Drift Chamber Performance Studies Using Bhwide Bhabha Monte Carlo Generator

Darren Swersky, McGill University

Outline

Part I: Checking Bhwide for consistency and accuracy

- Choose generator-level electron and positron cuts
- Calculate cross-sections for various bhabha scattering ranges

Part II: Modelling drift chamber tracking and occupancy rates

- Find fiducial region of detector w.r.t. electrons and positrons
- Choose generator-level electron and positron cuts based on fiducial region
- Simulate angular dependence of Dch response, occupancy rates per wire layer

Final Remarks

Part 1: Determining Appropriate Generator Cuts

- Default generator cuts: $20^{\circ} \leq \theta \leq 160^{\circ}$ for electrons and positrons $(\theta$ is measured w.r.t. beam axis in direction of incoming electron)
- Unless otherwise specified, θ is measured in the lab frame
- For this part, we are interested in electrons scattered at $\theta \geq 10^{\circ}$
- 10000 events simulated for each set of cuts
- Lab frame is boosted at ~ 0.273 c w.r.t. CM frame
- Due to photon emission, electrons and positrons need not emerge back-toback in CM frame
- Need to make generator cuts sufficiently loose to account for various forms of bhabha scattering in region of interest

Part 1: Determining Appropriate Generator Cuts

- Positron tail at large angles is due to photon emission, in this region the positrons do not scatter back-to-back with electrons in CM frame
- Default generator cuts for positrons, $\theta_{\mathrm{e}} \leq 160^{\circ}$

Figs. 1a, 2a, 3a: $\cos \theta$ of scattered electrons and positrons
Figs. $1 \mathrm{~b}, 2 \mathrm{~b}, 3 \mathrm{~b}$: $\cos \theta$ of positrons vs. electrons for each event

Part 1: Determining Appropriate Generator Cuts

Fig. 1.3a

Part 1: Determining Appropriate Generator Cuts

- For this part we only need to worry about small-angle electron scattering, large-angle portion is negligible by comparison
- Use default generator cuts for small-angle positrons and large-angle electrons ($\theta_{\mathrm{e}} \leq 160^{\circ}, \theta_{\mathrm{p}} \geq 20^{\circ}$)
- Use generator cut $\theta_{\mathrm{e}} \geq 10^{\circ}$ for small-angle electrons, variable upper bounds on θ_{p}

Figs. 2.1, 2.2, 2.3: $\cos \theta$ of scattered electrons and positrons for different values of θ_{p}

Part 1: Determining Appropriate Generator Cuts

Fig. 2.4

- A cut of $\theta \leq 175^{\circ}$ for positrons appears to be sufficient

Part 1: Final Results

Fig. 2.3

- 10000 events simulated, used to calculate various cross-sections for electron scattering (see Table 1.1 on next slide)

Part 1: Final Results

Table 1.1

$\boldsymbol{\beta} \boldsymbol{\gamma}$	$\boldsymbol{\theta}_{\text {min }}(\mathbf{L a b})$	$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta } _ { \text { max } } (\mathbf { C M })}$	\# electrons	$\boldsymbol{\sigma}(\mathbf{n b})$	$\boldsymbol{\sigma}_{\mathbf{F}}(\mathbf{n b})^{*}$
0.56	200 mrad	0.943	4520	63.2 ± 3.2	62.3
0.56	300 mrad	0.875	1953	27.3 ± 1.4	25.9
0.28	200 mrad	0.966	7669	107.2 ± 5.4	113.2
0.28	300 mrad	0.924	3363	47.0 ± 2.4	48.6

- All calculations and cuts are performed by switching to CM frame
- 5% error assumed in calculation of σ
* Figures estimated by Giuseppe Finocchiaro using Babayaga generator
** See BaBar Note \#503

Part 2: Imaging the Drift Chamber Using Electron and Photon Decay Vertices

Fig 3.1a: 3D view

Fig 3.1b

Fig 3.1c

- Modelled using 30000 events (more events would clearly give a better picture)

Part 2: Finding the Fiducial Region

Fig. 3.2

- 10000 positron entries, 10000 electron entries in total
- Scattering angles required for positrons and electrons to be detected:
- For electrons, $16.3^{\circ} \leq \theta_{e} \leq 162.8^{\circ}$
- For positrons, $17.5^{\circ} \leq \theta_{p} \leq 163.1^{\circ}$

Part 2: Determining Appropriate Generator Cuts For Fiducial Area

- Interested in the region $14^{\circ} \leq \theta \leq 165^{\circ}$, but want to include scattering at more extreme angles due to bremsstrahlung
- Using a similar procedure to that in part 1 , a cut of $8^{\circ} \leq \theta \leq 171^{\circ}$ is selected for the Dch study

Part 2: Results

Fig. 4.1

Fig. 4.2

- 30000 events simulated
- Graphs include both positrons and electrons

Part 2: Results

Fig. 4.1

- Occupancy rates based on reference value of 49nb for electron cross-section in range $-0.922 \leq \cos \theta_{\mathrm{CM}} \leq 0.927$
- Assumed SuperB luminosity of $10^{-3} \mathrm{fb}^{-1} \cdot \mathrm{~s}^{-1}$
- In this range we have 6686 electrons (out of 30000 total) $\rightarrow \sim 0.14$ s of data
- Also assumes that if layer n is hit, then so are layers $1,2, \ldots, n-1$

Final Remarks

- Would be useful to find a way of obtaining more data than what BetaTupleMaker provides
- May want to consider using FastSim event display module
- Bhwide generator tends to overshoot generator-level angular cutoffs for positrons and electrons by $\sim 1^{\circ}$

Future Goals:

- Plan to continue studying Dch occupancy rates, adding more details as I learn the tools and methods
- Will substitute in various test geometries for Dch and perform similar analyses on them

