DCH Background study using FullSim

Riccardo Cenci

University of Maryland

SuperB General Meeting Frascati, Dec 2nd, 2009

Update on DCH background study

- Additional checks on G4 simulation output
- Stereo layers
- Different configurations, first look at:
 - Thinner tungsten shielding upstream and downstream of the IP
 - Axial only, Babar or SuperB layers configuration
 - 'Wedding cake' endplate on Fwd side

2

FullSim version and geometry

• Bruno v00-01-04, r247

 Old version, no committing or updating for work in progress on splitting in packages and fixing bugs

• Geometry:

- Beampipe (BP): 1mm thick, Rmin 10mm
- Gold foil inside BP: 10um
- SVT L0 length 10 cm, thickness 300um, Rmin 1.3cm
- BaBar SVT
- Cylindrical drift chamber
 - Rmin 230mm, Rmax 830mm but layers from 240 through 800mm
 - Length 2775mm, centered at z = +367mm
 - Carbon fiber structure filled by material with density averaged from gas and wires

Riccardo Cenci

Additional checks: time vs z

- Backscattering still not understood, prob need more info stored into hits, as already done for Svt
- Significant differences between Pairs and Bhabha Rad bkgs

Getting the DCH occupancy...

- Occupancy algorithm checked, improved code
- DCH occupancy not affected by bug in SVT bkg
- Tested changes in occupancy with 0.5cm G4 step (solid) instead of 1cm (dashed)

 Occupancy changes but also processing time increase a factor 6, workaround needed

Thinner Tungsten shielding

- Tungsten shielding upstream and downstream
- Configuration with thinner version of shielding, 2-3.5 times less (dashed line)

DCH configurations

Dch cell configuration:

- Inner radius: 24 cm, Outer radius: 80.5cm
- 1.3 (r) x 1.3 (phi) cm, cell size
- Superlayer made by 4 layers
- 10 superlayers (spaced 0.5 cm), ~10k cells
- Cells are not staggered

Superlayer configuration

- Axial only version
 - AAA AAA AAA A
- Babar version
 - AUV AUV AUV A
- SuperB version
 - A UV UV UV UV A
- Stereo angles like Babar

BaBar NIM paper

	# of	Radius	Width	Angle
SL	Cells	(mm)	(mm)	(mrad)
1	96	260.4	17.0-19.4	0
2	112	312.4	17.5 - 19.5	45 - 50
3	128	363.4	17.8 - 19.6	-(52-57)
4	144	422.7	18.4 - 20.0	0
5	176	476.6	16.9 - 18.2	56 - 60
6	192	526.1	17.2 - 18.3	-(63-57)
7	208	585.4	17.7 - 18.8	0
8	224	636.7	17.8 - 18.8	65-69
9	240	688.0	18.0-18.9	-(72-76)
10	256	747.2	18.3 - 19.2	0

Results with different stereo configurations

Rough estimations by Giuseppe (last meeting)

SLs	f _{axial}	$\langle N_{stereo} angle$	f _{stereo}
1,2,3	76/1344/6.1= <mark>0.93</mark> %	2764/18.2*0.051= 7.7	0.93%*7.7 = <mark>7.2</mark> %
4,5,6	64/2048/6.1= <mark>0.51</mark> %	2764/18.2*0.060= 9.1	0.51%*9.1 = <mark>4.6</mark> %
7,8,9,10	92/3712/6.1= <mark>0.41%</mark>	2764/18.2*0.071=10.8	0.41%*10.8= <mark>4.4</mark> %
1-10	232/7104/6.1= <mark>0.54</mark> %	2764/18.2*0.051= 9.1	0.54% *9.1= <mark>4.9</mark> %

Increase in occupancy not as expected

Wedding cake DCH

GDML code for wedding cake Dch

- 5 Step, r step 6.1cm, z step 20cm
- Occupancy increase about a factor 2 to 10, not reasonable, probably some errors (GMDL code?)

10

Need more checks on that

Conclusions

- Some additional checks performed: simulation is ok but occupancy is step-dependent, need to be fixed
- Occupancy can be estimated including also stereo layers
- Starting studying new configurations, geometry (thinner tungsten shield and wedding cake endplate) or layers structure (only axial, Babar and mostly stereo layers structure)
- Overall occupancy estimation is reasonable
- Lack of statistics still a major problem, jobs are really time expensive for radiative Bhabha (reduce the production angle?)

11