

Solenoid Compensation

Super-B Workshop Frascati December 2009

Kirk Bertsche

- Detector solenoid field may limit excitation of SC quads
 - Main concern at quad ends; windings must turn around, field is parallel to detector solenoid
- Detector solenoid may saturate a Panofsky style QD0
- Detector solenoid causes x-y coupling

- Use "bucking solenoids" around beamline components
- Nominally cancel ${\rm B_z}$ at SC and Panofsky quad locations
- Overcompensate B_z where quads are absent
- Goal: $\int_{-\infty}^{\infty} B_z dz = 0$
 - This cancels coordinate plane rotation at IP (no x-y coupling when IP quads are unexcited)

Parameters

SuperB Parameters July 22 2009

SuperB Parameters		(in bold: computed values)					
				Sig x LER	microns	9.899	9.051
Parameter	Units	Super-B	Super-B	Sig y LER	microns	0.038	0.036
		TorVergata	LNF	Piwinski angle HER	rad	26.52	26.52
		1-Mar-09	22-Jul-09	Piwinski angle LER	rad	15.15	16.57
		with SR	with SR LER	Sig x HER effective	microns	150.15	150.15
E HER (positrons)	GeV	6.9	6.7	Sig x LER effective	microns	150.37	150.32
E LER (electrons)	GeV	4.06	4.18	X-angle factor HER		0.038	0.038
Energy ratio		1.70	1.60	X-angle factor LER		0.066	0.060
rO	cm	2.83E-13	2.83E-13	Cap Sig X	microns	11.402	10.673
X-Angle (full)	mrad	60	60	Cap Sig Y	microns	0.054	0.051
				R (hourglass factor)		0.900	0.900
Beta x HER	cm	2	2	Cap Sig X eff	microns	212.13	212.13
Beta y HER	cm	0.037	0.032	Lumi calc	/cm2/s	1.02E+36	1.02E+36
Coupling (high current)		0.0025	0.0025	Tune shift x HER		0.0018	0.0017
Emit x HER	nm	1.6	1.6	Tune shift y HER		0.1271	0.1170
Emit y HER	nm	0.004	0.004	Tune shift x LER		0.0052	0.0045
Bunch length HER	cm	0.5	0.5	Tune shift y LER		0.1220	0.1170
Beta x LER	cm	3.5	3.2	Damping long HER	msec	21	14.5
Beta y LER	cm	0.021	0.02	Damping_long LER	msec	20.0	22.0
Coupling (high current)	%	0.0025	0.0025	Uo HER	MeV	2.3	2.03
Emit x LER	nm	2.8	2.56	Uo LER	MeV	1.40	0.83
Emit y LER	nm	0.007	0.0064	alfa_c HER		3.50E-04	4.04E-04
Bunch length LER	cm	0.5	0.5	alfa_c LER		3.20E-04	4.24E-04
				sigma-EHER		5.80E-04	6.15E-04
THER	mA	2200	2120	sigma-E LER		8.20E-04	6.57E-04
ILER	mA	2200	2120	CM sigma_E		1.00E-03	9.00E-04
Circumference	m	2105	1315	SR power loss HER	MW	5.06	4.30
N. Buckets distance		2	2	SR power loss LER	MW	3.08	1.76
Gap		0.97	0.97	Touschek lifetime HER	min	33	35
Frf	Hz	4.76E+08	4.76E+08	Touschek lifetime LER	min	17	16
Fturn	Hz	1.43E+05	2.28E+05	Luminosity lifetime HER	min	5.20	4.95
Fcoll	Hz	2.31E+08	2.31E+08	Tatal lifetime LER	min	5.20	4.95
Num Bunch		1619	1011		min	4.49	4.34
NHER		5.96E+10	5.74E+10	Total lifetime LER	min	3.98	3.78
NLER		5.96E+10	5.74E+10	RF plug power	MVV	16.28	12.13
Sig x HER	microns	5.657	5.657				
Sig v HER	microns	0.038	0.036				

SuperB Parameters July 22 2009

IR Parameters

Parameter	HER	LER
Energy (GeV)	7	4
Current (A)	2.12	2.12
Beta X (mm)	20	32
Beta Y (mm)	0.32	0.20
Emittance X (nm-rad)	1.60	2.56
Emittance Y (pm-rad)	4.0	6.4
Sigma X (µm)	5.66	5.66
Sigma Y (nm)	38	36
Crossing angle (mrad)	+/-	30

Present IR Design

IR With Extra Solenoids

Solenoid Excitations

B Fields

- $B_z < 1.5$ kG in SC quads, but high gradient at ends
- Modifications to trim windings can improve this

• Does not include quad kicks (small and correctable?)

Detector Field Distortion

- · Compensating solenoids distort detector field slightly
- Additional trim windings around PM quads or closer to IP could help

- Cylindrical shells of PM material with axial polarization
- Produces bumps in B_z near IP (if desired)

Bz with Axial PM cylinders

Cylindrical shells of NdFeB (14 kOe), axial polarization

- Cylindrical shells of PM material with radial polarization
- Produces bumps in B_z near IP (if desired)

• Cylindrical shells of NdFeB (14 kOe), radial polarization

- Assumes quads do not steer or couple
 - True if quads are rolled and shifted to follow beam
 - Effects should be small, but need detailed simulation
- Assumes solenoids have circular cross-section
 - Oval cross-section is attractive; will perturb trajectories but will not change integral of B_z
- Will slightly perturb detector field
- PM rings could be added to modify B_z near IP
- Assumes beamline components are iron-free
 - Panofsky style QD0 may need additional solenoid to reduce detector field perturbations