PID Summary

Frascati SuperB Meeting, December 4th 2009

Nicolas Arnaud, for the SuperB PID group

- Two parallel sessions
- Updates on **Barrel** PID
- Updates on Forward PID
- Outlook

Two PID Parallel Sessions

- Full sessions
 - 1^{rst} one dedicated to barrel PID
 - 2nd dedicated to forward PID
- Detector design updates
- Simulation updates
- Electronics updates
- SiPM studies

16:30->18:00 Parallel - PID I (Barrel FDIRC) (Convener: NICOLAS ARNAUD (LAL ORSAY CNRS-IN2P3), Jerry Vavra (SLAC)) Description: Location: Aula A-1 Phone number: +39 06 6228 8548 or <u>http://server10.infn.it/video/index.php?page=telephone_numbers</u> Meeting ID: 1552	
16:30 FDIRC Design Update (15) (🔭 Slides 🔁)	Jerry Vavra (SLAC)
16:45 Update on FBLOCK simulation studies (15)	Douglas Roberts (University of Maryland)
17:00 ADC/TDC vs. analog memories for the barrel electronics (10) (Slides)	Dominique Breton (LAL ORSAY)
17:10 First estimation of the number of links needed for PID readout (10) (Slides))	Dominique Breton (<i>LAL</i> ORSAY)
17:20 TDC based electronics for the CRT (10) (Slides 🎬)	Christophe Beigbeder (LAL)
17:30 Padova activities on SiPM (15) (🔭 Slides 🎘)	Flavio Dal Corso (PD)
17:45 SiPM characterization at LAL-Orsay (15)	Véronique PUILL (<i>CNRS IN2P3</i> <i>LAL</i>)
14:30->16:15 Parallel - PID II (Forward PID Detector) (Convener: NICOLAS ARNAUD (<i>LAL ORSAY CNRS-IN2P3</i>), Jerry Vavra (<i>SLAC</i>)) Description: Location: Aula A-1	

Phone number: +39 06 6228 8548 or http://server10.infn.it/video/index.php?page=telephone_numbers Meeting ID: 1552 14:30 Simulation of the DIRC-like TOF (15) (The Slides 🔁) leonid Burmistrov (LaL) Summary of last Friday joint PID-EMC meeting NICOLAS ARNAUD (LAL ORSAY 14:45 (mechanical integration on forward side) (15) CNRS-IN2P3) (Slides 15:00 First results of the WaveCatcher board with MCPPMTs (15) (Slides)) Dominique Breton (LAL ORSAY) Jihane Maalmi (cNRS-LAL) 15:15 Pixilated TOF update (15) (Slides 🏧) Jerry Vavra (SLAC) 15:30 Status of FARICH (15) (The Slides 🎬 Evgeniy Kravchenko (Budker INP) 15:45 Comparison of overall performances for various forward PID Jerry Vavra (SLAC) detectors (15') (🔭 Slides 🍱

Many other Sessions relevant for PID

- DGWG
- FastSim
- ETD
- Background
- \rightarrow Analysis, comparison of different configurations, PID selectors, etc.
- \rightarrow See session talks & summaries for details

Summary in 1 Slide

- Manpower- and money-wise, the group is still not healthy but we're making progress
 → Welcome to LPNHE-Paris (1 physicist + 1 engineer, part-time involvement)
- Barrel PID
 - Updated design for the FBLOCK and its interface to the quartz bars
 - \rightarrow Geant4 simulation to compare designs and start estimating performances
 - Mechanical design studies in progress
 - Electronics: discussion about the technology (TDC/ADC vs. analog memories) first estimation of the number of links between detector and barracks
- SiPM tests
- Forward PID
 - Status of Novosibirsk FARICH
 - Summary of Orsay-Perugia meeting about mechanical interface on the forward side
 - First results of the 'DIRC-like' TOF simulation in Geant4
 - SLAC test of the Orsay electronics (analog memories) for ps-measurements
- Comparison of the overall performances of various PID detectors
 - \rightarrow Preparation for the White Paper

Barrel PID

- New design presented by J. Va'Vra (SLAC)
 - Wedge too short in previous iteration
 - \rightarrow Not all rays reflected to good mirror area: unfocus rings, spurious reflexions, etc.
 - New design has an external wedge
 - + a micro-wedge glued at the bottom (to remove a 6 mrad angle)

7.8

• New design implemented in Geant 4 simulation (D. Roberts, Maryland)

- Tests of the micro-wedge (any work inside the barbox will need strong justification) and of the glue joints (extra-reflections)
- Test whether photons reflecting of FBLOCK side should be kept
 → More photons but also more ambiguities
- Analysis in progress
 - No background
 - Procedure still being optimized
 - Timing information not optimally used yet

- Preliminary results
 - Better to keep photons reflecting on the FBLOCK sides
 - Glue joint effect is at ~8% (unavoidable)
 - Single photon resolution around 8.2 mrad for π (BaBar: 9.6 mrad for $\mu^+\mu^-$ events) → including 0.5 mrad gain from the micro wedge
 - $\theta_{\rm C}$ resolution / track around 2.5 3.5 mrad depending on dip angle
 - \rightarrow 2.2 mrad required for a '3 σ '-separation at 3 GeV/c

Examples of 'rings' for tracks at different dip angles

2000 events per plot, 4 GeV/c π

- One substrate candidate identified: Corning fused silica 7980
 → Potential issue: (in)homogeneity of the refraction index n
- 13 optical companies contacted for shaping and polishing
 - 2 did not reply; 4 rejected the offer
 - I offer consistent with budget
 - \rightarrow From the company which manufactured the DIRC bars
 - 2 more bids expected soon; 4 other companies still in the loop
- Work ongoing on the mechanical design of the FBLOCKs (M. Bennetoni, Padova)

Updated design to be presented in March 2010 meeting

Barrel Electronics

- Two options: TDC (+ ADC) 'à la BaBar' Analog memories
 → Comparison during the parallel session: inputs from - D. Breton (LAL) J. Va'Vra (SLAC) G. Varner (Hawaii)
 - Constraints:
 - ~ 30 000 channels / limited physical space to install electronics
 - ~ 150 kHz trigger rate
 - ~ 200 ns readout window
 - ~ 100 kHz PMT rate (preliminary)
 - TDC (+ ADC) is the baseline solution; can we afford to use analog memories?
 → Choice has strong consequences on the number of DAQ links
 - Analog memories provide a lot of information but: implementation not trivial, more computing needed, higher power consumption
 - One potential issue with the TDC: the discriminator
 → Power consumption, random walk (may require charge to correct)
 ¹⁰

Barrel Electronics

• DAQ links

 \rightarrow Based on ETD spreadsheet and the constraints listed in previous slide

- 1.5 2 links for TDC solution (~32 bits/hit w/o charge, ~ 48 with)
 → Barrel PID would be topology-driven just like the BaBar DIRC
 → The segmentation in 12 sectors provides a nice safety margin
- Different picture for analog memories: ~ 40× more bits/hit
 → Number of links scaling by the same factor!
- \Rightarrow Choosing analog memories would be a challenge; option not ruled out yet
- \Rightarrow Important point is to get a better estimate of the PMT rate and to choose a conservative-enough safety factor (×5 10 ?)
- Chip based on existing LAL 100 ps TDC will be tested in SLAC CRT
 - Two possible designs: include chip in existing module or develop a new module
 → Both solutions have pros and cons
 - Decision to be taken soon as these tests are targeted for next year

- Irradiation of 2 FBK 1 mm² SiPMs by neutrons @ Legnaro (F. Dal Corso, Padova)
- Dose ~ 6.8 10⁹ n/cm²

 \rightarrow Small w.r.t. SuperB expectation ~ 10¹¹ n/cm²/year [tbc]

• Most of the damages occur at low dose

 \rightarrow New tests foreseen with a smaller dose rate

- Resolution gets strongly degraded as well
- No final conclusion yet: tests in progress

- Status of SiPM characterization @ LAL-Orsay (V. Puill)
- Two test benches developed in the past
 - Dark Monitored Temperature test bench
 - → Operational voltage range (breakdown voltage + dark noise)
 - \rightarrow Noise contributions: dark current, after-pulse, cross-talk
 - Optical test bench
 - \rightarrow Dynamic range
 - → Photon detection efficiency = QE × Prob(avalanche) × fraction of sensitive area Measurements with continuous light or pulsed light (ongoing)

Double measurement in parallel

- New bench for timing studies
- Various detectors to be delivered in January: FBK, Hamamatsu, Photonique and Sensl SiPMTs; Burle MCP-PMT \rightarrow Used for comparison
- SiPM timing measured versus
 - over voltage
 - wavelength (403 and 633 nm)
 - incident number of photons
 - light spot size and position
 - temperature
- IN2P3 & INFN co-funding at work ③

17

Forward PID

FARICH

• Update from E. Kravchenko (Novossibirsk)

- Requires a DCH shorter by ~20cm
- ~450 MCP-PMT
 → ~ 115 000 electronics channels
- ~28% X₀
- Excellent π -K separation > 0.6 GeV/c
- Momentum measurement at ~% level
- Study in standalone MC
 → FastSim implementation asap
- Cost and number of electronics links are being estimated

FARICH

- Update on MCP-PMT ageing test (from P. Krizan): 10% drop in efficiency after 400 mC/cm²
- \rightarrow What is the expected SuperB rate?

Back of the envelope calculation:

 2 kHz/cm^2 (charged tracks) × 60 photons (FARICH) × 5 10⁵ (gain) × 10⁸ s (10 years) \Rightarrow integrated charge ~ 1 C/cm² [to be updated when bkg estimates get updated]

- Burle is aiming at delaying this effect by a factor 5
- Dose integrated much quicker for this test than in real life ► To be followed
- Actual conditions of the test?
- Preparation of test beam at VEPP-4M
 - \rightarrow Tests with pulsed laser and SiPM will start early next year while the experiment gets assembled

Orsay-Perugia Engineering Meeting

- Fruitful meeting between Orsay engineers (F. Bogard, S. Wallon) and Perugia experts (M. Lebeau, S. Germano)
- Indico webpage: http://indico.lal.in2p3.fr/conferenceDisplay.py?confld=926

- Outcome: definition of a common mechanical interface
 - \rightarrow Orsay design to be updated accordingly
 - \rightarrow Basis for future designs more accurate & realistic
- Limited manpower on both sides
 → Mandatory collaboration

'DIRC'-like TOF Geant4 Simulation

- First results shown by L. Burmistrov (LAL-Orsay)
 - → Collaboration with Taras Shevchenko University (Kiev, Ukraine)
 - \rightarrow Starting point: D. Roberts G4 simulation code for the FBLOCKs,

inherited from SLAC fDIRC prototype

Use time of flight to separate charged particle species
 ~ 25 ps resolution for '3σ' separation @ 3 GeV/c [L ~ 2 m]

- Jerry's design (Perugia; update @ SLAC)
- Design simulated so far:

→ Different geometries & configurations to be studied in the near future

'DIRC'-like TOF Geant4 Simulation

•
$$\Delta t = t_{stop} - t_{start}$$

Driven by T_0 accuracy: $\sigma_{T0} \sim 15-25$ ps

- \rightarrow Study focusing on t_{stop}, 'time of photons arrival in PMT'
- Various effects impact the accuracy on t_{stop}:
 - Electronics
 - PMT TTS
 - Photon 'collection efficiency' (QE, active area fraction, photocathode)
 - Chromaticity (photon propagation speed depends on wavelength)
 - Quartz thickness
 - \rightarrow N_{phot} + time spread coming from the track transit in the bar (up to tens of ps!)

Jer DIRC'-like TOF Geant4 Simulation

- 'Kravchenko effect': light emitted by low-momentum kaons (up to ~1.2 GeV/c) perpendicular to the quartz surface is transmitted instead of reflected
 - \rightarrow Obvious (but unexpected) effect, confirmed in simulation
- Possible fixes:
 - add a mirror behind the quartz
 - \rightarrow reflectivity ~92%, so part of the photons still lost
 - tilt more the quartz surface
 - → Take more space in z, potential impact on EMC (gap between detectors would depend on radius)
 - others!?
- Quartz surface orientation is clearly a key parameter for this detector
 - There must always be photons going « downward »!
 - Consequences for the PID-EMC interface
- \Rightarrow To be studied in simulation, updates expected soon

Orsay Electronics Tests at SLAC

- Orsay USB_WaveCatcher prototype board given to Jerry in October
 - \rightarrow Tested in the same setup as Hawaii and commercial electronics (Ortec)
 - \rightarrow Software (board control + acquisition system) running on Jerry's computer
- Data collected and analysed both at SLAC and in France
 - \rightarrow Different methods used; consistent results achieved (see Jihane's and Jerry's talks)
- Analog memories suited for ps timing

Jihane & Dominique @ SLAC

- SLAC beam test had smaller number of photoelectrons due to poor radiator coating.
- Analysis of the Target chip data still preliminary working on dT calibration.
 7/28/2009
 J. Va'vra, Pixilated TOF

PID Detector Performances

Comparison of overall PID detector performances

• Jerry's compilation of results using various sources

 <u>Caveats:</u> 'simple' calculations less accurate than full MC simulations real world not Gaussian ⇒ 'sigmas' don't translate simply to performances → Yet, a way to get an idea of the differences between technologies

Conclusions

Outlook

- Significant progresses on the detector side
 - Interplay between designs and Geant4 simulations
 - Mechanical designs
- Mature and high-level discussions on electronics
 - Narrowing down the technology options for barrel and forward
 - Test of existing devices in CRT at SLAC
 - New prototypes to be available next year
- PMT tests in progress
 - \rightarrow New test benches (Maryland, LAL) available soon
- Still far from closing on the forward PID (yes/no, geometry choice)
 - Large amount of valuable work already completed
 - \rightarrow Manpower was/is/will remain the main limiting factor
 - Updated results expected for the March meeting in Annecy