Update on Apsel5T measurements

<u>G. Traversia</u>, L. Gaioni^b, A. Manazza^b, M. Manghisoni^a, L. Ratti^b, V. Re^a

°Università degli Studi di Bergamo and INFN Pavia

^bUniversità degli Studi di Pavia and INFN Pavia

Apsel5T: motivations

- Classical optimum signal processing chain for capacitive detector can be implemented at pixel level
- ➤ A charge preamplifier is used for Q-V conversion → gain decoupled from electrode capacitance
- DNW may house NMOS transistors and using a large detector area, PMOS devices may be included in the frontend design → charge collection efficiency depends on the ratio between the DNW area and the area of all the N-wells (deep and standard)

Scaling Apsel4D to larger matrix size (128x128 or 320x80) dictates to remove the shaper stage to make room for additional macropixel private lines

Shaper-less front-end makes it possible to reduce the pixel pitch (from 50x50um² to 40x40um²)

> Optimized cell with satellite N-wells surrounding PMOS competitive N-wells in APSEL5T \Rightarrow Efficiency ~ 99% (from TCAD simulations). Beam test results of APSEL4D show a ~90% efficiency, which agrees very well with TCAD simulations

> Metal shielding between analog and digital voltages improved and made compatible with a large matrix

Pixel layouts

Sensor layout (1): main body + satellites Sensor area: 410um2 Area NW-PMOS: 70um2 Fill Factor: 0.85 Sensor cap. ≈ 220fF

Sensor layout (2): annular shape Sensors area: 480um² Area NW-PMOS: 70um² Fill Factor: 0.87 Sensor cap. ≈ 270fF

Apsel5T

M1: 3x3 matrix with all the analog outputs available, injection capacitance for the central pixel, sensor layout (1): main body + satellites

4 NW-P-int. NW-p-sub. diode for radiation hardness tests. 3 different geometries implemented

M2: 3×3 matrix with all the analog outputs available, injection capacitance for the central pixel, sensor layout (2): annular shape

M3: 8×8 matrix with a row-by-row sequential readout. Injection capacitance and analog output available on pixel 17. Sensor layout (1) in the left 8×4 matrix and sensor (2) in the right 8×4 matrix

Apsel5T experimental results

Average charge sensitivity: 680 mV/fC

Threshold dispersion: 45 e-

Pixel	Chip 3 - ENC [e-]
22 M1	45
22 M2	53
17 M3	53

Plans for the next weeks:

- \succ Absolute calibration with a ⁵⁵Fe source
- Tests with ⁹⁰Sr source

Charge collected by the central pixel of M1 and M2 matrix as a function of the laser position

Signal magnitude (e-) is plotted in the z (colour) axis for each position of the laser spot

> 5um step in X and Y (1064nm wavelength)

> The layout of the n-well layers and the dimension of the pixel pitch has been superimposed (exact position unknown)

> σ_{xy} of the laser ≈ 20um

> The main purpose of this measurement is to show the relative charge collection versus position (the amount of charge that is deposited has not been calibrated)

> Small reduction of the collected charge in the central region of the competitive n-wells

Annular shape sensor with yellow and red area larger than main body + satellites

- X=0 is set at the maximum of 22, Y=0 is set at the 22 maximum and 12, 32 minimum
- The peak amplitude of 12, 22, 32 measured at the same time for each laser spot
- Spot size ≈ 20um
- + 5um step in X and Y
- chip 2

- X=0 is set at the maximum of 22, Y=0 is set at the 22 maximum and 12, 32 minimum
- The peak amplitude of 12, 22, 32 measured at the same time for each laser spot
- Spot size \approx 20um
- 5um step in X and Y
- chip 2

- X=0 is set at the maximum of 22, Y=0 is set at the 22 maximum and 12, 32 minimum
- The peak amplitude of 12, 22, 32 measured at the same time for each laser spot
- Spot size ≈ 20um
- 5um step in X and Y
- chip 2

Metal3 and Metal4 shields

 \succ We used M3 and M4 to distribute analog and digital power and to shield the sensor from the digital activity

 \succ We routed M5 and M6 lines (as digital routing) above the sensor in different positions to test the shields

Metal3 and Metal4 shields

>Latest version of Apsel family chip (Apsel5T) has been fabricated in a planar 130nm DNW CMOS technology (STMicroelectronics)

> In view of the scaling to a larger matrix size, a compact, shaper-less design has been proposed for the analog front-end

> Non-negligible charge sensitivity variation among the pixels comes from device mismatch in the preamplifier feedback. A new improved feedback network is being prepared for the next version of the analog channel

> Laser measurements on the optimized layout of the sensor shows encouraging results in terms of charge collection properties

Backup Slides

Laser measurements

Preamplifier outputs of the 3x3 matrices (the position of the laser is such to obtain the maximum amplitude)

> As shown in the previous slide there is a wide variation in the peak amplitude and in the return-to-baseline time

> Variations of the process parameters of the feedback network transistors could explain this effect

