

Analysis of B→K^(*)vv against Hadronic Breco

<u>Elisa Manoni</u> Università di Perugia and INFN Sez. Perugia

DGWG, Frascati General Meeting December 2, 2009

Outline

Hadronic Breco and November production

- * BaBar Full Simulation vs Fast Simulation in the BaBar configuration
- Comparison between SuperB Detector geometry # 1 (DG_1) and SuperB Detector geometry # 4 (DG_4)
 - Breco side
 - $B \rightarrow K^{(*)} \nu \nu$ signal side analysis
- * SuperB expected sensitivity on $B \rightarrow K^{(*)}\nu\nu$ branching fractions

Hadronic Breco reconstruction philosophy

- Aim: collect as many as possible fully reconstructed **B** mesons in order to study the property of the recoil
- ^k SemiExclusive reconstruction: search for $B \rightarrow D(^*)X$, with

X=n π mK pK_s q π^0 and n+m+r+q<6, without making requirements on intermediate resonances

- * Reoconstruction steps:
 - reconstruct $D \rightarrow hadrons$

- use D as a seed and add X to have a system compatible with the B hypotesys
- * Signal box defined by using: $m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$ $\Delta E = E_B^* - E_{beam}^*$
- * Sample of 1100 B decay modes, ordered by purity.
- * In events with multiple candidates, the best one is selected according to the smallest ΔE

Hadronic Breco reconstruction in FastSim (I)

- SemiExclusive reconstruction implemented in FastSim: PacHadRecoilUserPackage
- * Package based on BaBar BTauSemiExclUser code

* It contains:

- main analysis tcl on which run the executable
- tcl for skim emulation (based on FilterTools/BSemiExclPath.tcl)
- tcl for PID selection (TableBasedXXXSelection selectors based on BaBar run6-r24c PID tables)
- tcl and .cc / .hh for signal and tag side reconstruction and selection:
 - $B_{sig} \rightarrow K\nu\nu, K^*\nu\nu, \tau\nu$ available
- tcl for BtaTupleMaker settings
- README
- * Code status:
 - used in the September and November production
 - need to make fix some bugs, write documentation, implement code for validation

INFN

Hadronic Breco reconstruction in FastSim (II)

- Breco side: limit the number of reconstructed modes channels according to their purity
 - Breco mode classification: neat : purity > 80%, $\varepsilon_{neat} \approx O(10^{-4})$
 - clean : 50% < purity < 80% , $\varepsilon_{clean} \approx O(10^{-3}-10^{-2})$

- in some BaBar analysis (i.e. $B \rightarrow \tau \nu$) only the cleanest Breco modes are used; same will be probably done with the high SuperB statistics
- \rightarrow reconstruct only neat+clean modes
- * Bsig side: - $K^+ \vee \vee$ - $K_s(\pi^+\pi^-) \vee \vee$ - $K_s(\pi^+\pi^-) \vee \vee$ - $K^{*+}(K_s\pi^+, K^+\pi^0) \vee \vee$ - $K^{*0}(K^+\pi) \vee \vee$ - $K^{*0}(K^+\pi) \vee \vee$
 - $\tau^+\nu$, with $\tau^+ \rightarrow e^+\nu\nu$, $\mu^+\nu\nu$, $\pi^+\nu$, $\rho^+(\pi^+\pi^0)\nu$, $a_1^{-+}(\rho^0\pi^+)\nu$

November production

Generic MC samples produced by Dave using PacProduction package

- machine background included: turn on 50X beamstrahlung (nominal 400X) with neutrons enabled
- * Samples:
 - three detector configurations: DG_BaBar, DG_1, DG_4
 - background MC samples

	Detector Geometry	Generator	N requested	Analysis	Requestor	Status	N produced
signal MC camples:	DG_1	BOBObar_generic	50x10^6	All	Dave	Complete	53.1 x10^6
- signal MC samples:	DG_1	B+Bgeneric	50x10^6	All	Dave	Complete	49.4x10^6
$B^+ \rightarrow K^+ \gamma \gamma B^+ \rightarrow K^{*+} \gamma \gamma$	DG_1	ccbar	50x10^6	DstD0ToKspipi, HadRecoil	Rolf, Elisa	Complete	49.9x10^6
	DG_1	uds	100x10^6	HadRecoil	Elisa	Complete	49.9x10^6
$B^0 \rightarrow K^{*0} \nu \nu$:	DG_1	B+Btau_DX	1x10^6	BtoTauNu	Chih-hsiang	Complete	1x10^6
	DG_4	B0B0bar_generic	50x10^6	All	Dave	Complete	48.3x10^6
10 ⁶ generated events for	DG_4	B+Bgeneric	50x10^6	All	Dave	Complete	48.7x10^6
	DG_4	ccbar	50x10^6	HadRecoil	Elisa	Complete	49.8x10^6
each sample, for each DG	DG_4	uds	100x10^6	HadRecoil	Elisa	Complete	49.3x10^6
	DG_4	B+Btau_DX	ТХТО″Ю	Btolauinu	Chih-hsiang	Complete	טייטדאד
	DG_BaBar	BOBObar_generic	50x10^6	HadRecoil	Elisa	Complete	50x10^6
	DG_BaBar	B+Bgeneric	50x10^6	HadRecoil	Elisa	Complete	50x10^6
	DG_BaBar	ccbar	50x10^6	DstD0ToKspipi, HadRecoil	Rolf, Elisa	Complete	50x10^6
	DG_BaBar	B+Btau_DX	1x10^6	BtoTauNu	Chih-hsiang	Complete	1x10^6

DetectorGeometry_1 (I)

SVT_L0 + bwd and fwd DCH: gain in tracking and Breco reconstruction efficiencies

DetectorConfiguration_4

SVT_L0 + fwd DIRC + bwd EMC: higher angular coverage and better K-π discrimination

Detector geometry (II)

A remark on PID usage

PID selectors used in the D and B lists

- π from GoodTracksVeryLoose
- K PID:

 $D{\rightarrow}\,KY$ lists use GoodTracksLoose or KLHNotPion depending on the D mode

 $B {\rightarrow} D^{(^*)}KY$ lists use KNNTight depending on the B mode

- * select events in which the K pass the proper PID selector (accounting also for the DG configuration) by using BitMaps
 - require a K from a B to pass the KNNTight selector according to DIRC only (DG_1) or DIRC+FWD PID (DG_4) infos

 \rightarrow no events found with Breco \rightarrow B \rightarrow D^(*)KY, investigation ongoing

 require ALL the K from a D to pass the KLHNotPion according to DIRC only (DG_1) or DIRC+FWD PID (DG_4) infos

Samples used

SuperB FastSim:

- B+B-, B0B0bar, ccbar MC samples (see slide 10)
- BaBar beams and detector geometry
- * BaBar FullSim, Run3:
 - B+B-: 49766000 gen. events
 - B0B0bar : 50556000 gen. events
 - ccbar : 83974000 gen. events
- * Differences in reconstructed Breco modes
 - BaBar FullSim: additive modes wrt FastSim, i.e. $B \rightarrow J/\psi X$, new D modes as seeds \rightarrow cut on B and D mode to reject most of them
 - BaBar FullSim: neat+clean+dirty sample \rightarrow cut on purity
- * Selection applied:
 - at least one reconstructed Breco; if #Breco > 1, best candidate $\leftrightarrow |\Delta E| \min$
 - -0.09<ΔE<0.05 GeV
 - 5.270<m_{ES}<5.288 GeV/c²

Hadronic Recoil Analysis: FastSim vs FullSim (I)

charged	rged B0B0bar		oar BpBm			ccbar	
Breco	FullSim	FastSim	FullSim	FastSim	FullSim	FastSim	
≥ 1 Breco	0.0037	0.0054	0.0100	0.0115	0.0088	0.0079	
deltaE cut	0.0028	0.0043	0.0081	0.0093	0.0063	0.0057	
mES cut	0.0004	0.0007	0.0034	0.0032	0.0008	0.0007	
$\epsilon_{ m Fast}/\epsilon_{ m Full}$	1.66		0.95		0.94		

neutral	B0B0bar		Bp	Bm	ccbar	
Breco	FullSim	FastSim	FullSim	FastSim	FullSim	FastSim
≥ 1 Breco	0.0083	0.0133	0.0031	0.0057	0.0038	0.0054
deltaE cut	0.0070	0.0116	0.0025	0.0048	0.0029	0.0043
mES cut	0.0020	0.0028	0.0003	0.0006	0.0003	0.0005
$\epsilon_{ m Fast}/\epsilon_{ m Full}$	2.20		1.92		1.57	

Hadronic Recoil Analysis: SuperB configs(I)

Efficiency table for charged reconstructed Breco

charged	B0B	0bar	<u>BpBm</u>		ccbar		uds	
Breco	DG_1	DG_4	DG_1	DG_4	DG_1	DG_4	DG_1	DG_4
≥ 1 Breco	0.0084	0.0089	0.0165	0.0174	0.0113	0.0120	0.0055	0.0058
deltaE cut	0.0067	0.0072	0.0135	0.0143	0.0081	0.0087	0.0038	0.0040
mES cut	0.0010	0.0011	0.0042	0.0043	0.0011	0.0012	0.0006	0.0006
$(\epsilon_{\mathrm{DG4}}-\epsilon_{\mathrm{DG1}})$	+5	.92	+3.70%		+5.61%		+3.03%	
$/\epsilon_{DG1}$								

December 2, 2009

Hadronic Recoil Analysis: SuperB configs(II)

Efficiency table for neutral reconstructed Breco

neutral	<u>B0B</u>	<u>Obar</u>	Bp	Bm	ccb	bar	u	ds
Breco	DG_1	DG_4	DG_1	DG_4	DG_1	DG_4	DG_1	DG_4
≥ 1 Breco	0.0198	0.0202	0.0090	0.0092	0.0084	0.0086	0.0015	0.0015
deltaE cut	0.0174	0.0178	0.0077	0.0079	0.0068	0.0071	0.0011	0.0011
mES cut	0.0039	0.0039	0.0009	0.0009	0.0007	0.0007	0.0001	0.0001
$(\epsilon_{\mathrm{DG4}}-\epsilon_{\mathrm{DG1}})$	+1.2	<u>76%</u>	+1.45%		+2.16%		+2.79%	
$/\epsilon_{\rm DG1}$								

December 2, 2009

Hadronic Recoil Analysis: SuperB configs(IV)

neutral Breco, ΔE before selection, and m_{ES} after ΔE selection

December 2, 2009

$B \rightarrow Kvv$: efficiency studies

- BaBar cut and count analysis
 - Selection:

K candidate from Bsig $|\cos\theta^*_{trk}| < 0.85$ N_{extraTrk}<3 E_{extra}<0.4 GeV $N_{\pi 0} = 0$ $p_{K}^{B} > 1.1 Gev/c$ $-0.85 < \cos \theta_{\text{pmiss}} < 0.9$

ε_{TOT} = 7.2 x 10⁻⁴ (no systematics or corrections included)

- reconstructed Breco modes = neat + clean + dirty
- * SuperB: applying BaBar cuts BUT N_{extraTrk}==0

	DG_BaBar	DG_1	DG_4
$\epsilon_{ m tot, \ K}$	0.000163	0.000236	0.000287
ε gain wrt DG_BaBar		+44.8%	+76.1%

December 2, 2009

$B \rightarrow K^* \nu \nu$: efficiency studies (I)

BaBar cut and count analysis

- Selection:

channel	selection criteria				
$K^{*\pm} \rightarrow K^{\pm} \pi^0$	$0.03 < R_2 < 0.70$				
	$0.004 < \left \cos \theta_{\mathrm{thrust}}^*\right < 0.84$				
	$0.84 < m_{K^*} < 0.95 \text{ GeV}/c^2$				
	$-0.78 < \cos\theta^*_{\rm miss} < 0.93$				
$K^{*\pm} \to K^0_s (\pi^+ \ \pi^-) \ \pi^{\pm}$	$0.0 < R_2 < 0.49$				
	$0.0 < \cos \theta^*_{ m thrust} < 0.85$				
	$0.86 < m_{K^*} < 0.95 \text{ GeV}/c^2$				
	$0.49 < m_{K_s^0} < 0.50 \text{ GeV}/c^2$				
	$-0.82 < \cos\theta^*_{\rm miss} < 0.82$				
$K^{*0} \to K^- \pi^+$	$0.06 < R_2 < 0.53$				
	$0.002 < \left \cos \theta^*_{\mathrm{thrust}}\right < 0.85$				
	$0.85 < m_{K^*} < 0.97 \text{ GeV}/c^2$				
	$-0.86 < \cos\theta^*_{\rm miss} < 0.90$				
E*miss+cp*miss>4.5GeV					
Eextra<0.3GeV					

reconstructed Brecomodes = neat + clean + dirty

$$\begin{split} & \epsilon_{\text{TOT}} \left(B^+ \longrightarrow K^{*+} (K^+ \pi^0) \nu \nu \right) = 1.01 \text{ x } 10^{-4} \\ & \epsilon_{\text{TOT}} \left(B^+ \longrightarrow K^{*+} (K_S \pi^+) \nu \nu \right) = 0.74 \text{ x } 10^{-4} \\ & \epsilon_{\text{TOT}} \left(B^0 \longrightarrow K^{*0} (K^+ \pi) \nu \nu \right) = 1.74 \text{ x } 10^{-4} \\ & \text{(no systematics or corrections included)} \end{split}$$

December 2, 2009

 $B \rightarrow K^* \nu \nu$: efficiency studies (I)

SuperB: applying BaBar cuts BUT R_2 , m_{Ks} (not filled correctly at rootuple level)

	DG_BaBar	DG_1	DG_4
ε _{tot, K*0(K+π-)}	0.000124	0.000177	0.000180
ε gain wrt DG_BaBar		+42.7%	+45.2%
$\boldsymbol{\epsilon}_{\mathrm{tot, K}^{*}+(\mathrm{K}+\pi 0)}$	0.000043	0.000055	0.000064
ε gain wrt DG_BaBar		+27.9%	+48.8%
$\epsilon_{tot, K^{*}+(Ks\pi^{+})}$	0.000040	0.000046	0.000050
ε gain wrt DG_BaBar		+15.0%	+25.0%

Method and uncertainties treatment

<u>K*nunu</u>:

INF

- FastSim : cut and count analysis (optimization done in BaBar)
- BaBar published result: results extracted by fitting Neural Network output

 \rightarrow not straightforward to extrapolate BaBar results in SuperB scenario

- * <u>Knunu</u>: applied same cut and count analysis as done in BaBar
- * Compare:
 - BaBar results, scaling with lumi
 - SuperB DG_1 configuration
 - SuperB DG_4 configuration
- * start from BaBar efficiencies & Backgrounds, BaBar analysis technique
- * estimate a background reduction of 10%, use the efficiency gain evaluated by comparing DG_BaBar and DG_1/DG_4

* Systematic uncertainties

BaBar: systematics largely dominated by MC statistics; Syst. error expected to go down with: 1/sqrt(MC stat) ~ 1/sqrt(Luminosity)

SuperB: assume a syst. error equal to the stat. error;

Conclusions

- PAcHAdRecoilUser used in November production
 - generic Mc samples
 - signal Mc samples : $B \rightarrow K^+ \nu \nu$, $B \rightarrow K^{*0} \nu \nu$, $B \rightarrow K^{*+} \nu \nu$
- * comparison with BaBar FullSim:
 - quite good agreement for charged Breco, still some wok to do for the neutral
- * test SuperB detector geometry configuration
 - DG_4 gives higher statistics wrt DG_1, but also higher background contamination
 - DG_4 selection variables may be more discriminant \rightarrow more statistics needed
- * SuperB expected sensitivity on $B \rightarrow K^{(*)} \nu \nu$ branching fractions
 - extrapolation for $K^*\nu\nu$ not straightforward
 - evidence for $B \rightarrow Kvv$ signal @ 50ab-1 (assuming SM BR)

Bkg efficiency, before signal side selection

Knunu

- BRR) bz = 5e-07 bp : 5.44e-06 cc : 5.8e-07
- DG1) bz = 3.59848e-07(-28%) bp = 4.87854e-06(-10%) cc = 8.4e-07(+45%)
- DG4) bz = 3.52697e-07 (-29%) bp = 5.23614e-06 (-4%) cc = 7.83133e-07 (+35%)

* Kstar0nunu

- BRR) bz = 1.88e-06 bp : 3.5e-06 cc : 3e-07
- DG1) bz = 1.36364e-06 (-27%) bp = 1.78138e-06 (-49%) cc = 4.4e-07 (+47%)
- DG4) bz = 1.53527e-06 (-19%) bp = 2.25873e-06 (-35%) cc = 4.21687e-07 (+40%)

* Kstarpnunu

- Kspi

```
BRR) bz = 9.4e-07 bp : 6.6e-06 cc : 8e-07
DG1) bz = 1.00379e-06 (+7%) bp = 6.33603e-06 (-4%) cc = 9.4e-07 (+17%)
DG4) bz = 1.20332e-06 (+28%) bp = 6.55031e-06 (-1%) cc = 1.1245e-06 (+40%)
- Kpiz
BRR) bz = 9.4e-07 bp : 6.6e-06 cc : 8e-07
DG1) bz = 1.13636e-07 (-88%) bp = 9.7166e-07 (-85%) cc = 2.4e-07 (-70%)
DG4) bz = 1.24481e-07 (-87%) bp = 1.00616e-06 (-84%) cc = 3.21285e-07 (-60%)
```


Breco study: startegy

- separate reconstructed neutral and charged Breco
 - "signal" = B0 in B0B0bar_generic sample / $B \pm$ in B+B-_generic sample
 - "combinatorial background" = B0 in B+B-_generic sample / B± in B0B0bar_geeneric sample

- * Mode by mode study
 - high vs low **PURITY** modes (integrated purity threshold: 80%)
 - high vs low vs verylow **MULTIPLICITY** modes

verylow = $\mathbf{B} \rightarrow \mathbf{D}\mathbf{K}/\mathbf{D}\pi \&\& \mathbf{D}^0 \rightarrow \mathbf{K}\pi; \mathbf{D}^*, \mathbf{D}^0 \rightarrow \mathbf{K}\pi; \mathbf{D}^+ \rightarrow \mathbf{K}_s\pi; \mathbf{D}^{*0} \rightarrow \mathbf{D}^0\mathrm{pi}^0, \mathbf{D}^0 \rightarrow \mathbf{K}\pi; \mathbf{D}^{*0} \rightarrow \mathbf{D}^0\gamma, \mathbf{D}^0 \rightarrow \mathbf{K}\pi$

low = $B \rightarrow DK/D\pi$ && all $D^{(*)}$ modes

high = !(low)