DCH Summary

G. Finocchiaro – INFN LNF For the DCH group

XI SuperB General Meeting

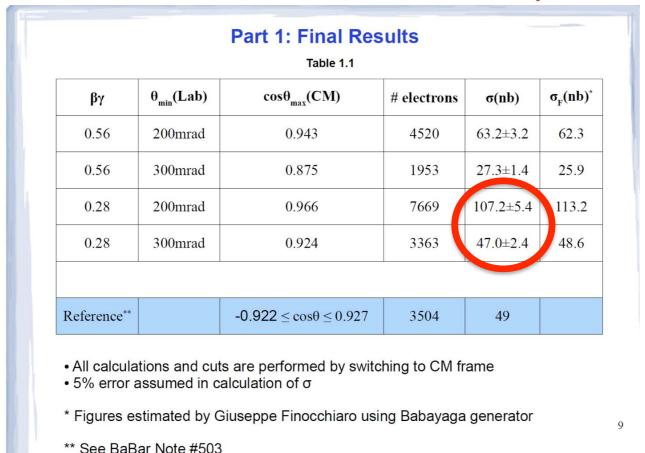
LNF, 4 December 2009

- Backgrounds
- Geometry: Mechanical design
- Geometry: DCH length
- Cell and gas optimization
- Electronics: FEE & DAQ design
- Progress in Lab. work

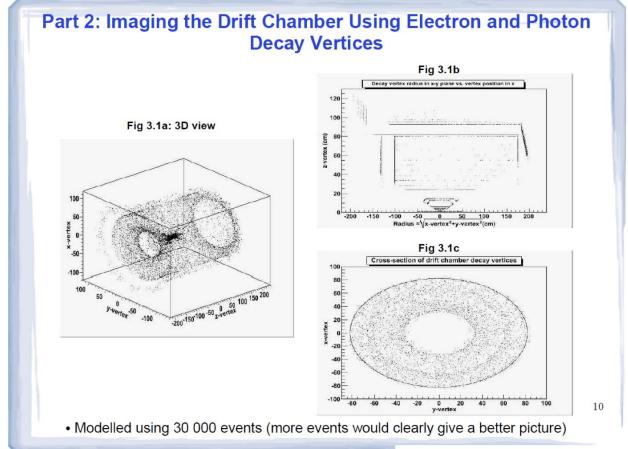
- Backgrounds
- Geometry: Mechanical design
- Geometry: DCH length
- Cell and gas optimization
- Electronics: FEE & DAQ design
- Progress in Lab. work

Backgrounds

Estimates presented @ SLAC Collab. Meeting in October have been updated


- Radiative Bhabha + pair production rate ~2%
 - average over the whole DCH
 - a few details in DCH geometry/cell layout need further adjustments (no big changes expected)
- Need to include other background sources (large angle bhabhas, Touschek ...)

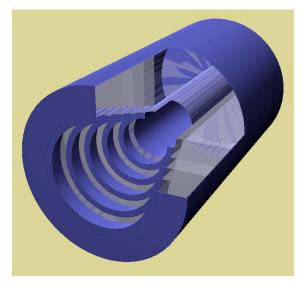
DCH Backgrounds (cont.)

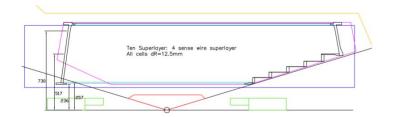

- What uncertainty (x5, x10)?
 - few % x 10 is not really comfortable...
 - Need more studies to convince ourselves that the numbers are credible
- Study dependence of background levels as a function of DCH structural design and amount and position of shielding

Large-angle Radiative Bhabha Cross Sections

Darren Swersky, McGill University

First FastSim study of Bhabha occupancy


Darren Swersky, McGill University


- Small-angle occupancy in this preliminary study (unfortunately) underestimated (plots require a reconstructed track)
- Want to understand if tapered endplates (see next slide) really needed

- Backgrounds
- Geometry: Mechanical design
- Geometry: DCH length
- Cell and gas optimization
- Electronics: FEE & DAQ design
- Progress in Lab. work

Varying the DCH design: stepped endplate

 A possible stepped endplate (a.k.a. "wedding cake") design has been implemented in gdml

- Aside from stringing issues, one concern with this option is debris production from particles produces at the I.P. on localized material (the steps)
- Plan to study the effect of various bkg sources ASAP

- Backgrounds
- Geometry: Mechanical design
- Geometry: DCH length see DGWG summary
- Cell and gas optimization
- Electronics: FEE & DAQ design
- Progress in Lab. work

- Backgrounds
- Geometry: Mechanical design
- Geometry: DCH length
- Cell and gas optimization
- Electronics: FEE & DAQ design
- Progress in Lab. work

Drift cell optimization

- 1-liner drift cell design guidelines
 - ✓ uniformity ↑ material ↓ obviously, contradictory ;(
- (As well-known) BABAR uses hex cells
 - ✓ "symmetric" and with low F:S ratio (2:1) but...
 - mandatory Super-Layer structure, with guard wires
 - 7104 sense 20 μ m \varnothing , 704 clearing 120 μ m \varnothing , 6400 guard 80 μ m \varnothing , 14560 field 120 μ m \varnothing
 - Overall material budget relatively high

Drift cell and gas optimization

- First attempt at a specific square-cell layout
 - 44 measuring layers
 - AA UV UV UV UV A (11 SL with 4 layers each)
 - h=12mm w= π ×6mm (in first 8 A layers w= π ×3mm)
 - 7696 sense 20μmØ, 1520 guard 80μmØ, 23088 field 80μmØ
- Lighter gas mixtures:
 - (as well known) BABAR used 80%He-20%iC₄H₁₀
 - KLOE uses 90%He-10%iC₄H₁₀
 - In $^{(*)}$ the use of 80%He-20%CH₄ in a large prototype chamber, obtaining 90 μ m spatial resolution, is reported

(*) NIMA436 (1999) 336

Drift cell-gas mixture comparison

			· ~~
	$\rho(g/cm^3)$	X0(g/cm ²)	XO(m\IM
80%He-20%iC ₄ H ₁₀	6.41E-04	51.2	798
80%He-20%iC ₄ H ₁₀ -hex	9.98E-04	29.0	291
80%He-20%iC ₄ H ₁₀ -sqr	8.78E-04	30.3	346
90%He-10%iC ₄ H ₁₀	4.10E-04	56.8	1387
90%He-10%iC ₄ H ₁₀ -hex	7.67E-04	26.4	344
90%He-10%iC ₄ H ₁₀ -sqr	6.46E-04	27.4	424
80%He-20%CH ₄	2.76E-04	63.0	2281
80%He-20%CH ₄ -hex	6.33E-04	24.1	381
80%He-20%CH ₄ -sqr	5.13E-04	24.7	481

- Potential for good reduction of pT measurement error, especially at low momentum
- Need for simulation work, operational experience (with low-CH₄ content mixture) and more detailed cell design

- Backgrounds
- Geometry: Mechanical design
- Geometry: DCH length
- Cell and gas optimization
- Electronics: FEE & DAQ design
 - "baseline" (no cluster-counting) option
- Progress in Lab. work

DCH FEE - # of optical links

BaBar DAQ/Trigger numbers

- 2.5 kHz L1 (average) trigger rate @ 10³⁴
- 7104 cells
- ≈ 10% occupancy
- DAQ ≈ 8 bytes/ch (average)
- Trigger ≈ 1 bit/ch @ 3.75 MHz

Super-B DAQ/Trigger numbers

- 150 kHz L1 (average) trigger rate
- ≈ 10000 cells
- ≈ 20% occupancy (1 µs time window)
- DAQ ≈ 8 bytes/ch (average)
- Trigger ≈ 1 bit/ch @ 7 MHz

OL Estimation according to the BW

DAQ \rightarrow 150×10³(L1 rate)×10⁴ (N. of cells)×0.2(occupancy)×8(N. of bytes/ev)×8(1 byte = 8 bits) \rightarrow 19.2 Gbits/sec (average) TRIGGER \rightarrow 10⁴ (N. of cells)×7x10⁶ \rightarrow 70 Gbits/sec

OL Estimation according to the BABAR experience

Servizio Elettronico Laboratori Frascati

BABAR DAQ/Trigger OL (1.2 Gbits/sec)

DATA

- 4 OL (layout requirement) ≈ 8 X L1 trigger rate requirement) TRIGGER
- 24 OL

ECS

■ Managed by DATA I/O modules (CAN standard)

Super-B DAQ/Trigger OL (2 Gbits/sec)

DATA

■ 30 OL (including a x3 safety factor)

TRIGGER

- 35 OL (increase of sampling frequency & channels)
 ECS
- 8 OL (layout driven)

G. Felici

LNF SuperB Workshop - Dec 09

DCH FEE – 2 scenarios

SCENARIO 1

ONLY HV distribution and preamplifier boards located on the end-plate

Pros:

- · minimization of the material added to the end-plate
- reduction of the power dissipation on the end plate (no cooling required or low airflow)
- · minimization of the radiation environment issue
- possibility of using commercial available devices for data conversion
- Full system reliability

Cons:

 10k cables required to extract signals (either microcoax or twisted)

Min: 1 mm FR4

Max: 1 mm FR4 + 440 μm copper + 3 mm

ceramics

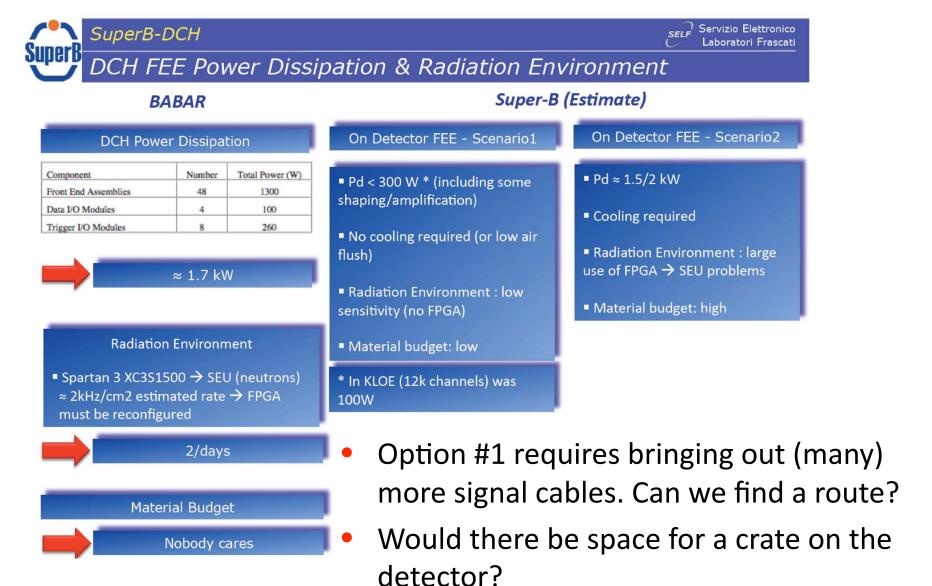
SCENARIO 2

Full FEE chain located on the end-plate

Pros:

reduction of the number of connections between DCH and DAO

Cons:

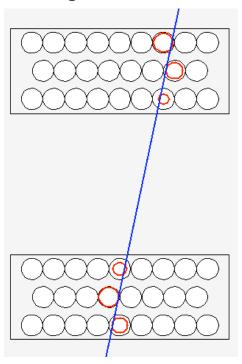

- two layers of boards plus shielding must be placed on the end-plate with not negligible increase of the material added to the end-plate (shielding is required as digital logic is continuously working for data conversion and serialization)
- power dissipation is increased and cooling is required
- to limit power dissipation dedicated radiation tolerant devices (ASIC) are required and ASIC design is a time consuming and expensive task.
- Power supply cables must delivery more current → bigger sections are required
- Reliability of the full system

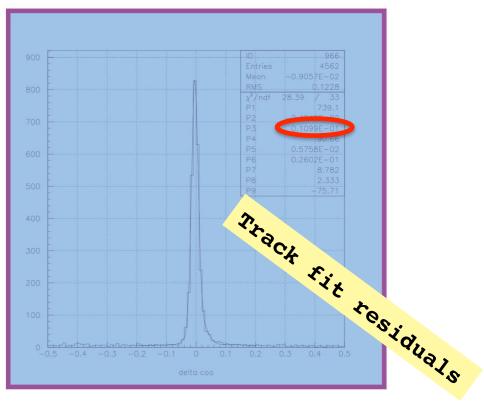
Min: 2.6 mm FR4 + 280 μm copper

Max: 2.6 mm FR4 + 720 μm copper + 3 mm

ceramics + cooling

DCH FEE – 2 scenarios



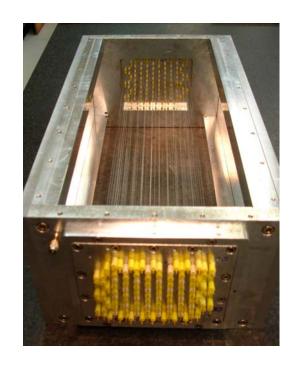

- Backgrounds
- Geometry: Mechanical design
- Geometry: DCH length
- Cell and gas optimization
- Electronics: FEE & DAQ design
 - "baseline" (no cluster-counting) option
- Progress in Lab. work
 - including setup for first cluster counting studies

LNF Tracking telescope

REMINDER:

- Two identical assemblies of 26 tubes each
- ✓ Operated in LS mode
- 3 cm diameter, 100 μm wires
- √ 40%-60% Ar-iC₄H₁₀ mixture
- ✓ Straight-line fit of cosmic-ray tracks

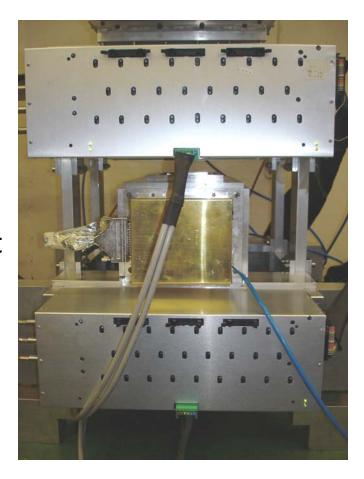
Middle layer of upper tracker – all tubes together ~100μm resolution

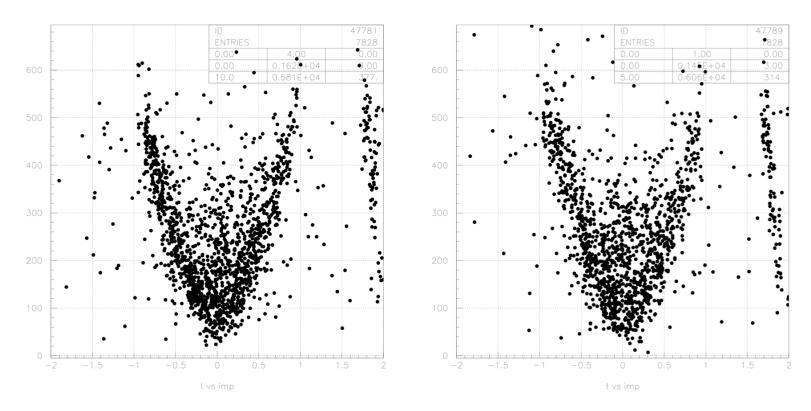

expected extrapolation accuracy on drift chamber prototype
 (between the two trackers) ~50μm

DCH prototype 1

6x4 hexagonal cells à la BaBar

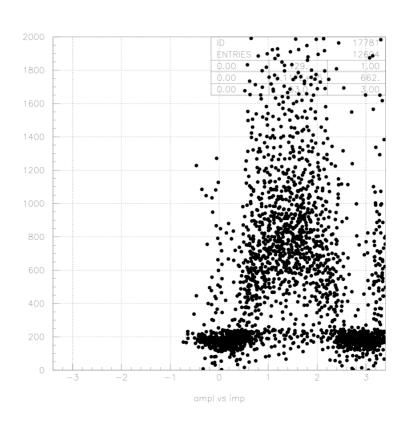
 Guard wires guarantee uniformity of electric field among cells down to ~1%

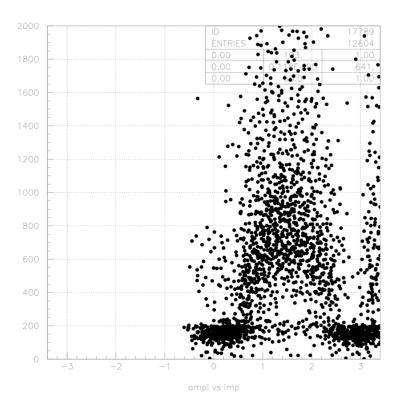

Aluminized mylar windows on entrance-exit faces



DCH prototype 1 (cont.)

- Readout electronics fully commissioned
- Using BaBar's 80%He-20%iC₄H₁₀
 gas now
 - volume is small, changing mixture is fast
- taking cosmic ray data now

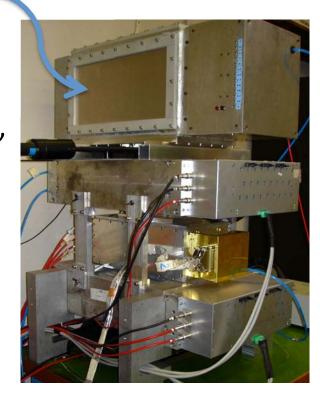

(VERY!) Preliminary STRs



Almost no selection in these Space Time Relations

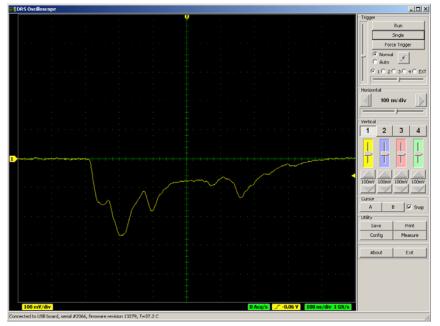
- Very loose χ^2 cut
- No constraint on amplitude (ADC reading)
- Expect to be able to clean up the above plots substantially

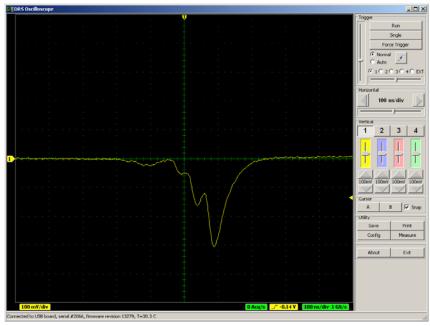
Charge vs. impact parameter - (VERY!) Preliminary



Waveform digitization

- Using old KLOE prototype (2:1 square cells), featuring higher bandwidth preamps than proto1
- Mounted on top of tracking telescope
- Read out through DRS4(*) "evaluation board"

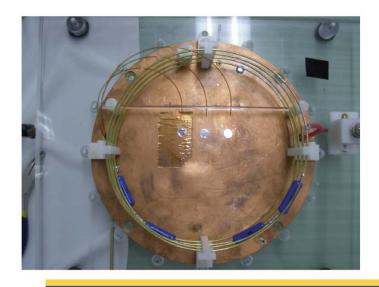


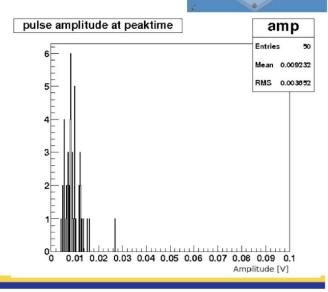


(*) A switched capacitor array (SCA) with 1024 cells, capable of digitizing eight analog signals with high speed (6 GSPS) and high accuracy (11.5 bit SNR) on a single chip (http://drs.web.psi.ch/) [only 4 channels read-out with current version of firmware]

Waveform digitization

- 2 "random" examples, self-triggered (ext. trigger can be used instead)
 - left: SuperB proto 1, preamp. bandwidth ~100MHz
 - right: KLOE proto 0.2, preamp. bandwidth ~300MHz
- 1024 cells, 1GS/sec 100ns/div
- Work in progress to include digitized waveforms in the DAQ chain of tracking telescope
 - want to correlate recorded pulses with track impact parameter





Lab activities @ UVIC

Gas Gain Studies

- Gas gain measurements made simultaneously with with the laser-photoelectron TPC setup.
- Uses Poisson fluctuations from the photoelectrons

Lab activities @ UVIC

Preparing for new prototypes

- last month have shipped the following

from SLAC and Princeton to TRIUMF

- BaBar feedthroughs
- connector boards
- Crimp tools
- W sense wire
- Al field wire (Au)

hypertronic connectors still to come from Colorado

Summary

- Despite limited manpower, a lot of progress since October meeting
- Hopefully fresh forces can start working on most critical items (background) soon