
Section 1 Section 2

Investigation of a new build system: SCons

Marco Corvo - XI SuperB workshop

December 3, 2009

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Why investigate a new build system

The current build system is based on Makefiles which have
become almost unreadable and difficult to improve or even
debug

The same inner organization of the source code is flat, that is
all source and header files are in the same directory

This requires Makefiles to filter them depending on their final
usage (e.g. lib files or bin files or root macro files) which is
not very efficient.

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Why investigate a new build system

The current build system is based on Makefiles which have
become almost unreadable and difficult to improve or even
debug

The same inner organization of the source code is flat, that is
all source and header files are in the same directory

This requires Makefiles to filter them depending on their final
usage (e.g. lib files or bin files or root macro files) which is
not very efficient.

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Why investigate a new build system

The current build system is based on Makefiles which have
become almost unreadable and difficult to improve or even
debug

The same inner organization of the source code is flat, that is
all source and header files are in the same directory

This requires Makefiles to filter them depending on their final
usage (e.g. lib files or bin files or root macro files) which is
not very efficient.

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Why SCons

SCons is a pure Python tool designed to allow building of
software projects without Makefiles

It can be interfaced to many different ”build” tools like gcc or
fortran

The main advantage is that it’s written in a fully debuggable
language which allows to dig into code to understand build
failures

The other advantages are modularity and flexibility

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Why SCons

SCons is a pure Python tool designed to allow building of
software projects without Makefiles

It can be interfaced to many different ”build” tools like gcc or
fortran

The main advantage is that it’s written in a fully debuggable
language which allows to dig into code to understand build
failures

The other advantages are modularity and flexibility

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Why SCons

SCons is a pure Python tool designed to allow building of
software projects without Makefiles

It can be interfaced to many different ”build” tools like gcc or
fortran

The main advantage is that it’s written in a fully debuggable
language which allows to dig into code to understand build
failures

The other advantages are modularity and flexibility

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Why SCons

SCons is a pure Python tool designed to allow building of
software projects without Makefiles

It can be interfaced to many different ”build” tools like gcc or
fortran

The main advantage is that it’s written in a fully debuggable
language which allows to dig into code to understand build
failures

The other advantages are modularity and flexibility

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Packages structure

The power os SCons comes out when the software project is
well organized in distinct packages, each with a clear directory
structure, like e.g.

/package/src

/package/include

/package/scripts

/package/tests

but this practice is a good one despite of the build system we
want to use because it keeps package structure clean and
more readable . . .

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Packages structure

The power os SCons comes out when the software project is
well organized in distinct packages, each with a clear directory
structure, like e.g.

/package/src

/package/include

/package/scripts

/package/tests

but this practice is a good one despite of the build system we
want to use because it keeps package structure clean and
more readable . . .

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

The heart of SCons

The heart of SCons is the Build Engine, a Python module
that manages dependencies between objects

The Build Engine uses a Python API for specifying source
(input) and target (output) objects, rules for
building/updating objects, rules for scanning objects for
dependencies

to use the Build Engine for dependency management we need
to interact with it through Construction Environments

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

The heart of SCons

The heart of SCons is the Build Engine, a Python module
that manages dependencies between objects

The Build Engine uses a Python API for specifying source
(input) and target (output) objects, rules for
building/updating objects, rules for scanning objects for
dependencies

to use the Build Engine for dependency management we need
to interact with it through Construction Environments

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

The heart of SCons

The heart of SCons is the Build Engine, a Python module
that manages dependencies between objects

The Build Engine uses a Python API for specifying source
(input) and target (output) objects, rules for
building/updating objects, rules for scanning objects for
dependencies

to use the Build Engine for dependency management we need
to interact with it through Construction Environments

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

SCons Environments

A Construction Environment is made of one or more
associated Scanner objects and Builder objects

A Scanner object specifies how to examine a type of source
object (C source file, scripts file) for dependency information
A Builder object specifies how to update a type of target
object: executable program, object file etc . . .

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

SCons Environments

A Construction Environment is made of one or more
associated Scanner objects and Builder objects

A Scanner object specifies how to examine a type of source
object (C source file, scripts file) for dependency information
A Builder object specifies how to update a type of target
object: executable program, object file etc . . .

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

SCons Environments

A Construction Environment is made of one or more
associated Scanner objects and Builder objects

A Scanner object specifies how to examine a type of source
object (C source file, scripts file) for dependency information
A Builder object specifies how to update a type of target
object: executable program, object file etc . . .

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Overall SCons features

Automatic dependency analysis built-in for C, C++ and
Fortran, extensible through user-defined dependency
Scanners for other languages or file types

Built-in support for C, C++, D, Java, Fortran, Yacc, Lex, Qt,
SWIG, TeX and LaTeX, extensible through user-defined
Builders for other languages or file types

Reliable detection of build changes using MD5 signatures plus
optional, configurable support for traditional timestamps

Support for parallel builds

Global view of all dependencies (no more multiple build passes
or reordering targets to build everything)

Ability to share built files in a cache to speed up multiple
builds similar to ccache but for any type of target file

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Overall SCons features

Automatic dependency analysis built-in for C, C++ and
Fortran, extensible through user-defined dependency
Scanners for other languages or file types

Built-in support for C, C++, D, Java, Fortran, Yacc, Lex, Qt,
SWIG, TeX and LaTeX, extensible through user-defined
Builders for other languages or file types

Reliable detection of build changes using MD5 signatures plus
optional, configurable support for traditional timestamps

Support for parallel builds

Global view of all dependencies (no more multiple build passes
or reordering targets to build everything)

Ability to share built files in a cache to speed up multiple
builds similar to ccache but for any type of target file

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Overall SCons features

Automatic dependency analysis built-in for C, C++ and
Fortran, extensible through user-defined dependency
Scanners for other languages or file types

Built-in support for C, C++, D, Java, Fortran, Yacc, Lex, Qt,
SWIG, TeX and LaTeX, extensible through user-defined
Builders for other languages or file types

Reliable detection of build changes using MD5 signatures plus
optional, configurable support for traditional timestamps

Support for parallel builds

Global view of all dependencies (no more multiple build passes
or reordering targets to build everything)

Ability to share built files in a cache to speed up multiple
builds similar to ccache but for any type of target file

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Overall SCons features

Automatic dependency analysis built-in for C, C++ and
Fortran, extensible through user-defined dependency
Scanners for other languages or file types

Built-in support for C, C++, D, Java, Fortran, Yacc, Lex, Qt,
SWIG, TeX and LaTeX, extensible through user-defined
Builders for other languages or file types

Reliable detection of build changes using MD5 signatures plus
optional, configurable support for traditional timestamps

Support for parallel builds

Global view of all dependencies (no more multiple build passes
or reordering targets to build everything)

Ability to share built files in a cache to speed up multiple
builds similar to ccache but for any type of target file

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Overall SCons features

Automatic dependency analysis built-in for C, C++ and
Fortran, extensible through user-defined dependency
Scanners for other languages or file types

Built-in support for C, C++, D, Java, Fortran, Yacc, Lex, Qt,
SWIG, TeX and LaTeX, extensible through user-defined
Builders for other languages or file types

Reliable detection of build changes using MD5 signatures plus
optional, configurable support for traditional timestamps

Support for parallel builds

Global view of all dependencies (no more multiple build passes
or reordering targets to build everything)

Ability to share built files in a cache to speed up multiple
builds similar to ccache but for any type of target file

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Overall SCons features

Automatic dependency analysis built-in for C, C++ and
Fortran, extensible through user-defined dependency
Scanners for other languages or file types

Built-in support for C, C++, D, Java, Fortran, Yacc, Lex, Qt,
SWIG, TeX and LaTeX, extensible through user-defined
Builders for other languages or file types

Reliable detection of build changes using MD5 signatures plus
optional, configurable support for traditional timestamps

Support for parallel builds

Global view of all dependencies (no more multiple build passes
or reordering targets to build everything)

Ability to share built files in a cache to speed up multiple
builds similar to ccache but for any type of target file

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Nice and useful features

SCons has an internal dependencies tree (a graph), build by
Scanners, that can be dumped and analyzed

A complex software project rarely requires the same level of
compiler optimization, debug, etc. options. Hence we need a
mechanism allowing to build different targets in different
ways: SCons uses Environments

Since they are plain Python objects they can be cloned,
derived from other Environments and extended

In principle you could rely on a single SConstruct file (that’s
a sort of main file for SCons) but for complex projects it
clearly useless: SCons’ Hierarchical builds

Along with a SConstruct file you can define many
SConscript ones, namely one for every package in your
project

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Nice and useful features

SCons has an internal dependencies tree (a graph), build by
Scanners, that can be dumped and analyzed

A complex software project rarely requires the same level of
compiler optimization, debug, etc. options. Hence we need a
mechanism allowing to build different targets in different
ways: SCons uses Environments

Since they are plain Python objects they can be cloned,
derived from other Environments and extended

In principle you could rely on a single SConstruct file (that’s
a sort of main file for SCons) but for complex projects it
clearly useless: SCons’ Hierarchical builds

Along with a SConstruct file you can define many
SConscript ones, namely one for every package in your
project

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Nice and useful features

SCons has an internal dependencies tree (a graph), build by
Scanners, that can be dumped and analyzed

A complex software project rarely requires the same level of
compiler optimization, debug, etc. options. Hence we need a
mechanism allowing to build different targets in different
ways: SCons uses Environments

Since they are plain Python objects they can be cloned,
derived from other Environments and extended

In principle you could rely on a single SConstruct file (that’s
a sort of main file for SCons) but for complex projects it
clearly useless: SCons’ Hierarchical builds

Along with a SConstruct file you can define many
SConscript ones, namely one for every package in your
project

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Where to go from here for SuperB use cases

The main doubt about SCons is its scalability

Most of what I learned about SCons comes from Igor
Gaponenko and Andrei Salnikov (Slac people) who use this
system to build LCLS software

but their project has just order of 20/30 packages to be
managed while SuperB scales up to hundreds

The idea is to:

select a few self consistent SuperB packages (to create a sort
of independent subproject)
clean and reorganize their inner structure (that is create the
/src, /include, /test, /scripts structure)
clean up sources in order to stick to one, maybe two
executables and consequently reduce the numbers of libraries
they depend on to better understand how SCons manages
dependencies

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Where to go from here for SuperB use cases

The main doubt about SCons is its scalability

Most of what I learned about SCons comes from Igor
Gaponenko and Andrei Salnikov (Slac people) who use this
system to build LCLS software

but their project has just order of 20/30 packages to be
managed while SuperB scales up to hundreds

The idea is to:

select a few self consistent SuperB packages (to create a sort
of independent subproject)
clean and reorganize their inner structure (that is create the
/src, /include, /test, /scripts structure)
clean up sources in order to stick to one, maybe two
executables and consequently reduce the numbers of libraries
they depend on to better understand how SCons manages
dependencies

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Where to go from here for SuperB use cases

The main doubt about SCons is its scalability

Most of what I learned about SCons comes from Igor
Gaponenko and Andrei Salnikov (Slac people) who use this
system to build LCLS software

but their project has just order of 20/30 packages to be
managed while SuperB scales up to hundreds

The idea is to:

select a few self consistent SuperB packages (to create a sort
of independent subproject)
clean and reorganize their inner structure (that is create the
/src, /include, /test, /scripts structure)
clean up sources in order to stick to one, maybe two
executables and consequently reduce the numbers of libraries
they depend on to better understand how SCons manages
dependencies

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Where to go from here for SuperB use cases

The main doubt about SCons is its scalability

Most of what I learned about SCons comes from Igor
Gaponenko and Andrei Salnikov (Slac people) who use this
system to build LCLS software

but their project has just order of 20/30 packages to be
managed while SuperB scales up to hundreds

The idea is to:

select a few self consistent SuperB packages (to create a sort
of independent subproject)
clean and reorganize their inner structure (that is create the
/src, /include, /test, /scripts structure)
clean up sources in order to stick to one, maybe two
executables and consequently reduce the numbers of libraries
they depend on to better understand how SCons manages
dependencies

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Where to go from here for SuperB use cases

The main doubt about SCons is its scalability

Most of what I learned about SCons comes from Igor
Gaponenko and Andrei Salnikov (Slac people) who use this
system to build LCLS software

but their project has just order of 20/30 packages to be
managed while SuperB scales up to hundreds

The idea is to:

select a few self consistent SuperB packages (to create a sort
of independent subproject)
clean and reorganize their inner structure (that is create the
/src, /include, /test, /scripts structure)
clean up sources in order to stick to one, maybe two
executables and consequently reduce the numbers of libraries
they depend on to better understand how SCons manages
dependencies

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Where to go from here for SuperB use cases

The main doubt about SCons is its scalability

Most of what I learned about SCons comes from Igor
Gaponenko and Andrei Salnikov (Slac people) who use this
system to build LCLS software

but their project has just order of 20/30 packages to be
managed while SuperB scales up to hundreds

The idea is to:

select a few self consistent SuperB packages (to create a sort
of independent subproject)
clean and reorganize their inner structure (that is create the
/src, /include, /test, /scripts structure)
clean up sources in order to stick to one, maybe two
executables and consequently reduce the numbers of libraries
they depend on to better understand how SCons manages
dependencies

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons



Section 1 Section 2

Where to go from here for SuperB use cases

The main doubt about SCons is its scalability

Most of what I learned about SCons comes from Igor
Gaponenko and Andrei Salnikov (Slac people) who use this
system to build LCLS software

but their project has just order of 20/30 packages to be
managed while SuperB scales up to hundreds

The idea is to:

select a few self consistent SuperB packages (to create a sort
of independent subproject)
clean and reorganize their inner structure (that is create the
/src, /include, /test, /scripts structure)
clean up sources in order to stick to one, maybe two
executables and consequently reduce the numbers of libraries
they depend on to better understand how SCons manages
dependencies

Marco Corvo - XI SuperB workshop Investigation of a new build system: SCons


	Section 1
	Section 2

