SVT Background study using FullSim

Riccardo Cenci

University of Maryland

SuperB General Meeting Frascati, Dec 1st, 2009

Update on SVT background study

- A bit of history...
 - Last meeting SVT L0 rate 40-60MHz/cm², too high compared to simple estimation by Eugenio (10MHz/cm²)
 - Eugenio discovered B field was not activated on BP/L0 region
 - Simulate again bkg pairs events
 - Need to understand better rate dependency from step size in G4 and check cluster algorithm
 - New rate estimations in this talk

FullSim version and geometry

• Bruno v00-01-04, r247

 Old version, no committing or updating for work in progress on splitting in packages and fixing bugs

Geometry:

- Beampipe (BP): 1mm thick, Rmin 10mm
- Gold foil inside BP: 10um
- SVT Layer 0 is a tube, not a pin-wheel
- SVT L0 length 10 cm, thickness 300um, Rmin 1.3cm
- BP and L0 centered at z = 0
- BaBar SVT

General improvement of bkg quantities (2-3 times)

Riccardo Cenci

SuperB General Meeting, Dec 1st 2009

Problem with G4 step size

- Simulations with different step sizes in IR region: 0.5, 1, 2 mm, big changes in the rate ±10% (21, 18, 17 MHz/cm²)
- Multiple checks on G4 simulation
- Additional information added in Bruno hit class:
 - Starting and ending point of the step
 - Vector momentum before and after the step
 - Step status (entering, leaving, fully included in a volume)
- New algorithm for rate calculation
 - Avg hit length 150um, 1 through 3 pixels, the particle incident angle should be taken in account

Helix diameter

- From transverse momentum for each hit, we can get helix diameter in 1.5T B field
- Looking at primary particles, only the ones with enough transv mom arrive on L0

Secondary particles can have also smaller mom

New clustering algorithm

- Not easy, different cases, particles can be created also inside silicon
- Cluster = group of G4Hits
- Algorithm steps:
 - Find the first hit, not belonging to the previous cluster
 - Add following hits if trkID and PDG are the same, and if the end point of previous hit is the same as the begin point of current hit
 - Calculate # pixels using the starting and end points of the cluster (energy cut?)
- Note: pixel rate can be really different from G4 hits rate (more than one pixel per hit)

dE/dx vs BetaGamma

 For each cluster we have steps length, deposited and incident energy

Riccardo Cenci

SuperB General Meeting, Dec 1st 2009

Pixels vs tan Incident angle

- For each cluster we can compute the number of pixels using track direction
- # pixels should be proportional to the tangent of incident angle on silicon plane

Clusters rate

 Cluster rate now is similar to what we expect from a simple calculation, 8.0 MHz/cm²

Not depending too much from step size

Riccardo Cenci

Cluster rate vs L0 radius

BP @ 10mm, L0 13->16mm

Conclusions

- Wrong settings in Bruno cause higher estimation of hits rates
- Easy to fix and, at the same time, many work to fully understand physics results and simulation settings dependence
- Cluster rate 8MHz/cm² but Cluster rate is expected to be much lower than Pixel rate

12

 Work in progress for cluster multiplicity and pixel rate...

Hit length

Max step length 1mm

Radiation dose vs L0 radius

BP @ 10mm, L0 13->16mm

14

Riccardo Cenci

Fluency vs L0 radius

BP @ 10mm, L0 13->16mm

