009) 2122 SF	=G
Siegal-Gaskins, Reesman, Pavlidou, Profumo, Walker, MNRAS 415 (2011) 10745 M.	SP
Cuoco, Komatsu, Siegal-Gaskins, PRD 86 (2012) 063004 as	stro
Harding, Abazajian, JCAP 1211 (2012) 026 BI	LA
Dí Mauro, Cuoco, Donato, Siegal-Gaskíns, JCAP 1411 (2014) 012 AC	GN
Calore, Dí Mauro, Donato, Donato, ApJ 796 (2014) 1 M.	SP
Auto Correlation

Density field: DM density $contrast(^2)$

 δ annihilating DM

$$\delta^2$$
 decaying DM

$$P^{\delta\delta}(k,z)
onumber \ P^{\delta^2\delta^2}(k,z)$$

Gamma rays auto correlation

Fermí/LAT (22 months), 4 bíns ín 1-50 GeV Overall significance: 9σ

Ackerman et al. (Fermi Collaboration) PRD 85 (2012) 083007

Energy dependence

Ackerman et al. (Fermi Collaboration) PRD 85 (2012) 083007

Correlation functions

Source Intensity

 $I_g(\vec{n}) = \int d\chi \, g(\chi, \vec{n}) \, \tilde{W}(\chi)$ $\mathcal{D}ensity field of the source$

- W(z): does not depend on direction depends on redishift depends on energy
- $\begin{array}{ll} g(z,n)\colon & \text{describes how the "field" changes from point to point to contains the dependence on abundance of sources \\ & \text{distribution} \end{array}$

$$\begin{array}{cccc} I_g(\vec{n}) & \longrightarrow & a_{lm}^g \\ & & & \\ I_k(\vec{n}) & \longrightarrow & a_{lm}^k \end{array} \longrightarrow \quad C_l^{gk} = \frac{1}{2l+1} \sum_{m=-l}^l a_{lm}^{g*} a_{lm}^k$$

Correlation functions

Source Intensity

 $I_g(\vec{n}) = \int d\chi \, g(\chi, \vec{n}) \, \tilde{W}(\chi)$ $\mathcal{D}ensity field of the source$

1-halo term
$$P_{ij}^{1h}(k) = \int dm \, \frac{dn}{dm} \hat{f}_i^*(k|m) \, \hat{f}_j(k|m)$$

2-halo term $P_{ij}^{2h}(k) = \left[\int dm_1 \, \frac{dn}{dm_1} b_i(m_1) \hat{f}_i^*(k|m_1) \right] \left[\int dm_2 \, \frac{dn}{dm_2} b_j(m_2) \hat{f}_j(k|m_2) \right] P^{\text{lin}}(k)$
Línear bías

Astro sources:

typically considered as point-like 1h: poissonian, depends on abundance of sources 2h: traces matter through bias

Dark matter:

extended

Point-like sources: if rare: 1h flat, large if abundant: appear as more "isotropic" 1h smaller 2h may emerge and give info on clustering

Extended sources: 1h no longer flat, suppressed at scale > size of sources

Main uncertainties: M_{min} subhalo boost

3D Power spectra

Annihilating DM

$$\begin{aligned} & \mathcal{D}ecaying \, \mathsf{D}\mathsf{M} \\ & P_{1h}^{\delta\delta}(k,z) = \int_{M_{\min}}^{M_{\max}} dM \, \overline{\frac{dn}{dM}} \tilde{v}^2(k|M) \\ & P_{2h}^{\delta\delta}(k,z) = \left[\int_{M_{\min}}^{M_{\max}} dM \, \overline{\frac{dn}{dM}} \overline{b_h(M)} \tilde{v}(k|M) \right]^2 P_{\mathrm{lin}}(k,z) \\ & \square \, dn/dM \quad \text{Halo mass function} \\ & \square \, \tilde{v}(k|M) \quad \text{Fourier transform of } \rho_{\mathrm{DM}}(\mathbf{x}|M)/\bar{\rho}_{\mathrm{DM}} \\ & \square \, \tilde{u}(k|M) \quad \text{Fourier transform of } \rho_{\mathrm{DM}}^2(\mathbf{x}|M)[1+b(M,z)]/\bar{\rho}_{\mathrm{DM}}^2 \end{aligned}$$

 $\Box b_h(M)$ Bias between halo and matter

3D Power spectra

NF, Regis, Front. Physics 2 (2014) 6

Angular power spectra

$$C_l^{(i,j)} \longleftarrow W_i(\chi) \, W_j(z) \, P_{ij}(k = l/\chi, \chi)$$

Camera, Fornasa, NF, Regis, arXiv:1411.4651, to appear in JCAP

Auto correlation

Camera, Fornasa, NF, Regis, JCAP 06 (2015) 029

DM & Auto Correlation

Fornasa, Sanchez-Conde, Phys. Rep. 598 (2015) 1

Fornasa, et al., MNRAS 429 (2012) 1529

Cross Correlation

Density field: DM density $contrast(^2)$

- δ annihilating DM, lensing, LSS
- δ^2 decaying DM

$$P^{\delta\delta}(k,z)$$

 $P^{\delta\delta^2}(k,z)$

Cross Correlations

• Lensing observables

- Cosmic shear: directly traces the whole DM distribution Camera, Fornasa, NF, Regis, Ap. J. Lett. 771 (2013) L5 Camera, Fornasa, NF, Regis, JCAP 06 (2015) 029
- CMB lensing: traces DM imprints on CMB anisotropies NF, Perotto, Regis, Camera, Ap. J. Lett. 802 (2015) 1 L1 NF, Regis, Frontiers in Physics, 2 (2014) 6
- Large scale structure
 - Galaxy catalogs: trace DM by tracing light Cuoco, Brandbyge, Hannestad, Haugbolle, Miele, PRD 77 (2008)123518 Ando, Benoit-Levy, Komatsu, PRD 90 (2014) 023514 NF, Regis, Front. Physics 2 (2014) 6 Ando, JCAP 1410 (2014) 061 Xia, Cuoco, Branchini, Fornasa, Viel, MNRAS 416 (2011) 2247 Xia, Cuoco, Branchini, Viel, ApJS 217 (2015) 115 Regis, Xia, Cuoco, Branchini, NF, Viel, PRL 114 (2015) 24 241301 Cuoco, Xia, Regis, Branchini, NF, Viel, ApJS 221 (2015) 29

Detectors and configurations

Parameter	Description	DES	Euclid
$f_{ m sky}$	Surveyed sky fraction	0.12	0.36
$\bar{N}_g \; [\operatorname{arcmin}^{-2}]$	Galaxy density	13.3	30
$z_{\min} - z_{\max}$	Redshift range	0.3 - 1.5	0 - 2.5
N_z	Number of bins	3	10
Δ_z	Bin width	0.4	0.25
$\sigma_z/(1+z)$	Redshift uncertainty	_	0.03
σ_{ϵ}	Intrinsic ellipticity	0.3	0.3

Parameter	Description	Fermi-10yr	Fermissimo
$f_{ m sky}$	Surveyed sky fraction	1	1
$E_{\min} - E_{\max} [\text{GeV}]$	Energy range	1 - 300	0.3 - 1000
N_E	Number of bins	6	8
$\varepsilon ~[{ m cm}^2~{ m s}]$	Exposure	3.2×10^{12}	4.2×10^{12}
$\langle \sigma_b \rangle [\mathrm{deg}]$	Average beam size	0.18	0.027

Combinations:

DES + Fermí 10 yr Euclid + "Fermíssimo"

Detection forecasts

Camera, Fornasa, NF, Regis, JCAP 06 (2015) 029

Window functions

Camera, Fornasa, NF, Regis, JCAP 06 (2015) 029

Fermi x 2MASS

Ando, Benoit-Levy, Komatsu, PRD 90 (2014) 023514 (*) Xia et al. MNRAS 416 (2011) 2247

Ando, JCAP 1410 (2014) 061

Fermí + LSS catalogs: DM + astro sources

LOW

Degeneracy between DM and mAGN: (*) Enhanced mAGN contribution (*) Suppressed mAGN contribution

Regis, Xia, Cuoco, Branchini, NF, Viel, PRL 114 (2015) 241301

Measured power and scales

Regis, Xia, Cuoco, Branchini, NF, Viel, PRL 114 (2015) 241301

Fermi/gamma + Planck/CMB lensing

Analysis:

- Fermi-LAT 68 months
- Planck 2013 and 2015 lensing releases
- Galactic emission subtracted
- Masks for CMB lensing:
 - Planck official masks (available sky fraction 70%)
 - 5 deg apodízed
- Masks for gamma rays:
 - Planck masks + |b| < 25 deg cut
 - 1 deg cut around 2FGL (3FGL) Fermí source catalogs apodízed 3 deg/2 deg

sky fraction 24% (23%)

Results stable for different sets of apodization and galactic masks, including Fermi bubble mask

NF, Perotto, Regis, Camera, ApJ 802 (2015) L1

Planck CMB lensing

- CMB-lensing autocorrelation is measured: 40σ significance
- CMB-lensing: integrated measure of DM distribution up to last scattering
- It might exhibit correlation with gamma-rays emitted in DM structures

Galactic center

Calore, Cholis, McCabe, Weniger, PRD 91 (2015) 063003

Dwarf galaxies

Ackermann et al. (Fermí Collab.), arXiv:1503.02641