# **STUDIES REGARDING SUPER-B LATTICE**

# N. Monseu F. Méot

Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de

Grenoble, 53 avenue des martyrs, 38026 Grenoble France

### Contents

| 1 | Introduction                                    | 3  |  |  |  |  |  |  |  |  |
|---|-------------------------------------------------|----|--|--|--|--|--|--|--|--|
| 2 | LER                                             | 4  |  |  |  |  |  |  |  |  |
|   | 2.1 Lattice parameters                          | 4  |  |  |  |  |  |  |  |  |
|   | 2.2 Typical H and V phase spaces at IP          | 6  |  |  |  |  |  |  |  |  |
|   | 2.3 LER Maximum stable amplitudes               | 8  |  |  |  |  |  |  |  |  |
|   | 2.4 LER Dynamic aperture and momentum de-tuning | 10 |  |  |  |  |  |  |  |  |
|   | 2.5 Checking spin behavior                      | 11 |  |  |  |  |  |  |  |  |
| 3 | HER                                             |    |  |  |  |  |  |  |  |  |
|   | 3.1 lattice parameter                           | 14 |  |  |  |  |  |  |  |  |
|   | 3.2 HER Maximum stable amplitudes               | 15 |  |  |  |  |  |  |  |  |
|   | 3.3 HER Dynamic aperture and momentum de-tuning | 17 |  |  |  |  |  |  |  |  |

### 1 Introduction

• This presentation will review the work done last two month, by F. Méot and me, from the beginning of my PhD thesis.

• Our long term goal is to contribute on spin dynamics, and specially on the rotator.

• We first try to understand the main parameters of the lattice, tune, dynamic aperture (on & off momentum), and check results obtained with MAD8 with ray-tracing methods yielding more accurate high order dynamics.

### 2 LER

- 2.1 Lattice parameters
- The purpose here is to show that ray-tracing starts from paraxial conditions identical to MAD hypothesis.
- Ray-tracing includes fringe fields in all bends and in solenoids, hard edge otherwise. LER parameters.

| 1                                                          |                           |          | MADO                                        | Ray-tracing                                                 |
|------------------------------------------------------------|---------------------------|----------|---------------------------------------------|-------------------------------------------------------------|
| Circumference <sup>(4)</sup>                               |                           | (m)      | 1323.018                                    | $1323.031^{(5)}$                                            |
| Qx, Qy                                                     | obs. at IP<br>obs. at MDL |          | 45.53951, 20.56969<br>45.54141, 20.56655    | [45].5365, [20].5539 <sup>(2)</sup><br>[45].5390, [20].5616 |
| Q'x, Q'y                                                   | obs. at IP<br>obs. at MDL |          | -6.492674, -7.666569<br>-6.49278, -7.667717 | -6.4672, -15.963<br>-5.4900, -9.6662                        |
| $Max \beta x, y$                                           | obs. at IP<br>obs. at MDL | (m)      | 366.06, 1570.56<br>366.22, 1563.01          |                                                             |
| Max D x, y                                                 |                           |          | 0.4853, 0                                   |                                                             |
| $\alpha, \sqrt{1/\alpha}$                                  |                           |          | 0.00042308, 48.6174                         | 0.00042365, 48.5844                                         |
| Periodic functions at IP :                                 |                           |          |                                             |                                                             |
| $eta_x,\ eta_y$                                            |                           | (m)      | 0.02, 0.002                                 | 0.020, 0.0020                                               |
| $lpha_x,\ lpha_y$                                          |                           |          | $\sim 0, 0$                                 | $\sim 0, 0$                                                 |
| $D_x, D'_x$                                                |                           | (m,-)    | 0, 0                                        | $\sim 0, 0$                                                 |
| horiz. closed orbit, $x_{co}$ , $x'_{co}$                  |                           | (m, rad) | 0, 0                                        | $\sim 0, 0$                                                 |
| rms and max. quantities, over circumference :              |                           |          |                                             |                                                             |
| horiz. closed orbit <sup>(6)</sup> , $x_{co}$ , $x'_{co}$  | rms, max                  | (m, rad) | 0, 0                                        | $210^{-6},210^{-5}$                                         |
| vertic. closed orbit <sup>(6)</sup> , $y_{co}$ , $y'_{co}$ | rms, max                  | (m, rad) | 0, 0                                        | $610^{-6},710^{-5}$                                         |

<sup>(2)</sup> Obtained from multiturn Fourier analysis.

 $^{(3)}$  Quasi-zero c.o., induced by dipoles' fringe fields.

<sup>(4)</sup> The origin of the difference between circumference values remains to be determined.

<sup>(5)</sup> The circumference in the ray-tracing case is the length of the on-momentum closed orbit.

<sup>(6)</sup> Arising from residual coupling in the solenoids.

## Residual closed orbits, H and V



Residual H and V closed orbits are negligible at IP (<< beam size).





To summarize : residual coupling by solenoids contributes to less than  $< 0.1 \times$  beam size, H & V

#### **2.3 LER Maximum stable amplitudes**

• Goal : now we are satisfied with starting hypothesis, we produce DAs (and compare with MAD for reference).



#### LER Maximum stable H amplitudes at DL

Maximum horizontal stable amplitudes ( $x_{max} = n * \sigma_x$  where  $\sigma_x = \sqrt{\epsilon_x * \beta_x}$  at DL, taking  $\epsilon_x/\pi = 10^{-9}$ ) 1000-turn for ray tracing, 200-turn for mad ; dp/p = +1%, 0, -1%, from left to right. Test particles are launched at DL and observed at DL.



Maximum vertical stable amplitudes 1000-turn for ray tracing, 200-turn for mad ; dp/p = +1%, 0, -1%, from left to right. Test particles are launched at DL and observed at DL.

### 2.4 LER Dynamic aperture and momentum de-tuning



Figure 1: Dynamic aperture observed at IP.

Figure 2: Dynamic aperture observed at DL.

**Particles in the region**  $1.007 \le dp/p \le 1.004$  are lost, whatever  $z_0$ .



Figure 3: momentum detuning.



Figure 4: from MAD

#### 2.5 Checking spin behavior

Single turn, IP to IP

Spin components of five particles at  $dp/p = 0, \pm 0.5\%, \pm 1\%$ , observed at IP, after a full turn, starting pure  $\vec{S}_X$  (longitudinal).

|   |   |        | INITIAL |        |        | FINAL  |         |         |        |          |  |
|---|---|--------|---------|--------|--------|--------|---------|---------|--------|----------|--|
|   |   | SX     | SY      | SZ     | S      | SX     | SY      | SZ      | S      | GAMMA    |  |
| р | 1 | 1.0000 | 0.0000  | 0.0000 | 1.0000 | 0.9999 | 0.0022  | -0.0152 | 1.0000 | 8262.849 |  |
| 0 | 1 | 1.0000 | 0.0000  | 0.0000 | 1.0000 | 0.9999 | 0.0012  | -0.0130 | 1.0000 | 8221.944 |  |
| 0 | 1 | 1.0000 | 0.0000  | 0.0000 | 1.0000 | 1.0000 | -0.0000 | -0.0006 | 1.0000 | 8181.039 |  |
| m | 1 | 1.0000 | 0.0000  | 0.0000 | 1.0000 | 0.9997 | 0.0039  | 0.0230  | 1.0000 | 8140.133 |  |
| m | 1 | 1.0000 | 0.0000  | 0.0000 | 1.0000 | 0.9983 | 0.0168  | 0.0561  | 1.0000 | 8099.228 |  |

#### Matching spin orbit vector $\vec{n}$ at IP

We consider the on-momentum, zero-closed orbit particle. Initial components of  $\vec{S}$  at IP (the fit variables) are varied so to get (constraints :) identical components after a turn, and |S| = 1.

Xi2 = 8.69910E-18

| STATUS OF VARIABLES (Iteration # 29) |      |     |         |           |       |                 |       |            |      |              |
|--------------------------------------|------|-----|---------|-----------|-------|-----------------|-------|------------|------|--------------|
| LMNT VAF                             | R PA | RAM | MINIMUM | INITIAL   |       | FINAL           | MAXIN | IUM STEP   |      |              |
| 3 S2                                 | 2    | 10  | 0.891   | 1.00      |       | 0.9999999389    | 1.0   | 9 8.699    | E-16 |              |
| 3 S <u>y</u>                         | 7    | 11  | -0.100  | 7.826E    | -08   | 7.8264406325E-0 | 0.30  | 0 1.311    | E-15 |              |
| 3 Sz                                 | :    | 12  | -0.100  | -3.410E   | -04 - | 3.4099938123E-0 | 0.30  | 0 1.311    | E-15 |              |
| STATUS OF CONSTRAINTS                |      |     |         |           |       |                 |       |            |      |              |
| TYPE                                 | I    | J   | LMNT#   | DESIRED   | WEIG  | HT REACHI       | ED    | KI2        | *    | Parameter(s) |
| Sx-Sx_0                              | 1    | 1   | 1909    | 0.000000  | 1.00  | 00 2.9494193    | 3E-09 | 1.0000E+00 | *    | 0 :          |
| Sy-Sy_0                              | 1    | 2   | 1909    | 0.000000  | 1.00  | 00 1.1601682    | 2E-12 | 1.5473E-07 | *    | 0 :          |
| Sz-Sz_0                              | 1    | 3   | 1909    | 0.000000  | 1.00  | 00 4.1513054    | 4E-12 | 1.9810E-06 | *    | 0 :          |
| S                                    | 1    | 4   | 1909    | 1.0000000 | 2.00  | 1.000000        | )E+00 | 5.6768E-07 | *    | 0 :          |



Components of the  $\vec{n}$  vector over a turn and in the rotator.

Super-B Workshop, Frascati, 1-4/12/2009

**Static behavior** 

 $S_X$  (longitudinal) is recorded at IP over a few hundred turns. Nine particles with  $dp/p = 0, \pm 0.01, step \pm 0.02$  (apart from particles with  $p/p_0 = 1.004, 1.006$  which are not stable, see Sec. ??), and with  $\epsilon_y > 10^{-9}$  nm (Fig. 5).rad are launched. Results in Fig. 6, no intrinsic resonance effects are observed.



Figure 5: Vertical invariant at IP of nine particles launched for search of possible intrinsic resonance effects.



Figure 6: Longitudinal spin component at IP for the nine particles with  $dp/p = 0, \pm 0.002, -0.004, -0.006, \pm 0.008, \pm 0.01$ .

### 3 HER

### 3.1 lattice parameter

#### MAD8 Ray-tracing $^{(1)}$ Circumference<sup>(4)</sup> $1323.03^{(5)}$ 1322.949337 (m) [45].54350, [20].57357<sup>(2)</sup> Qx, Qy obs. at IP 45.53912, 20.57044 obs. at MDL 45.53996, 20.56999 [45]54350, [20].57342 Q'x, Q'y obs. at IP -5.7722, -30.6157 -5.8311. -32.2510 obs. at MDL -5.7671, -30.8482 -5.8311, -32.2579 Max $\beta$ x, y obs. at IP 364.1857, 1525.0676 (m) obs. at MDL Max D x, y 0.5983, 0 (m) $\alpha, \sqrt{1/\alpha}$ 0.00040590, 49.6355 0.00038548, 50.9330 Periodic functions at IP : 0.02, 0.002 0.020, 0.0020 (m) $\beta_x, \beta_y$ $\sim 0, 0$ $\sim 0.0$ $\alpha_x, \alpha_y$ $D_x, D'_r$ (m,-) 0,0 $\sim 0.0$ horiz. closed orbit, $x_{co}$ , $x'_{co}$ 0.0 $\sim 0.0$ (m, rad)

Table 1: HER parameters.

<sup>(5)</sup> The circumference in the ray-tracing case is the length of the on-momentum closed orbit.



#### HER Maximum stable H amplitudes at DL

Maximum horizontal stable amplitudes 1000-turn for ray tracing, 200-turn for mad ; dp/p = +1%, 0, -1%, from left to right. Test particles are launched at DL and observed at DL.

112 $\sigma_x$ ,

Table name = TRAC

 $\beta_x = 11.013, \alpha_x = 0$   $\beta_x = 32.351, \alpha_x = -1.054$ 

 $\mathbf{0}\sigma_x$ ,

Table name = TRAC

Table name = TRAC

 $28\sigma_x$ ,

 $\beta_x = 34.688, \alpha_x = -1.230$ 

**RAY-TRACING** 



Maximum vertical stable amplitudes 1000-turn for ray tracing, 200-turn for mad ; dp/p = +1%, 0, -1%, from left to right. Test particles are launched at DL and observed at DL.

#### **3.3 HER Dynamic aperture and momentum de-tuning**



Figure 9: Tunes vs. momentum obtained with Zgoubi.



Figure 8: Dynamic aperture observed at DL.



Figure 10: Tunes vs. momentum obtained with MAD.

Thank you for your attention