

Super-B: RF parameters and longitudinal issues.

Sasha Novokhatskí SLAC National Accelerator Laboratory

XI Super B Workshop December 1-5, 2009 INFN-LNF

High efficiency, cite independent project.

Super-B parameters. July 22, 2009

Sasha Novokhatski "RF/Impedance"

Ð

Parameter	Units	Super-B
		LNF
		22-Jul-09
		with SR LER
E HER (positrons)	GeV	6.7
E LER (electrons)	GeV	4.18
Energy ratio		1.60
Bunch length HER	cm	0.5
Bunch length LER	cm	0.5
I HER	mA	2120
I LER	mA	2120
Circumference	m	1315
N. Buckets distance		2
Gap		0.97
Frf	Hz	4.76E+08
Fturn	Hz	2.28E+05
Fcoll	Hz	2.31E+08
Num Bunch		1011
NHER		5.74E+10
NLER		5.74E+10
Damping_long HER	msec	14.5
Damping_long LER	msec	22.0
Uo HER	MeV	2.03
Uo LER	MeV	0.83
alfa_c HER		4.04E-04
alfa c LER		4.24E-04
sigma-EHER		6.15E-04
sigma-E LER		6.57E-04
CM sigma_E		9.00E-04
SR power loss HER	MW	4.30
SR power loss LER	MW	1.76

Bending radius Super-B PEP-II HER 126 m 165 m

10.5 m

LER

 \mathbf{T}

13.8 m

3

12/03/2009

XI SuperB Workshop

~4 Dec 2009

- Cavity voltage and forward power
 - Voltage in a cavity is limited by sparks and breakdowns
 - SLAC PEP-II experience: voltage should be less than 0.75 MV per cavity
 - Forward power into a cavity and reflected power are limited by sparks in RF windows
 - SLAC PEP-II experience: transmitted power should be less than 500 KW per cavity and reflected power less than 10%

XI SuperB Workshop

4

Sasha Novokhatski "RF/Impedance"

Changing the coupling factor β of the PEP-II cavity for a better RF performance at Super-B

0.2714 m

XI SuperB Workshop

Г

HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	
Total	Zero I		Max	Number	•		Total	Total	Total	Power fo	reflected	j
RF	Bunch	Bunch	voltage	of	S.R.	HOM	cavity	reflected	forward	to one	from	
voltage	length	spacing	er cavit	cavities	power	power	loss	power	power	cavity	one	1
MV	mm	nsec	MV	klystroi	MW	MW	MW	MW	MW	MW	MW	
5 78	5.00	4 20	0.51	12.00	1 30	0.45	0.37	1 30	6 / 1	0.53	0.11	╞
5.70	5.00	4.20	0.31	6.00	4.30	0.45	0.57	1.30	0.41	0.55	0.11	ŀ
												ĵ
LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	
Total	Zero I		Max	Number	•		Total	Total	Total	Power fo	reflected	3
RF	Bunch	Bunch	voltage	of	S.R.	HOM	cavity	reflected	forward	to one	from	
voltage	length	spacing	er cavit	cavities	power	power	loss	power	power	cavity	one	
MV	mm	nsec	MV	klystroi	MW	MW	MW	MW	MW	MW	MW	
4.10	5.01	4.20	0.58	8.00	1.76	0.40	0.28	0.17	2.61	0.33	0.02	
				4.00								

XI SuperB Workshop

6

Gap transient is small. Kirk Bertsche. October SLAC Meeting

XI SuperB Workshop

HEB

- LEB

Diff

2000

1500

5mm, 12 HER, 8 LER cavs Sasha Novokhatski "RF/Impedance" Beam Phases HEB 12cav, β=6, 5.7MV; LEB 8cav, β=6, 4.1MV 0.3 deg RMS phase error 8 6 4 2 Phase (deg) 0 500 1000 -2 -4 -6 -8 **RF Bucket** • Low gap voltages, HER 12 cavs β =6, LER 8 cavs β =6 Lose <1% of lumi due to gap transient mismatch 7

Main mode Robinson Damping and optimal coupling factor

XI SuperB Workshop

•	Matching	main	mod	е
---	----------	------	-----	---

 \mathbb{T}

PEP-II	cavity
f [MHz]	476
Z [MOhm]	3.8
Q	32000
Z/Q [Ohm]	118.75

	PEP	- 11	Super	- B
	LER	HER	LER	HER
Usr [MeV]	0.5	3.55	0.83	2.03
N cav	8	28	8	12
V [MV]	4.05	16.5	4.1	5.7
I [mA]	3000	2000	2120	2120
df [kHz]	-334.96	-191.84	-233.82	-252.28
f rev [kHz]	136.3	136.3	228	228
betta	6.56	6.55	7.36	13.08

8

T

impedance

Threshold for a cavity

Multi-bunch beam stability

 $Z_{th}(\omega) = \frac{4\pi E v_s}{\alpha \tau_s N_c I \omega}$

Sasha Novokhatski "RF/Impedance"

_XI SuperB Workshop

9

D

SuperB

• PEP-II RF and bunch by bunch feedbacks overcome the instability threshold.

XI SuperB Workshop

10

Super-B and PEP-II beam stability.

XI SuperB Workshop

• Using similar to PEP-II feedback we can go to higher currents in Super B.

11

More currents in Super-B

F

	LER	LER	LER	HER	HER	HE
Usr [MeV]	0.83	0.83	0.83	2.03	2.03	2.0
N cav	8	8	14	12	18	26
V [MV]	4.1	4.1	5.8	5.7	8	10
I [mA]	2120	3000	4000	2120	3000	400
df [kHz]	-221.51	-313.46	-517.03	-239.00	-361.46	-556.
f rev [kHz]	228	228	228	228	228	228
opt betta	7.03	9.53	10.95	12.44	13.33	16.2

12

12/03/2009

XI SuperB Workshop

I~4 Dec 2009

0

 \mathbb{C}

Super-B Higher currents. Each bucket is filled. Coupling factor is modified.

	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER	HER		HER+	
	S.]	R. ener	gy		Total	Zero I		Max	Number	•		Total	Total	Total	Power for	reflected	LER	
	Beam	loss	Momen-	Momen-	RF	Bunch	Bunch	voltage	of	S.R.	ном	cavity	reflected	forward	one	from	Total	betta
	curre nt	per turn	tum com-	tum	oltage	length	pacing	er cavi	tcavities	power	power	loss	power	power	cavity	one	forward	
	Α	MeV	paction	s pre ad	MV	mm	nsec	MV	klystro	MW	MW	MW	MW	MW	MW		MW	
	2	2.03	4.0E-04	6.2E-04	5.7	5.0	2.1	0.51	12	4.06	0.1965	0.356	0.9879	5.60	0.47	0.08	7.80	6.00
									6									
ŀ	2.5	2.03	4.0E-04	6.2E-04	6.9	4.5	2.1	0.51	14	5.075	0.372	0.447	1.3129	7.21	0.51	0.09	10.08	6.00
	-		4.05.04	6.000.04	0			0.45	7	< 0.0	0 (1 1 0	0.460	1 5205	0.00	0.50	0.10	10 (0	= 00
	3	2.03	4.0E-04	6.2E-04	8	4.2	2.1	0.45	18	6.09	0.6442	0.468	1.7207	8.92	0.50	0.10	12.60	7.00
ŀ	25	2.02	4.0E.04	6 20 04	0	2.0	2.1	0.4	22	7 105	1 0190	0.484	2 2062	10.91	0.40	0.10	15.42	8.00
ŀ	5.5	2.05	4.0E-04	0.2E-04	9	3.9	2.1	0.4	11	7.105	1.0109	0.404	2.2003	10.01	0.49	0.10	15.45	0.00
	4	2.03	4 0F-04	6 2E-04	10	3.7	21	0.4	26	8.12	1.5197	0.506	2.7158	12.86	0.49	0.10	18.90	9.00
ŀ	-	2.05	4.02.04	0.212 04	10		2.1	0.4	13	0.12	1.0177	0.200	2.7100	12.00		0.110	10.20	2.00
																	HER+	
ľ	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER	LER		LER	
	S.	R. ener	gy		Total	Zero I		Max	Number	•		Total	Total	Total	Power for	reflected	Plug	
	Beam	loss	Momen-	Momen-	RF	Bunch	Bunch	voltage	of	S.R.	ном	cavity	reflected	forward	one	from	Power	
	curre nt	per turn	tum com-	tum	voltag	length	pacing	er cavi	tcavities	power	power	loss	power	power	cavity	one	eff.~50%	
	Α	MeV	paction	s pre ad	MV	mm	nsec	MV	klystro	MW	MW	MW	MW	MW	MW		MW	
	2	0.83	4.2E-04	6.6E-04	4.1	5.0	2.1	0.58	8	1.66	0.1792	0.276	0.0836	2.20	0.27	0.01	15.60	6.00
-									4									
-	2.5	0.83	4.2E-04	6.6E-04	4.1	5.0	2.1	0.58	8	2.075	0.2801	0.276	0.2449	2.88	0.36	0.03	20.17	6.00
-	-							0.70	4	• 40	0.4000		0.00.01		0.44	0.07		6.00
	3	0.83	4.2E-04	6.6E-04	4.1	5.0	2.1	0.58	8	2.49	0.4033	0.276	0.5051	3.67	0.46	0.06	25.20	6.00
	2.5	0.02	4.05.04		4.0		0.1	0.40	4	2 007	0 (570	0.216	0 7222	4.61	0.46	0.07	20.95	6.00
-	3.5	0.83	4.2E-04	6.6E-04	4.9	4.0	2.1	0.48	10	2.905	0.0579	0.316	0.7332	4.61	0.46	0.07	30.85	0.00
-	4	0.83	$4.2E_{-}04$	6 6E-04	5.8	4 2	21	0.4	14	3 3 2	1 0543	0 316	1 3484	6.04	0.43	0.10	37.80	6.00
-	-	0.05	7.21-04	0.01-04	5.0	7.4	2.1	0.4	7	3.34	1.0343	0.510	1.5704	0.04	0.43	0.10	57.00	0.00
			1	1									1					

XI SuperB Workshop

13

Higher currents in Super-B

F

 \bigcirc

T

- IR study
 - attempting to understand the wake field structure for other geometry
 - detailed study of the fields penetrating through the thing IP walls
- Other beam chamber elements

XI SuperB Workshop

17

 \mathbb{C}

Other shape of the Interaction Region. S.Weathersby

Resistive-wall and geometrical transitions

SuperB

Ч

XI SuperB Workshop

20

ð

-0.2

-0.3

-0.4

Kickers

XI SuperB Workshop

21

 Wake Potential [V/pC] Bunchlength=
 6.000[mm]' Loss factor=-0.34863E+00[V/pC]

 0.1
 0

 0
 -20
 0
 20
 40
 60
 80
 11

 -0.2
 0
 20
 40
 60
 80
 11

 -0.2
 -0.3

Longitudinal kicker

Sasha Novokhatski "RF/Impedance"

F)

 \mathbb{T}

XI SuperB Workshop

- A small modification of a coupler box of the PEP-II RF cavities will considerably improve the RF performance of the Super-B.
- RF and bunch by bunch feed-back may allow to go to higher currents adding more cavities.
- HOM studies are continued.

KI SuperB Workshop

Sasha Novokhatski "RF/Impedance"

RF power distribution in PEP-II: 2 or 4 cavities per klystron

SuperB

XI SuperB Workshop

24