Drift Chamber Performance Studies Using Bhwide Bhabha Monte Carlo Generator

Darren Swersky, McGill University

Part I: Checking Bhwide for consistency and accuracy

- Choose generator-level electron and positron cuts
- Calculate cross-sections for various bhabha scattering ranges

Part II: Modelling drift chamber tracking and occupancy rates

- Find fiducial region of detector w.r.t. electrons and positrons
- Choose generator-level electron and positron cuts based on fiducial region
- Simulate angular dependence of Dch response, occupancy rates per wire layer

Final Remarks

- Default generator cuts: 20°≤θ≤160° for electrons and positrons (θ is measured w.r.t. beam axis in direction of incoming electron)
 - Unless otherwise specified, θ is measured in the lab frame
- For this part, we are interested in electrons scattered at $\theta \ge 10^{\circ}$
- 10 000 events simulated for each set of cuts
- Lab frame is boosted at ~0.273c w.r.t. CM frame
- Due to photon emission, electrons and positrons need not emerge back-toback in CM frame

3

• Need to make generator cuts sufficiently loose to account for various forms of bhabha scattering in region of interest

- Positron tail at large angles is due to photon emission, in this region the positrons do not scatter back-to-back with electrons in CM frame
- Default generator cuts for positrons, $\theta_{e} \le 160^{\circ}$

Figs. 1a, 2a, 3a: $\cos\theta$ of scattered electrons and positrons Figs. 1b, 2b, 3b: $\cos\theta$ of positrons vs. electrons for each event

- For this part we only need to worry about small-angle electron scattering, large-angle portion is negligible by comparison
- Use default generator cuts for small-angle positrons and large-angle electrons (θ_g≤160°, θ_g≥20°)
- Use generator cut $\theta_e \ge 10^\circ$ for small-angle electrons, variable upper bounds on θ_p

Figs. 2.1, 2.2, 2.3: $\cos\theta$ of scattered electrons and positrons for different values of θ_n

 $cos\theta_{p}$ for various generator-level positron cuts 2500 20°≤0 ≤160° 20°≤θ ≤170° 2000 20°≤θ ≤175° # of entries 1500 1000 500 01.1 -0.8 cosθ_p -0.9 -0.5 -1 -0.7 -0.6

Fig. 2.4

• A cut of $\theta \le 175^\circ$ for positrons appears to be sufficient

Part 1: Final Results

• 10 000 events simulated, used to calculate various cross-sections for electron scattering (see Table 1.1 on next slide)

Part 1: Final Results

βγ	θ _{min} (Lab)	cosθ _{max} (CM)	# electrons	σ(nb)	$\sigma_{F}(nb)^{*}$
0.56	200mrad	0.943	4520	63.2±3.2	62.3
0.56	300mrad	0.875	1953	27.3±1.4	25.9
0.28	200mrad	0.966	7669	107.2±5.4	113.2
0.28	300mrad	0.924	3363	47.0±2.4	48.6
Reference**		$-0.922 \le \cos\theta \le 0.927$	3504	49	

- All calculations and cuts are performed by switching to CM frame
- \bullet 5% error assumed in calculation of σ
- * Figures estimated by Giuseppe Finocchiaro using Babayaga generator

9

** See BaBar Note #503

Part 2: Imaging the Drift Chamber Using Electron and Photon Decay Vertices

Fig 3.1b

• Modelled using 30 000 events (more events would clearly give a better picture)

Part 2: Finding the Fiducial Region

Fig. 3.2

- 10 000 positron entries, 10 000 electron entries in total
- Scattering angles required for positrons and electrons to be detected:

- For electrons, $16.3^{\circ} \le \theta_{a} \le 162.8^{\circ}$
- For positrons, $17.5^{\circ} \le \theta_{p} \le 163.1^{\circ}$

Part 2: Determining Appropriate Generator Cuts For Fiducial Area

- Interested in the region 14°≤ θ ≤165°, but want to include scattering at more extreme angles due to bremsstrahlung
- Using a similar procedure to that in part 1, a cut of 8°≤ θ ≤171° is selected for the Dch study

Part 2: Results

- 30 000 events simulated
- Graphs include both positrons
 and electrons

Fig. 4.2

Part 2: Results

Fig. 4.1

- Occupancy rates based on reference value of 49nb for electron cross-section in range -0.922 $\leq \cos\theta_{_{CM}} \leq 0.927$
 - Assumed SuperB luminosity of 10⁻³ fb⁻¹•s⁻¹
 - In this range we have 6686 electrons (out of 30 000 total) \rightarrow ~0.14s of data
 - Also assumes that if layer *n* is hit, then so are layers 1,2,...,*n*-1

Final Remarks

- Would be useful to find a way of obtaining more data than what BetaTupleMaker provides
 - May want to consider using FastSim event display module
- Bhwide generator tends to overshoot generator-level angular cutoffs for positrons and electrons by ~1°

Future Goals:

- Plan to continue studying Dch occupancy rates, adding more details as I learn the tools and methods
- Will substitute in various test geometries for Dch and perform similar analyses on them