L₀ solutions and impact on time-dependent measurements

Nicola Neri Università di Pisa & INFN

XI SuperB General Meeting Frascati, I- 4 Dec 2009

I. SuperB baseline:

- SVT baseline: L0 + L1-L5 strip detectors, ±300 rad angular coverage;
- DCH baseline: 10 SuperLayers (4 cell layers per SL); inner radius 23.6 cm, spatial resolution 125 μm;

L₀ solutions: striplets vs Hybrid pixels

Decision will be based on bkg rates on L₀, dominated by pair production process $e^+e^- \rightarrow e^+e^-e^+e^-$. According to recent bkg simulations, (see Riccardo Cenci's talk) hit rate on L₀ is reduced compared to previous estimates and a striplet L₀ solution looks viable in terms of occupancy.

Total SVT material is about 3.3% (2.4%) X_0 for L_0 Hybrid pixel (Striplets) solution.

L₀ impact on Δt resolution for B⁰ $\rightarrow \phi K_S$

- Reconstruct $B^0 \rightarrow \phi K_s, \phi \rightarrow K^+K^-, K_s \rightarrow \pi^+\pi^-$
 - Δt resolution using TreeFitter vertex algorithm for B_{rec} with beam constraint and VtxTagBtaSelFit algorithm for B_{tag} .
 - Apply loose selection cuts: $m_{ES}>5.27$ GeV, Δt error <10.0 ps, $P(\chi^2_{Vtx})>0.05$, nB=1.

Vertex and Δt resolution

- Improvements with respect to BaBar:
 - additional L_0 at smaller radius
 - reduced beamspot size
 - lower material budget beamp pipe

- Worse wrt BaBar
 - reduction of CM boost

$$\Delta z \simeq \beta \gamma \Delta t \qquad \sigma(\Delta t) \simeq \frac{\sigma(\Delta z)}{\beta \gamma}$$

 FastSim parameters

 SuperB 1.60 cm

 BaBar 3.32 cm

 SuperB (5.6 μm, 35 nm, 330 μm)

 BaBar (203 μm, 4 μm, 8.5 mm)

 SuperB 0.42% X₀

 BaBar 1.06% X₀

SuperB $\beta \gamma = 0.28$ BaBar $\beta \gamma = 0.56$

Effect of beamspot constraint

BaBar SVT detector:

- BaBar beams and beamspot
- BaBar beams and SuperB beamspot
- SuperB beams and beamspot

Effect of reduced material beampipe

BaBar SVT detector:

- SuperB beams, beamspot and beampipe

Effect of additional L₀ hit measurement

SuperB SVT detector (Hybrid Pixel L₀): - SuperB beams, beamspot and beampipe

Summary of vertex resolution improvements

L ₀	boost	beamspot	beampipe	Tag res(µm)	Reco res(µm)	$\Delta t(ps)$
no	0.56	BaBar	BaBar	32±	104±1	1.25±0.01
no	0.56	SuperB	BaBar	126±1	71±1	1.07±0.01
no	0.28	SuperB	BaBar	6±	75±1	1.71±0.01
no	0.28	SuperB	SuperB	104±1	69±1	1.53±0.01
ΗP	0.28	SuperB	SuperB	90±1	60±1	1.35±0.01
Str	0.28	SuperB	SuperB	73±1	47±1	1.08±0.01

Effect of boost and L₀ radius (L₀ Hybrid Pixel solution)

Tag vertex bias vs boost

Effect of L₀ efficiency and hit resolution

Striplet vs Hybrid Pixels

Striplet performance vs degraded hit resolution

Conclusions

- Striplet detector seems to represent a viable solution for L₀ in terms of vertex and proper time resolution for time-dependent measurements in alternative to Hybrid Pixel or Maps detectors (assuming current bkg estimates on L₀ are robust).
- Some increase of the L_0 radius with respect to the nominal 1.60 cm value is possible if required for bkg reduction, up to ~2 cm, maintaining comparable Δt resolution with BaBar.
- Studied effect of efficiency on Δt resolution. Striplet detector maintains better or comparable Δt resolution with BaBar down to 60-70% efficiency.
- Degradation of striplet hit resolution ($8\mu m \rightarrow I 2\mu m$) seems to have fairly small effect on vertex and proper time resolution.

Backup

Angular coverage down to 300 mrad FW and BW

Impact on TD measurement

ToyMC fit with perfect tagging: use 2 Gaussian proper time resolution function tuned to FastSim residual.

S per event error normalized to BaBar result: Phys.Rev.D71:091102,2005.

Impact of beampipe radius on Vtx resolution

 No sizable change in Vtx resolution due to beampipe radius variation (same amount of radial material)