

Summary Workshop and follow up List of Topics Comments on some topics

Computing R&D Wokshop

- site: Ferrara is our best option at the moment
 - it's close to Bologna airport (40 Km),
 - cheap hotels, good food, few cars and many bikes on the streets
 - Univ. conference center available free of charge
 - can count on experienced local organizers
- Wed. Feb. 24th (9am) to Fri. Feb. 26th (5pm)
 - possible layout:
 - initial plenary session to get started
 - four slots of plenary sessions; presentations concentrated on those issues that require more detailed study
 - four slots of two to three parallel sessions
 - two slots for the final plenary sessions
 - options:
 - would it be more prudent to schedule the initial day on Thursday ?
 - nice to have all people in a single hotel (with sofas for after dinner)

- Come to the WS with a **list of proposed issues** (and a bunch of physicst and comp. professionals that can be interested in joining the effort)
 - topics we need to address for being in a position to develop the SuperB computing model in 2011 (Computing TDR)
- Leave the WS with an R&D program proposal
 - prioritized list of R&D activities
 - quantification of benefits wherever possible
 - estimation of manpower needed and timescale
 - definition of responsibilities for those activities that can be started immediately
 - strategy for dissemination

R&D activity form

- Description, main goal
- Motivations
- Tasks for the workshop
- Work breakdown structure
 - manpower needed
- Collaborations
- Schedule
- Reference material
 - available now (~ before the end of the year)
 - available by the end of the WS

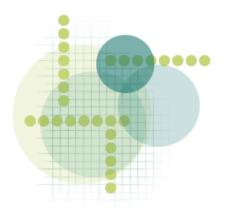
Articulation of the activity				manpower (man-months)			
acti vity	i tas k	su bta sk		physicist w. comp. expertise	junior comp. prof.	senior comp. prof.	total
	1		identify the most data-volume demanding data processing applications foreseen for SuperB and their requirements	1			1
	2		develop models of alternative storage implementations that can satisfy the requirements, based on one or two approaches taken from current HEP experiments vs. a new model based on local disk storage with possible use of SSD trechnology	1		1	2
	3		develop a simulation application that provides quantitative estimates of the performance achievable for the various models		3	3	6
	4		Identify the aspects of the computing model that are affected by the new storage strategy and evaluate the impact	1		1	2
	5		evaluate development costs, TCO and performance, improve the models and finally present a comparison with an indication of the recommended choice for SuperB	1		1	2
			TOTAL	4	3	6	13


Workshop follow-up

- Writing the second white paper describing the R&D program
- Presenting the program at the SuperB collab. meeting and get it "approved"
- Scheduling:
 - a mid-way WS after ~ 6 months
 - a final WS after ~ 1 year
- Publicise it for getting new collaborators
 - presentation to conferences, seminars in main laboratories, etc.
 - not only among physicists but also in computing science departments


- GUI for running analysis
- access to computing applications and data
- code management tools
- collaborative tools

(exploiting developments from LHC exp., etc.)


- general code quality issues: robustness, error handling, performance control, inline qualification
- code and build management
- integration of firmware code, scripts, configuration files, etc.
- release system
 - addressing special online needs
- geometry, conditions, framework
- persistency, event store

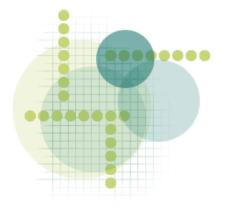
migration of BaBar legacy code base to SuperB

- migration of BaBar legacy code base to SuperB
- general code revision for enforcing higher quality standards
- rewrite packages (IFR, Dirc, Track pattern recognition, ...)
- modernize packages (Kalman fit, EMC reco, Beta)
- redesign data structures (MC Truth, ...)

exploitation of modern CPUs

- many-cores, multithreads
- vectorization
- deeper parallelism
- optimization

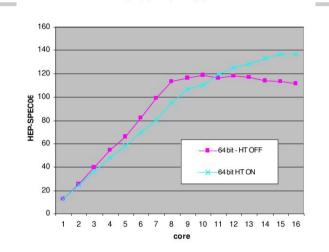
Storage efficiency and scaling

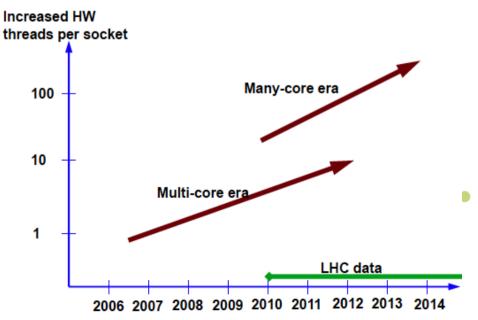

- de-centralized event store
- exploitation of SSD storage technology

distributed computing

- develop a model defining the requirements
- evaluate the constraints for SuperB computing model and code development
- data bookkeeping
 - common system with online

Online specific topics


- Support for Raw data versioning
- Decouple container size (e.g.: files) from event grouping (e.g.: runs)
- farm management: make sure of what machine are running and how they are configured
- design a flexible offline build/release/deployment system to mitigate the constraints on evolution of online data (format/content) and DB schema

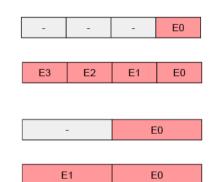


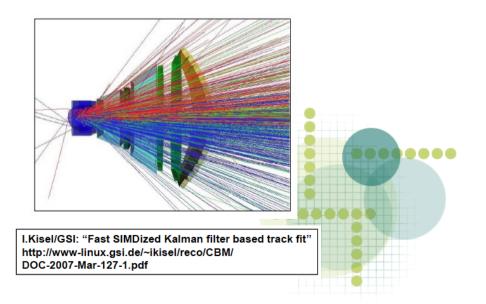
core and threads

- transition from multy-core to many-core is underway
 - core = indipendent execution unit
 - CPU external channels may be shared
- new CPU also support the Symmetric Multi Threading
 - thread = only program counter are register files are independent
 - execution logic and caches are shared

64 bit HT OFF vs ON

From "Platform 2015: Intel Platform Evolution for the Next Decade" (S.Borkar et al./Intel Corp.)

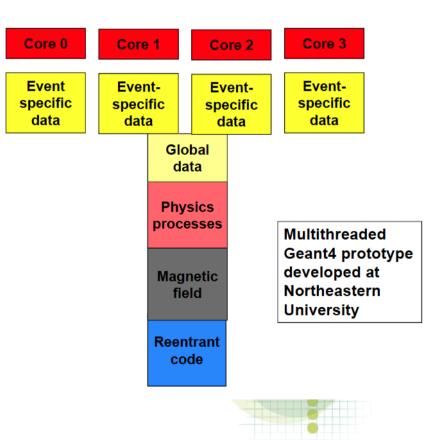

M. Morandin



Vector instruction sets (SSE)

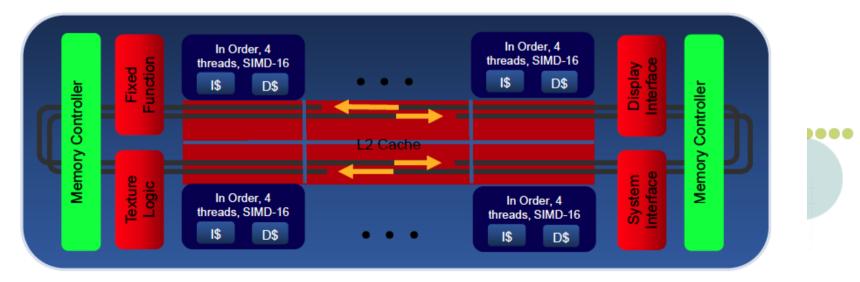
- CPU now have **128 bit** istructions/registers
 - not exploiting means a 2x to 4x peak capacity loss
- next CPUs:
 - Advanced Vector eXtensions (256 bits)
- exmples of exploitations:
 - CBM/Alice track-fitting with 4-packed SP --> gain 4x

- Single precision
 - Scalar single (SS)
 - Packed single (PS)
- Double precision
 - Scalar Double (SD)
 - Packed Double (PD)



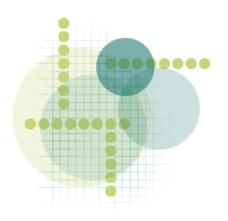
Consequences

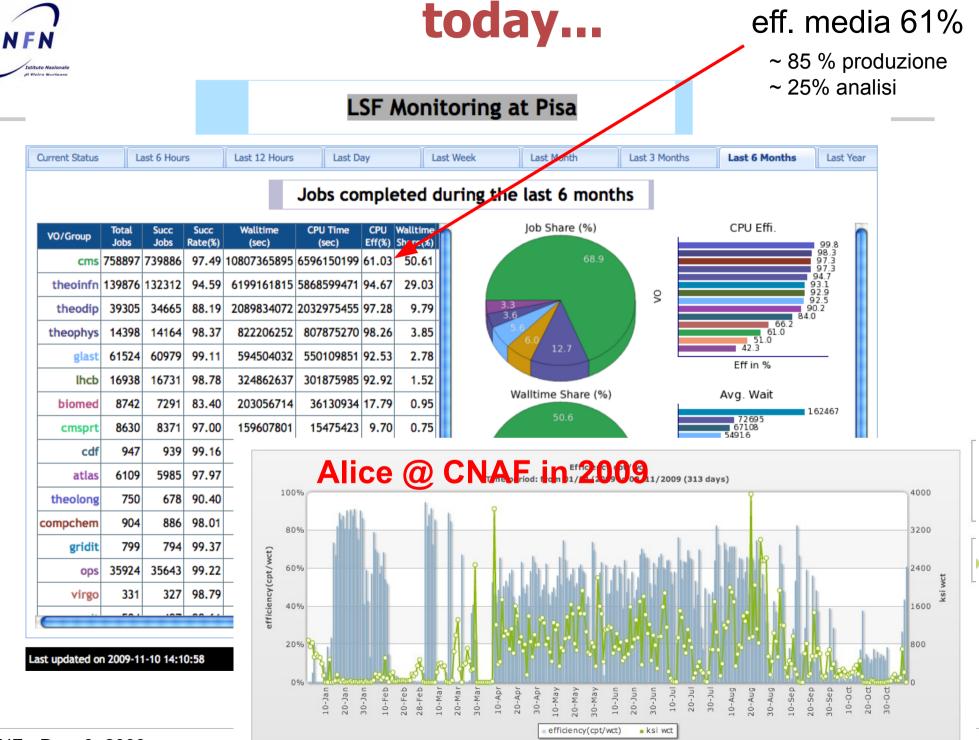
- natural parallelism based on event-by-event dispatching will not work:
 - I/O channels to RAM too slow
 - excessive amount of RAM
- one will have to
 - introduce parallel processing at a deeper level
 - share data and code stored in the RAM by different threads or different cores
- eg.: GEANT4 experience quite encouraging
 - only 22 MB per thread !



Availability of GPUs based on x86 architectures will open up more possibilities

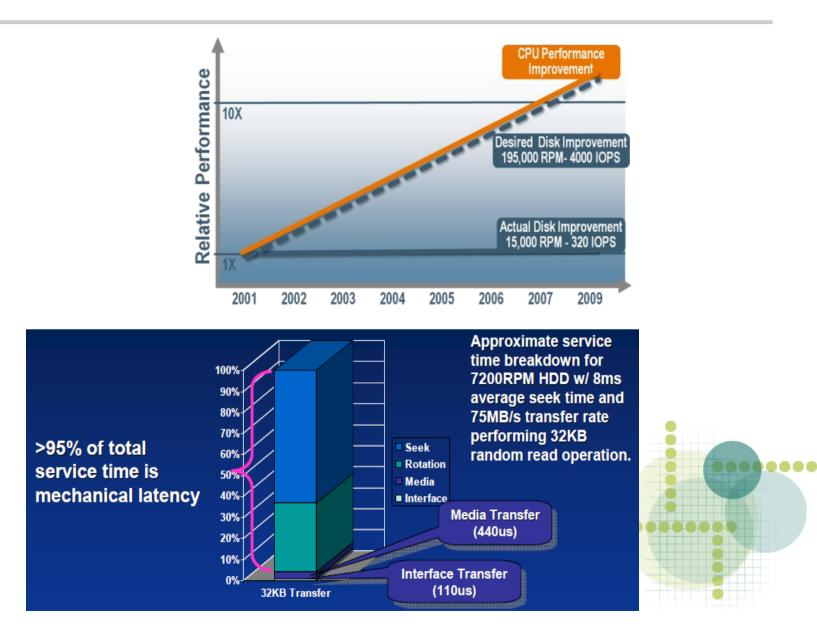
- Intel's Larrabee:
 - Already announced at SigGraph 2008!
 - Based on the x86 architecture
 - Many-core + 4-way multithreaded + 512-bit vector unit



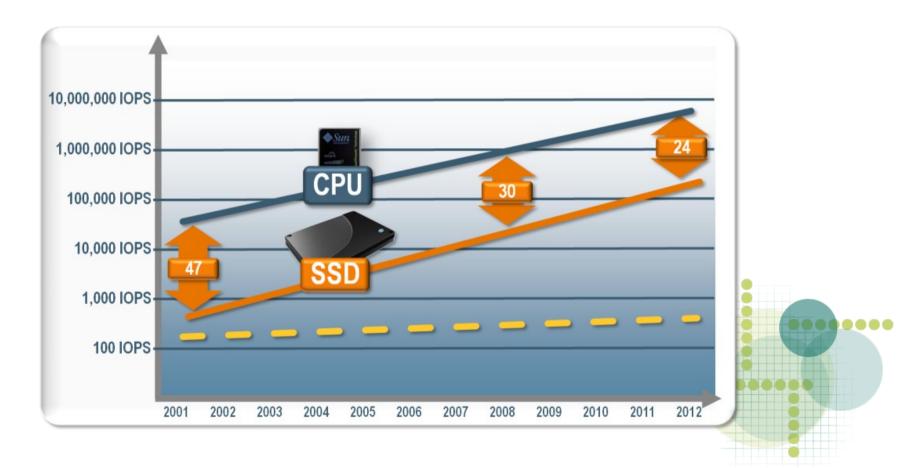

Crucial area for the computing model:

- critical performance issues
- computing main cost driver

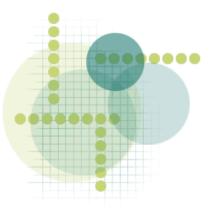
What topics should be address ?


- exploitation of new SSD technology
- new storage architecture: de-centralization ?

LNF - Dec. 3, 2009


DISK/CPU performance mismatch

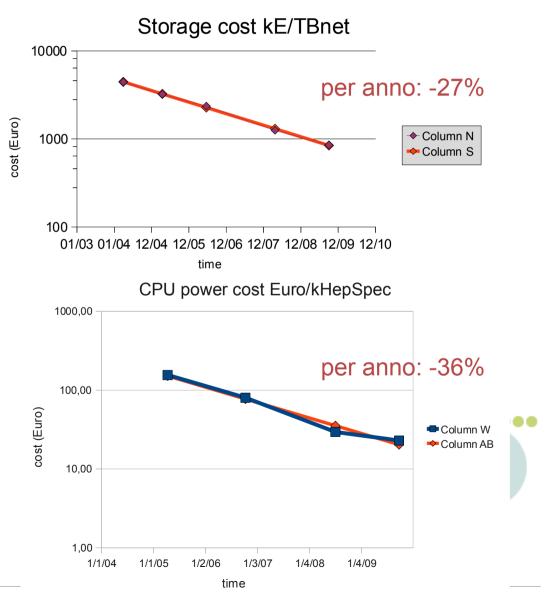
Le memorie persistenti a stato solido possono cambiare radicalmente il quadro


The old and the new

- Enterprise HDD
 - > 180 Write IOPS
 - > 320 Read IOPS
 - > 300 GB
 - > ~18W
- \$ per IOPS: 2.43
- IOPS/W: ~14

- Enterprise SSD
 - > 7,000 Write IOPS
 - > 35,000 Read IOPS
 - > 32GB
 - > ~3W
- \$ per IOPS: 0.04
- IOPS/W: ~7000

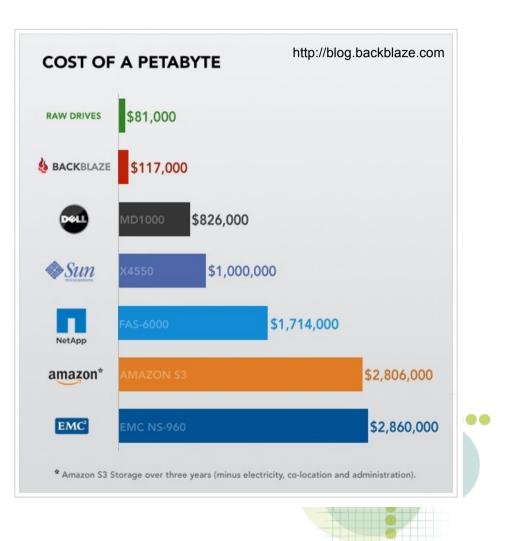
but HD will still be around for a while


Meanwhile

- storage system will be thr SSD - HD - tape
- it is not clear that data intensive applications one can get optimal performance just using SSD as storage caches in a transparent way

Evolution of CPU vs. Storage costs

- if we assume that CPU power and storage space scale in the same way
 - tipically with int. lumin.
- storage cost is rapidly beoming dominant w.r.t. CPU
- in 5 years, per Euro:
 - CPU capacity x 9.5
 - Storage capacity x 4.5



M. Muranum

Storage costs drivers

- disk drives costs < 10% total storage system costs
- due to:
 - hardware redundancy, high performance servers, interfaces and networks, caches, SAN infrastructures, ecc.
- but infrastructure costs don't seem to scale as disk drives do

A useful comparison

- 200 clusters
- per cluster:
 - 1000s machines
 - 4+ PB files system
 - 40 GB/s read/write load

EGEE Operate the largest-scale, production quality grid infrastructure for e-Science

250 sites 45 countries 50,000 CPUs 15 PetaBytes >5000 users >100 VOs >100,000 jobs/day

approaching storage differently

- Google approach to computing:
 - maximize performance per \$
 - hardware fails, fix it by software
 - no RAID, no expensive disks, no SAN, no special disk servers
 - data is replicated x3
 - energy saving too:
 - 12 V P.S., no UPS, lead battery in each server
 - run the application as close as possible to the data

the Google machine

Belle's implementation

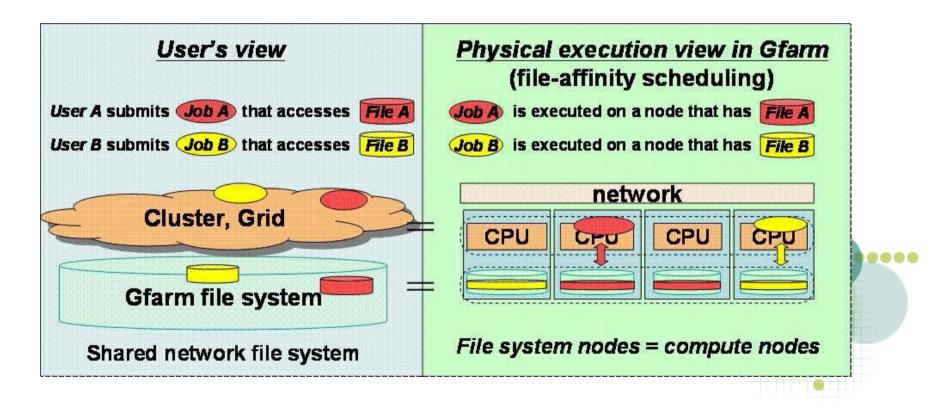
High Performance Data Analysis for Particle Physics using the Gfarm le system Journal of Physics: Conference Series 119 (2008) 062039

- Analysis data sets
 - mdst data sets for several categories of event: hadronic total sample: 30 TB of event data + 100 **TB Monte Carlo**
 - event are indexed by skimming
- Analysis farm
 - ~ 1140 nodes (2x3.6GHz Dual Xenon) w/ 72 GB disk
 - 1 PB disk storage on file servers
 - comp. nodes to file servers bandwidth 6+ GB/s
- The problem:

 it takes a long time to go through the full data LNF - Dec. 3, 2009 cone week! few hundred MB/s aggreg.)

Gfarm file system

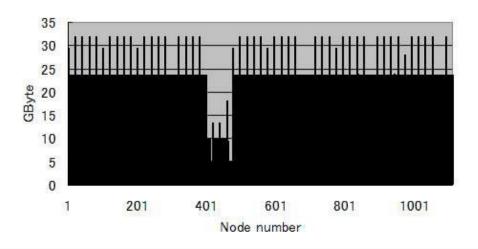
High Performance Data Analysis for Particle Physics using the Gfarm le system Journal of Physics: Conference Series 119 (2008) 062039


- Wanted to move to a de-centralized file ystem
 - GFarm file system was selected because:
 - it federates multiple disk servers into a single namespace
 - it runs in user space (via Linux Fuse, no kernel mod.)
 - it handles replicas
 - it doesn't require modifications of user code
 - Gfarm writes and reads files where it's most convenient:
 - local disk, if possible
 - otherwise close and least busy node
 - File metadata are kept on a central server
 - metadata are cached in multiple copies for improving access performance

Scheduling

High Performance Data Analysis for Particle Physics using the Gfarm le system Journal of Physics: Conference Series 119 (2008) 062039

- Gfarm also provides "scheduling by affinity"
 - jobs run on the idlest node that keeps a local copy of the required file

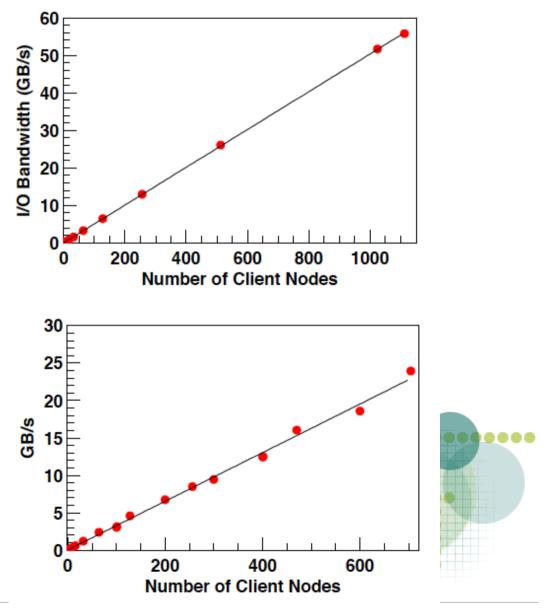


Test setup

High Performance Data Analysis for Particle Physics using the Gfarm le system Journal of Physics: Conference Series 119 (2008) 062039

• 1112 nodes

- + 1 metadata server
- + 3 metadata cache server
- 24.6 TB of data on local disks
 - ~ 20000 files (runs), size from 100 MB to 23 GB
 - copying the files to the Gfarm file system, evenly distribute the files across the nodes
 - each node provides max 54 MB/s read throughput


M. Morandin

Scalability

High Performance Data Analysis for Particle Physics using the Gfarm le system Journal of Physics: Conference Series 119 (2008) 062039

- I/O benchmark
 - up to the physical limit
 52 GB/s aggregated
 bandwidth
- Skimmink app.
 - looking for high energy gamma in B --> sγ events
 - 24 GB/s on 704 nodes
 - 34 MB/s average on each node
 - took 15 minutes instead of 3 weeks to run the skimming

M. Morandın