SuperB Backward EMC Resolution in FastSim and Potential for PID

Chih-hsiang Cheng
Caltech
2009/12/01-04
SueprB General Meeting, Frascati

Backward EMC geometry

- Current design: 24 layers of Pb and scintillators. Only scintillators are active, of course.

G4 model

Segmentation

- No segmentation in theta.
- Three types of phi segmentations (lefthanded logarithmic spiral, right-handed, straight) to resolve theta ambigouity. 48 sectors in each layer.

FastSim does not have those details

- Use four thick layers to model geometry.
- Mix Pb and scintillator as its material.
- Assume there are 8 rings, each with 48 "crystals". (was 60)
- avoid the complication from reconstruction.
- Assume the entire body is active.
- avoid the energy calibration from sampled energy deposition to the entire shower energy.
- Effective Moliere radius: 3.3 cm .
- Model energy resolution:

$$
\frac{\sigma_{E}}{E}=\frac{14 \%}{\sqrt{E(\mathrm{GeV})}} \oplus 1 \%
$$

$\gamma \gamma$ invariant mass resolution

Timing device at or in front of EMC

- Test K / π separation using fastsim:
- store track timing at the first layer of EMC fastsim model at sim-track level (i.e., true time)
- smear timing with a Gaussian at given resolution.
- use reconstructed path length to calculate velocity.

Forward

velocity versus reco momentum

- In each pair, left plot just smears true velocity, ignoring uncertainty from reco path length, right plot is using reco path length.

Backward

velocity versus reco momentum

- In each pair, left plot just smears true velocity, ignoring uncertainty from reco path length, right plot is using reco path length.

K / π separation

Forward

Backward

- With 100 ps resolution, we get more than 3σ separation for $1 \mathrm{GeV} / \mathrm{c}$ at the backward region, $\sim 1.5 \sigma$ for $1.5 \mathrm{GeV} / \mathrm{c}$.

